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Abstract

The integration of neutral atoms with nanophotonic structures offer significant potential as

a versatile platform to explore fundamental light-matter interactions as well as realizing novel

quantum-optical devices. Here, we investigate the possibility of creating low-threshold micro-

scale lasers in hybrid systems based on integrating room-temperature atomic gases with both

dielectric and metallic nanophotonic systems. We particularly focus on studying two different

devices resulting from incorporating an optically-pumped Rb-ethane mixture in a dielectric ring

resonator and a plasmonic lattice. We show in both cases the combination of the optical gain

provided by the atomic vapor, along with the unique field-confinement properties of nanophotonic

structures, enables generating of coherent radiation, i.e. laser light, at low power levels. In addition,

we provide general design guidelines for these hybrid nano-lasers and an efficient density matrix-

based formalism for studying these systems. Our results demonstrate a unique route towards small

foot-print, highly efficient, and fast lasers, which paves the way towards the development of a whole

new class of active nanophotonic and metamaterial systems.
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I. INTRODUCTION

The field of quantum optics has benefited a lot from theoretical and technological ad-

vances in solid-state photonics. With the first demonstration of single photon sources in a

nano-device at the beginning of this century1–5, these systems became one of the prominent

platforms for realizing various quantum optical phenomena and devices. Low-threshold pho-

tonic crystal lasers6–8, plasmonic nanolasers9–12, strong coupling13–15, photon blockade16–18,

chiral quantum optics and entanglement19–22 are some of intriguing quantum optical phe-

nomena studied and realized in solid-state platforms. In spite of their appealing features

for integration as a monolithic module, the large crystal-field broadening and heterogeneity

of quantum dots have been two major bottlenecks of solid-state systems in achieving long

coherence length and large-scale quantum networks23.

Meanwhile in parallel, substantial developments in the other disciplines of physics have

been made toward realizing different quantum information processing schemes. In particular,

In the realm of atomic, molecular, and optical physics (AMO) trapped ions and neutral atoms

have been employed as high-fidelity nodes and qubits in scalable quantum computers24–28. So

far, AMO systems appear to be the most ideal known candidates regarding their coherence

features, with very well-established and precise quantum state manipulation schemes. On

the other hand, thanks to the advances in nano-technology and fabrication techniques, solid-

state nanophotonics has become the most suitable platform for integration and scalibility.

Therefore, a new promising approach could benefit from the best of two worlds, in a hybrid

scheme, on an interface between AMO and solid-state photonics29.

Among different candidates in AMO, neutral atoms are easier to work with, since the

presence of a device in the vicinity of the ions would substantially perturb the ion traps

due to the induced surface charges. Moreover, in spite of some successful demonstration

of cold atom-photonic device couplings the miniaturization of the typical cold atom setups

compatible with nano-devices is still a challenge30–32. Unlike cold atoms, thermal vapors

lend themselves for proper integration and coupling to the photonic modes as has been

demonstrated in hollow-core fibers and waveguides33–35. Very recently, the thermal vapors

of alkali atoms have been successfully combined with on-chip, integrated plasmonic and

photonic devices where the atomic transitions have been modified with the photonic modes

showing noticeable effect as Fano resonances or sub-Doppler line modifications36–38.
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In this paper, we investigate the possibility of laser light generation in hybrid systems that

combine room-temperature atomic clouds and nanophotonic structures. The optical gain

we consider in our study consists of an optically-pumped mixture of Rb and ethane, as has

been successfully employed in the past in diode pumped alkali lasers (DPAL) for achieving

large optical gain within the infrared39–41. This Rb-ethane mixture is incorporated into

two different classes of integrated nanophotonic platforms, an all-dielectric ring resonator

supporting whispering gallery modes with large quality factor, and a plasmonic lattice,

featuring lattice resonances with moderate quality factor and large field enhancement at the

subwavelength scale. To tackle this problem, we develop an efficient density matrix-based

formalism that properly captures the dynamics and decoherence of light-matter interaction

in the studied systems. The method can be efficiently employed to study the transient

and steady state features of both the atomic level populations and the electromagnetic

field. Using this approach, we show the temporal and spatial field-confinement properties

of the considered nanophotonic systems can be tailored to enable laser light emission at low

pumping power levels. Furthermore, we derive a simplified model to provide general design

guidelines for this novel class of hybrid active systems.

II. THEORETICAL FRAMEWORK

In spite of their very different wavelength, all DPALs share the same working principle.

The outer shell of alkalis have three main electronic levels of n2S1/2, n
2P1/2, n

2P3/2. In

a mixture with alkali atoms excited at D2-line (i.e. n2P3/2), the collision of the excited

atoms with buffer gas molecules (typically a hydrocarbon) efficiently transfers part of the

population from the excited state to n2P1/2. With a properly chosen buffer gas at an

optimized pressure a population inversion between n2P1/2, n
2S1/2 would be built up hence,

an optical gain at this transition (known as D1-line) is established41.

To model the interaction of this atomic cloud with photonic modes, we adapt the semi-

classical approach, where the electromagnetic fields are treated classically and the atoms are

considered quantum mechanically. The density matrix is the best way to take into account

atomic transitions and decoherence phenomena such as Doppler and transient broadening.

Moreover, if the additional decoherence mechanisms such as collision of Rb atoms with

buffer gas molecules are considered in Lindblad form, the Liouville equation would properly
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FIG. 1. Schematics of the (a) ring resonator and (b) plasmonic hybrid laser systems studied in

this work. The geometrical parameters defining each structure have been indicted in the figures.

Top green arrows in both panels represent the external pumping, while the red arrows represent

the radiation from each structure. The central inset shows Jablonski diagram of Rb atoms used as

active gain medium here.

describe the time evolution of the atomic states when coupled to an arbitrary photon field.

In what follows we describe the method for the lasing problem where the gain medium (i.e.

Rb vapor and buffer gas mixture) is tread as a 3-level system as shown in Fig. 1. Although

the final equations and results have been derived for a 3-level gain medium and single mode

lasers, the procedure can be generalized for more atomic levels and multi-mode photonic

systems.

The time evolution of the Rb atom density matrix (ρ̂) is described via the following

Liouville equation:

i~ ˙̂ρ = [ĤA + ĤI , ρ̂] + L[ρ̂] (1)

Where Ĥatom is the free-atom and ĤI is interaction Hamiltonian describing the coupling

between atoms and the cavity field.

The cavity field ~E(~r, t) on the other hand is determined via Maxwell’s equation as:

(∇2 − εr(r)

c2
∂2

∂t2
) ~E(r, t) = µ0

∂2 ~P (r, t)

∂t2
(2)

4



In the above equation εr(r) is the linear permittivity and in general is a function of

position due to the spatial distribution of the refractive index in the photonic structure.

~P (~r, t) is the polarizability of the atomic cloud and for a uniform atomic density of N is

related to the induced atom dipole moment as:

~P (r, t) = N 〈~p(r, t)〉 = Tr(p̂ρ̂(r, t))N = N(ρ21(r, t) ~M + c.c.) (3)

where ~M is the transition e-dipole moment between the 1st and 2nd state.

Here, we implicitly assume that the coherent atom-field interaction only occurs between

|1〉 , |2〉 with the effective transition electric dipole ~M . The interaction between |1〉 , |3〉 is

assumed to be incoherent which can be described as an effective pumping rate Rp.

Equation 4 gives the modes of the cold cavity at ωc with the decay rate γc:

~E(r, t) = ~E+(r, t) + c.c. = ~E+
0 (r)e−γcte−iωct + c.c. (4)

After properly incorporating the finite-lifetime of each state and in the validity realm

of rotating wave approximation (RWA), one would have the following sets of equations of

motion for the density matrix elements:

˙ρ33(r, t) = −(γ31 + γ32)ρ33(r, t) +Rp(ρ11(r, t)− ρ33(r, t)) (5a)

˙ρ22(r, t) = γ32ρ33(r, t)− γ21ρ22(r, t)

+
1

i~
( ~M · ~E−(r, t)e+iωctρ21(r, t)− c.c.) (5b)

˙ρ11(r, t) = γ31ρ33(r, t) + γ21ρ22(r, t)−Rp(ρ11(r, t)− ρ33(r, t))

− 1

i~
( ~M · ~E−(r, t)e+iωctρ21(r, t)− c.c.) (5c)

˙ρ21(r, t) = −(iωa + γ|)ρ21(r, t) +
1

i~
~M∗ · ~E+(r, t)e−iωctw (5d)

where γ| = γ32 + γ21
2

is the transverse decoherence rate taking into account all the de-

coherence effects, including the collision with the buffer gas.

In contrary to many of the large cavities where the uniform field approximation can be

used, in nano-photonic and plasmonic systems one cannot ignore the spatial variation of the
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FIG. 2. (a) xy cross-section of the magnetic field distribution (Hz) corresponding to the TE-

polarized eigenmode supported by the system shown in Fig. 1(a) at λ=795 nm. The values of

the geometrical parameters defining the structure are r=5 µm, w=500 nm and h=250 nm. (b)

Radial variation of the normalized electric-intensity of the whispering gallery mode supporting

the resonance at Rb D1-line. Left inset displays the yz cross-section of the corresponding E-field

intensity and right inset shows the variation of the E-field intensity along z-axis normal to the ring

plane. (c) Band diagram of the plasmonic lattice along ΓX direction in the first Brillouin zone

showing two band (B1, B2) within the visible and infrared range. (d) The yz- (top) and xy-cross

section (bottom) electric field intensity of the mode resonating at about 795 nm indicated by a

white arrow in panel (c).
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electromagnetic fields inside the cavity as the field features vary below or on the order of the

wavelength. That makes the density matrix elements functions of both time and position.

In other words the above sets of equations have to be solved simultaneously at each point

of the space to properly capture all the atomic and photonic features. To overcome this, we

project the fields on the basis of the cold cavity modes.

Therefore the modified cavity field can be rewritten as:

~E(r, t) = E0(~f
+
0 (r)a+(t)e−iωct + c.c.) (6)

where we have defined E0 = max[ ~E+
0 (r)|] and the dimensionless vectors of ~f±0 (r) =

~E±0 (r)/E0.

For the observables appearing as diagonal elements of the density matrix the spatially

averaged parameters would be determined as:

〈ρii(t)〉 =

∫
atom

dvρii(r, t)|~f+
0 (r)|2∫

atom
dv|~f+

0 (r)|2
(7)

The subscript atom in the above integral indicates an integration over the active region

where the polariazable atoms are present. For the off-diagonal elements related to the

coherent interactions we employ the following approximation within the active region:

~Mρ21 = | ~M |~f+
0 (r)e−iωatρ̃21(t) (8)

Using the above definitions the equations of motion in eq. 5 combined with eq. 2 for the

cavity field could be rewritten as:

d 〈ρ33〉
dt

= −(γ31 + γ32) 〈ρ33〉+Rp(〈ρ11〉 − 〈ρ33〉) (9a)

d 〈ρ22〉
dt

= γ32 〈ρ33〉 − γ21 〈ρ22〉+
ζ

i~
(ρ̃21a

−(t)eiδt − c.c.) (9b)

dρ̃21
dt

= −γ|ρ̃21 +
1

i3~
| ~M |E0 〈w〉 a+(t)e−iδt (9c)

d

dt
a+(t) = −γca+(t) + [i

ωa
2
ρ̃21 −

d

dt
ρ̃21]µ0Nc

2ξ
ωa
ωc
eiδt (9d)
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where δ = ωc−ωa is the detuning between the cavity resonance and the atomic frequency

and 〈w〉 = ρ22 − ρ11 is the population difference. Moreover, ζ, ξ describe the effective

interaction of the field with active region and are defined as follows:

ξ =
| ~M |
E0

∫
atom

dv|~f+
0 (r)|2∫

space
dvε(r)|~f+

0 (r)|2
=
| ~M |
E0

ζ1 (10a)

ζ = | ~M |E0

∫
atom

dv|~f+
0 (r)|4∫

atom
dv|~f+

0 (r)|2
= | ~M |E0ζ2 (10b)

The above equations are very general and can be used to describe the interaction of the

atom cloud with arbitrary fields of a nano-device in any configuration. To solve for the

lasing features as we are interested in this paper, eq. 9 must be solved with the following

initial conditions when a proper pumping exists. 42

ρ11(0) = 1, ρ22(0) = ρ33(0) = a+(0) = 0, Rp 6= 0 (11)

Finally, note that all of the unknown variables in eq. 9 are time-dependent only, mak-

ing the atom-cavity interaction problem more tractable numerically while providing more

physical insight.

III. RESULTS AND DISCUSSION

A. Description of the analyzed systems and passive response

Figure 1 shows schematics of the two hybrid integrated laser systems under study. The

first configuration (Fig. 1(a)) consists of a dielectric SiN ring of inner radius r, height h and

width w, lying on top of a SiO2 substrate. The dielectric ring is embedded in a thermal

cloud of Rb atoms with the density of N , and ethane molecules . The Rb atoms are modeled

as three-level systems, excited with an incoherent pump at λD2=780 nm. The fast and

nonradiative transition between 5P3/2 and 5P1/2 states (mainly achieved via collision with

buffer gas molecules such as He or ethane) enables the population inversion between this

level and the ground state to be built up at D1-transition with λD1=795 nm (see Jablonski

diagram of the inset in Fig. 1).
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FIG. 3. (a) Variation of the electric field energy density and (b) population difference between

|2〉 and |1〉 as a function of time in a ring resonator at various pumping rates. Temporal evolution

of (c) the electric field energy density and (d) population difference between |2〉 and |1〉 for the

plasmonic lattice at few different pumping rates. The inset figures in panel (b) and (d) show the

dynamical behavior of the population difference at early times, illustrating the fast increase of the

excited state population. For both resonators the Rb gas density is assumed to be N = 1022 N−3.

The normalizing factor Γ2 is the natural decay rate of 2nd-level as 36×106 s−1.

The second structure is a periodic lattice of Au (gold) cylindrical nanoparticles (Fig. 1(b)).

The lattice constant is given by Λ, and the radius and height of each of the nanoparticles is

r and t, respectively. The rest of the details are the same as those described above.

To get physical insight into the above described route to lasing action, we focus first

on analyzing the cold-cavity features in the absence of the Rb atoms. Figures 2(a) and

(b) summarize the results of the ring resonator. In these calculations we have assumed
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refractive indexes of n = 2.00 and n = 1.45 for the SiN and SiO2 regions of the structure,

respectively and with the geometrical parameters of, r=5 µm, w=500 nm, and h=250 nm.

These values have been obtained by optimizing simultaneously the values of the ring radius

and the azimuthal order of the whispering gallery modes (WGMs), until the mode resonances

matches to the D1-line of Rb, i.e. δ=0. (For further details on the optimization process refer

to the Supplementary Information, where the effects of r and m on the modal resonance

have been investigated further). The effect of a non-zero detuning of the WGM resonance

with respect to lasing transition will be discussed later in the paper.

Figure 2(a) shows Hz profile of a TE-polarized eigenmode supported by the optimal

structure at λ = 795 nm and m = 68. The corresponding electric-field intensity distribution

is shown in Fig. 2(b). As can be seen, most of E-field is concentrated inside the dielectric

ring, but still there are fractions of the field extending beyond the ring interacting with the

atomic cloud.

Similarly, Fig. 2(c) and (d) depicts the results of the plasmonic lattice in Fig. 1(b), when

Λ = 450 nm, t = 60 nm and a = 45 nm. The substrate is assumed to be SiO2 and the

metallic nano-particles are described with Johnson and Christy empirical data. Fig. 2(c)

displays the band diagram of the periodic lattice along the Γ − X direction of the First

Brillouin Zone (see the inset of Fig. 2(c)). This band diagram was obtained through

a Fourier transform analysis of the slowly-decaying eigenmodes of the system after being

excited by a set of point dipoles located at random positions (we carried out this analysis

using the commercial implementation of the finite-different-time-domain method provided

by Lumerical, see Supplementary Information for details).

Two plasmonic bands exist in the spectrum. The mode of our interest is the one at

λ =795.18 nm for kx = 0 (see white arrow in main panel of Fig. 2 (c)). As for the ring,

the geometrical parameters of the plasmonic lattice have been optimized so that the lattice

plasmon resonance (formed by the hybridization of the diffracted lattice modes with the

localized surface plasmon resonances of each metallic nano-particle) appears as close as

possible to D1 transition of Rb. Due to their larger Q-factor, in comparison with other

plasmonic resonances, lattice plasmons have been successfully used for realizing plasmonic

nano-lasers in the past43–45. Figure 3(d) shows the cross-sections of the E-field distribution

corresponding to this lattice mode illustrating large-field enhancements associated to this

resonance. Finally, we highlight that, in contrast to the ring resonator, we have not been
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able to fully tune the lattice plasmons to atomic resonance while keeping the geometrical

parameters in a reasonable range. Next section discusses the implications of this on the laser

performance and dynamics.

B. Lasing dynamics and steady-state laser characteristics

In this section we consider the behavior of the resonators designed in the previous section

in the vicinity of the thermal cloud and buffer gas mixture. The buffer gas leads to a rapid

dephasing of both Rb isotopes, producing a homogeneous broadening on the order of several

tens of GHz. This strongly depends on the buffer gas pressure. Here we considered a 12

GHz line width due to this phenomenon. We further assume that these buffer gas-induced

dephasing rates are the same for all transitions46. Moreover, 38× 106 s−1 and 36× 106 s−1

are the natural decay rates of |3〉 and |2〉, respectively. Finally, the transition dipole moment

of Rb is | ~M | = 25× 10−30 Cm in the following calculations47.

Figure 3 summarizes the dynamical characteristics of the coupled atom-cavity system.

Figure 3(a) and (c) show the time evolution of the spatially averaged electric energy density

of the ring resonator and plasmonic lattice, respectively. The results has been shown for

four different pumping rates. In both systems, we obtain the canonical features of lasing

dynamics, consisting of a series of sudden spikes in the field energy signal that settle down to

a non-zero value in steady-state, indicating that both systems can indeed lase at large enough

pumping rates. This is the first main results of this work demonstrating the possibility of

obtaining coherent radiations in such hybrid systems. In particular, as seen in Figs. 3(a)

and (c), the micro-ring cavity displays shorter lasing onset times and faster oscillations than

the plasmonic lattice. At Rp = 5× 108 s−1, the ring resonator takes 3.3 ns to reach to the

steady state, while this time increases to 65 ns in the plasmonic lattice which is about 20

times longer.

To investigate the link between the field oscillations and the population of the electronic

levels of Rb atoms, Figs. 3(c) and (d) show the corresponding time evolution of the spatially-

averaged population inversion (ρ22− ρ11). In both cases, before the first lasing spike occurs,

the averaged population inversion rapidly grows with time (see insets of Figs. 3(b) and (d)).

This corresponds to the regime where the population of |2〉 is increasing (the system is ac-

cumulating population inversion). When the population difference between |2〉 , |1〉 becomes

11



FIG. 4. Dependency of the laser steady-state features, i.e. energy density (blue line) and the

population difference (red line), as a function of pumping rate (Rp) for the (a) ring resonator and

(b) plasmonic lattice. The yellow region in both panels highlights the below-threshold region of

the nano-lasers where lasing does not happen.

large enough so its associated optical gain can overcome all the de-coherence phenomena,

the first burst of laser radiation takes place, as can be observed in Figs. 3(b) and (d) for

larger values of Rp. This burst leads to a significant depletion of the population inversion (a

significant amount of the upper-level population of the laser transition decays via stimulated

emission), leading to a dramatic drop of the laser signal. After that, it starts a subsequent re-

covery of the populations inversion, until enough population inversion is accumulated again

and a second spike of the lasers signal occurs. This is accompanied by the corresponding

drop in the population inversion. This series of bursts and subsequent drops of the popu-

lations inversion takes place sequentially (for larger times smoother spikes and drops of the
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FIG. 5. (a) Variation of the required population inversion leading to a coherent lasing emission

in a nano-laser as a function of its quality factor (Q) when the density of the atoms in the active

region in assumed to be fixed at N = 1022 m−3 and active medium fractional ratio is 4%. Each

line corresponds to different detuning δ between the cavity and the atomic transition resonance.

The gray area in the low-Q part indicates the non-lasing regime and the vertical dashed lines show

the behavior of wss for the plasmonic lattice and micro-ring studied in this work. (b) The effect

of cavity quality factor on the pumping threshold of the nano-laser for five different atom-cavity

detunig. The black dashed lines show the dependency of the plasmonic lattice and ring resonators

studied in this work. (c) The influence of atom density in controlling the laser threshold in a ring

resonator laser with Q = 3× 104 as designed and investigated in this work for various atom-cavity

detuning. The dashed line shows the tendency for the plasmonic lattice. The vertical dashed line

shows the atomic density considered in in this paper.

lasing signal and population inversion are obtained) until the steady-state is reached. Note

that the steady-state value of the population inversion required for lasing depends on the

de-coherence phenomena in the gas as well as the optical cavity. Therefore, After reaching

the threshold the optical gain is clamped and the population inversion remains fixed.

The better the cavity the smaller the de-coherence, hence smaller gain and population

inversion are required. For the ring resonator with quality factor Q ≈ 3× 104 the required

population inversion of lasing is ≈ 0.04. While due to the lower quality factor of the lattice

plasmon resonance ≈ 211 this value increases to 0.66.

Fig. 4 (a) and (b) show the steady-state behavior of electric-file energy density and the

population difference as a function of Rp for the micro-ring and the plasmonic lattice, respec-

tively. The observed linear dependence above threshold confirms that the two considered
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configurations are indeed lasing. In addition, as can be seen the plasmonic lattice starts to

lase at the pumping threshold of Rth
p = 1.9× 108 s−1, while the same parameter reduces to

Rth
p ≈ 4.1× 107s−1 for micro-ring, which is about 5 times smaller.

C. Simplified model

To develop further insight to the performance of these hybrid lasers, we use a simplified

analytic model that captures the main lasing characteristics of these systems. From eq. 9 it

is straightforward to calculate the required population difference between 1st and 2nd-levels

to overcome all decoherence phenomena in the atom-cavity system and achieve a sustainable

lasing oscillation as:

wss =
6~[(γcγ| + δ1δ2)Re(ζ1) + (δ1γ| − δ2γc)Im(ζ1)]

(ωa + 2δ2)N | ~M |2µ0c2ωa/ωc|ζ1|2
(12)

This population inversion can be achieved with an incoherent pump at the rate of

Rth
p = γ21(1 + wss)/(1− wss).

In eq. 12, δ1,2 represent the frequency pulling effect due to a non-zero frequency de-

tuning between cavity and atom resonances, defined by a+(t) → a+(t)e+iδ1t and ρ̃21(t) →

ρ̃21(t)e
−iδ2t. As expected wss is dependent on the longitudinal and transverse decay rates

(γc, γ|), frequency detuning (δ1,2), atom-field coherent coupling strength set by M , atom

density (N), and the ratio of the active region volume to the cavity mode volume ζ1. In a

nano-photonic cavity ζ1 and δ1,2 are strongly dependent on the device features, hence wss.

However, a good approximation to the numerical results can be obtained by assuming a

reasonable range for ζ1. Based on various studies on these two classes of cavities we found

that ζ1 = 0.04 is a proper approximate value for micro-ring as well as the plasmonic lattice.

(See Table 1 of Supplementary Information)

For the fixed atomic density of N = 1022 m−3, Fig. 5(a) and (b) show the behavior

of required population inversion and corresponding pumping rate as a function of cavity

quality factor, respectively. For better understanding, the behavior has been investigated

for different values of the detuning between the cavity resonance and the atomic transition,

ranging from δ=0.0 to δ=0.20 nm. The two vertical dashed lines show the trend for plasmonic

lattice and ring-resonator with QP ≈ 211 and Q ≈ 3× 104, respectively.

As seen in Fig. 5(a) in a bad cavity regime (Q ≤ 135), the required population inversion
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is ≥ 1 , implying that the achievable gain in such a system is not large enough to overcome

all the decoherence, hence no laser radiation can be observed within this range. The cor-

responding pumping rate of this region is also very high as can be seen in Fig. 5(b). This

lasing-forbidden region is highlighted in gray in Fig. 5(a) and (b).

For larger moderate cavities (Q ≤ 500) there is a intermediate region, where the inversion

and pumping thresholds are almost insensitive to the atom-cavity detuning. That is due to

the fact that γc is still too large compared to the transverse decay that the detuning is mainly

leads to a cavity pulling and not an atom pulling (i.e. δ0 = 0), making wss independent of

δ. As shown in Fig. 5(a) and (b), plasmonic lattice falls within this range, hence any further

optimization of its geometrical features to decrease the detuning does not have a substantial

effect in reducing the required gain or pumping threshold.

For larger quality factors the detuning always increases the required inversion and pump-

ing rate as can be seen in Fig. 5(a) and (b), respectively. The micro-ring is a cavity within

this range where one can see the substantial sensitivity in its steady-state features as a

function of detuning.

Unlike the monotonic dependency to the detuning, the dependency to the cavity quality-

factor is only monotonic for δ = 0, where there is no pulling effect. For other cases the

required gain at first increases with increasing the quality factor and after reaching to a

maximum, monotonically drops for better cavities. This behavior is a direct consequence

of frequency pulling effect. While the bad cavity tends to only detune the cavity mode

resonance (i.e. δ2 = 0), a good cavity would alter the atomic resonance (δ1 = 0). For regions

in between the both of the atom and cavity resonance would be modified depending on the

relation between γc, γ| leading to a non-monotonic dependency to Q as in Fig. 5(a) and (b).

Finally, Fig. 5(c) illustrates the monotonic decrease of the required pumping rate with

atom density N when Q = 3 × 104 as for the micro-ring. The vertical dashed line shows

the density used throughout this paper. Different line correspond to various detuning.

According to the previous discussion, for a fixed atom density the required inversion of

each atom, hence the pumping rate, should be larger to overcome the detuning loss effect.

Moreover, if the detuning is fixed one can increase the cloud density to need less stimulated

emission rate from each individual atom, as suggested by the monotonically decreasing trend

in Fig. 5(c) for each fixed detuning. The gray shaded area on the top-left corner indicates the

parameter ranges where no lasing can be achieved either due to the small atom density, or
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the large detuning effect. The overlaid black dotted line shows the behavior of the plasmonic

lattice investigated in this paper. As can be seen in spite of very different nature lattice

resonance modes compared to the ring resonator case they both follow the same tendency.

This might seem a surprising result as the quality factor of the plasmonic cavity is orders

of magnitude smaller than the ring resonator. However, it must be noted that the lattice

mode volume is much smaller than the micro-ring’s, leading to comparable values for cavity

mode, atom-radiation fractional overlap.

IV. CONCLUSIONS

In this paper we report a novel route for realizing a coherent light source using hybrid

systems based on incorporating an alkali-buffer gas mixture in integrated nanophotonic

structures. To study this class of systems, we have developed a powerful and efficient theo-

retical method based on the density-matrix formalism, which has allowed us to characterize

both the dynamic and steady-state features of the nonlinear light-matter interaction oc-

curring in the considered structures. Using this formalism we have systematically studied

two realistic configurations based on an optically-pumped Rb-ethane gas mixture into two

types of numerically optimized nanophotonic systems, i.e., a dielectric ring resonator and

plasmonic lattice. For both classes systems, we have shown how by tuning one of their

corresponding photonic resonances to a suitable transition of the atomic cloud, it is possible

to enable emission of coherent radiation at low power levels. In addition, using a simplified

model, we have provided general guidelines for the design of the studied hybrid microlasers.

To the best of our knowledge, this is the first study of lasing action in such active hybrid

systems. Atomic-photonic hybrid systems are rather novel and unexplored platform, and we

believe the present study could stimulate further research aimed an exploiting their unique

quantum-optical properties. Thus, for instance, the study of the response of these hybrid

systems in different light-matter coupling regimes is a promising future research direction

that will provide essential information for realizing other quantum optical phenomena in

this platform.
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