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Abstract 

The 1+1 REMPI spectrum of SiO in the 210-220 nm range is recorded. Observed bands are assigned to 

the A-X vibrational bands (v”=0-3, v’=5-10) and a tentative assignment is given to the 2-photon 

transition from X to the n=12-13 [X2Σ+,v+=1] Rydberg states at 216-217 nm. We estimate the IP of SiO to 

be 11.59(1) eV. The SiO+ cation has previously been identified as a molecular candidate amenable to 

laser control. Our work allows us to identify an efficient method for loading cold SiO+ from an ablated 

sample of SiO into an ion trap via the (5,0) A-X band at 213.977 nm. 



Introduction 

Interest in spectroscopy of SiO and SiO+ was initially stimulated by astrochemistry. After detection of 

vibrational bands of SiO in stellar atmospheres[1] a search for electronic transitions followed. A number 

of studies investigated transitions of SiO in the UV region[2, 3]. The ionization potential (IP) of SiO was 

measured by means of electron impact[4], spectroscopy of Rydberg states[5], photoelectron 

spectroscopy (PES)[6], and direct VUV photoionization[7]. SiO+ bands were observed in 1943[8] but at 

that time misidentified as SiN. Later, this misunderstanding was resolved[9] and several electronic states 

were mapped by means of PES[6], absorption spectroscopy[9, 10] and laser-induced fluorescence 

(LIF)[11]. Several ab initio calculation studies predicted[12-14] rich excited electronic state structure of 

SiO+. Ion chemistry of Si+/O2 system and physics of ablation of SiO was studied in several works[15-17], 

stimulated by interest in Si clusters and vapor deposition. 

Our interest in SiO and SiO+ is primarily motivated by its properties that make it amenable to laser 

control of internal and external degrees of freedom [18, 19]. Control of molecules offers new 

applications in precision measurements of fundamental constants and ultracold chemistry[20-22].  The 

quantum state preparation necessary for coherent control is a serious technical challenge for molecules 

as rotational and vibrational degrees of freedom significantly complicate the internal structure 

compared to atoms. However, the B2Σ+-X2Σ+ electronic transition of SiO+ has highly diagonal Franck-

Condon factors and well-separated P and R branches, which make it suitable for broadband rotational 

cooling[23]. In order to design a laser cooling scheme for SiO+, accurate knowledge of branching 

fractions of SiO+ radiative relaxation to low lying vibrational and electronic states is necessary. A 

previous measurement, done by our group, of emission branching factors to high vibrational bands of 

B2Σ+-X2Σ+ found branching to the (1,0) band at 3% relative to the (0,0) band, while branching to higher 

vibrational levels and low-lying A2Π state could not be detected[24]. We determined that further limits 

were necessary before we could apply a laser cooling scheme. 

To enhance the sensitivity of SiO+ spectroscopy measurements, we designed a system that can trap large 

numbers of SiO+ ions in a linear Paul trap and perform dispersed LIF measurements to extract branching 

fractions. The work in this paper was motivated by the need for a reliable, rapid, and pure source of 

SiO+. Efficient and selective loading of SiO+ into a Paul trap can be reliably achieved by means of 

photoionization. SiO has a relatively high ionization potential (>11 eV), therefore a multiphoton process 

is needed to photoionize it with commonly available laser light sources. The band system of A1Π – X1Σ+ 

transitions have previously been studied via LIF[25] and absorption measurements[26]. The energy of 

these transitions lie approximately halfway between the ground state and the IP of SiO and could thus 

be used for 2-photon 1-color photoionization; however, no photoionization study of this system exists. 

This work reports the 1+1 REMPI (resonantly enhanced multiphoton ionization) spectrum of SiO in the 

210-220 nm range. The spectrum revealed several new features due to highly excited Rydberg states of 

SiO and resulted in accurate determination of the IP of SiO. 

 

 



Experimental 

All REMPI measurements occurred under UHV (5∙10-10 Torr) conditions with the aid of a home built 

linear Paul trap for ion storage and a channel electron multiplier (CEM) for ion detection. A pressed 

pellet of SiO, situated below the center of the Paul trap, was laser ablated by the second harmonic of a 

pulsed YAG laser. REMPI was subsequently performed on the ablation plume inside the trapping 

volume. After accumulating ions from a predetermined number of REMPI and ablation pulses, the trap 

RF voltage was ramped down, ejecting the trapped ions. The ejected ions are then detected by the CEM. 

The experimental setup is shown in Fig 1. Contained within the vacuum chamber is the Paul trap (2Πx3.6 

MHz trap frequency, r0=3 mm, z0=7.29 mm, Vpp=660 V, κ=0.22, Vec=~1 V), an ablation target of pressed 

SiO located ~1 cm below trap center, and the CEM, which is kept at 3 kV throughout the duration of the 

experiment. Outside the vacuum chamber is a function generator for ramping down the trap RF voltage,  

the laser probe used for REMPI (Ekspla NT342/1/UVE OPO, 10 Hz rep rate, 4.2 ns pulse width, 4 cm-1 

linewidth) and a photodiode along the beam path to normalize output power. The ablation source 

consists of a 532 nm pulsed source (Continuum Minilite II, 10 Hz rep rate, 3-5 ns pulse width) attenuated 

by a λ/2 waveplate and a polarizing beam splitter to ~0.5 mJ, passed through a motor controlled window 

rotated to move the beam, and focused onto the sample with a 150 mm lens. As the sample is unable to 

be moved in the vacuum chamber, the rotating window allows the beam to be walked in a circle and 

ablate a fresh spot on the surface each pulse. This acts to stabilize the signal which would otherwise 

continuously decay as the ablation laser would dig a hole over time.   

The REMPI laser pulse was delayed by 90 μs with respect to the ablation laser. The REMPI signal was not 

found to vary significantly over a delay range of ~50 μs. The REMPI beam was lightly focused into the 

trapping volume with a 200 mm lens and typically averaged a pulse energy of several hundred μJ 

reaching the ablation plume. The REMPI laser was scanned from 210-220 nm in step sizes of 0.025 nm. 

At each wavelength, the ablation laser and REMPI laser pulsed 5-20 times at 10 Hz before the RF 

trapping voltage was ramped down in 0.5 ms and the accumulated ion products detected on the CEM 

were counted. Care was taken to avoid saturation effects due to filling the ion trap. A boxcar integrator 

was used to record the average photodiode voltage observed due to the REMPI laser pulses in order to 

normalize the signal size. This sequence was repeated several times to accumulate statistics before the 

wavelength was stepped forward. In a given wavelength scanning range, the wavelengths were also 

stepped in the reverse direction to observe any drifting behaviors found in the signal size. Using a 

rotating window in the ablation laser path was crucial in eliminating decay in the signal during the 

reverse of the scan. 



 

Figure 1. Schematic diagram of the experimental setup. 

Calculations 

The IP of SiO was calculated at CCSD(T)/CBS level. The potential energy curves of the ground electronic 

states of SiO and SiO+ were calculated at EOM-CCSD level and fitted to a Morse potential to determine 

Re. The values obtained for the neutral SiO (Re=1.5094 Å) and for SiO+ (Re=1.5166 Å) are in very good 

agreement with experimentally measured values[27, 28]. CBS extrapolation was achieved by fitting 

CCSD(T)/ aug-cc-pVnZ (n=2-5) ground electronic state energies of neutral and cation SiO with the mixed 

exponential/Gaussian formula[29]. The adiabatic IP value was obtained by subtracting the CCSD(T)/CBS 

energy of SiO from that of SiO+ and correcting for the zero-point energies. The resulting value was IP = 

11.6138(1) eV where the number in parenthesis is the 1-σ of the exponential fit parameter. 

Notation 

The following notation is used throughout the paper. Rotational and vibrational levels of the ion are 

followed by the uppercase + sign, such as N+ or v+.  Quantum numbers of the ground state of SiO, X1Σ+ 

are followed by double prime, e.g.  J” and v”. Energy levels of A1Π state of the SiO are referred with a 

single prime, e.g.  J’ and v’. We chose to use the total rotational quantum number J for the neutral SiO 

and nuclear rotational quantum number N+ for SiO+ to avoid dealing with half-integer J+ values. Rydberg 

states of SiO are denoted with (Rydberg electron configuration) state term symbol [threshold ion level] 

notation. Here a configuration of the Rydberg electron in parenthesis, such as (nsσ), is followed by the 

state term symbol, such as 1Σ+ and the level of the SiO+ ion core, such as [X2Σ+,v+=1], in square brackets.  

Results 

Graph 1 presents the 1+1 REMPI spectrum of neutral SiO at 210-220 nm. The upper black trace is 

experimental data; colored lines below are simulated transitions. The spectrum has several similarly 

looking red-degraded bands in the 210-218 nm range. At 216 nm there is a complex band with multiple 

narrow lines, and after 218 nm the signal is small and mostly unresolved. The rotational lines could not 



be resolved since the bandwidth of the OPO light source that we used was ~4 cm-1, and the rotational 

constant of SiO is ~0.72 cm-1. Therefore the bands observed represent rotational contours of vibronic 

transitions. A number of bands at 210-218 nm were assigned as (v’,v”) A-X vibrational bands (v”=0-3, 

v’=5-10) (see Table 1 and Graph 1); they are red-degraded since the rotational constant of the A state is 

much smaller than that of the X state (~0.62 cm-1 vs ~0.72 cm-1 for v=0). The 0-5 rotational band contour 

at ~214 nm looks different from other X-A bands and the intensity of this band is not reproduced by 

simulation. The reason for this discrepancy is that the 2-photon excitation on the 0-5 transition brings 

SiO just above the IP level and direct ionization is not possible for high rotational levels (see discussion 

for details). 

The band at 216-217 nm looks different from the A-X bands and was assigned to another electronic 

state of SiO. It is likely produced by 2-photon excitation of Rydberg states converging to the v+=1 level of 

the X2Σ+ electronic state of SiO+. The 2-photon excitation of the (1,0) band of Ry, n=12-13 (X2Σ+,v+=1 ion 

core) – X 1Σ+ is enhanced by absorption of the first photon on the intermediate v’=6 level of the A1Π 

state of SiO. The 2-photon excitation of the ground state allows transitions to Rydberg states of Σ, Π and 

∆ symmetry. In the simulation we used the 3 1Σ+ Rydberg states to fit the band shape and the resulting 

fit has a good quality; however, this assignment is at best tentative and higher precision data is needed 

to properly assign states involved in the 216-217 nm band. 

To summarize, the observed bands were assigned to 1+1 REMPI via the (v’,v”) A1Π - X1Σ+ intermediate 

state, where v’=5-9 and v’’=0-3, and to the 2-photon excitation of the Rydberg states of SiO with main 

quantum number n=12-13 converging to X2Σ+,v+=1. The list of observed transitions is shown in Table 1, 

along with vibrational assignments, FCFs and the energy difference between the energy of the molecule 

after 2-photon absorption and IESiO.  The band intensities of observed X-A vibronic transitions were well 

reproduced by Franck-Condon factors for X-A and A-X+ systems. Band intensities of the 2-photon 

transitions to Rydberg states were fitted as independent parameters. The best fit was obtained when 

both rotational and vibrational temperatures were equal to T=1000 K.  



 

Graph 1. SiO 1+1 REMPI spectrum as a function of UV wavelength at 210-220 nm. Black trace is 

experimental data and colored traces are simulated transitions (see legend) 

Wavelength (nm) Assignment FCF, x10-3 ∆E, cm-1 

210.47* (6-0), A-X 3.6 1579 
211.29* (9-2), A-X 15.9 3671 
212.54* (7-1), A-X 7.2 1882 
213.43* (10-3), A-X 16.4 3951 
213.98* (6-0), A-X 3.6 23 
214.66* (8-2), A-X 5.7 2185 
216.06* (6-1), A-X 3.8 349 
216.26** (sσ)1Σ+[X2Σ+,v+=1]-X,v”=1 - ~240 
216.49** (pσ)1Σ+[ X2Σ+,v+=1]-X,v”=1 - ~140 
216.58** (dσ)1Σ+[ X2Σ+,v+=1]-X,v”=1 - ~100 
216.81* (9-3), A-X 10.9 2489 
218.19* (7-2), A-X 1.6 676 

 

Table 1. Assignment of 1+1 REMPI spectrum of SiO. * - 1+1 REMPI via A-X system, ** - 2-photon 

excitation of Rydberg states of SiO. FCF are products of Franck-Condon factors for X-A transitions[30, 31] 

and energy-allowed sum of Franck-Condon factors for ionization from the A state. ∆E is calculated, 

assuming IE = 11.584 eV. 

 



Discussion 

There are no low-lying singlet electronic states in SiO, and the lowest triplet state is ~33000 cm-1 above 

the ground state. Assuming that SiO molecules are produced by ablation in the ground electronic state 

(or alternatively, excited molecules are quickly quenched to the ground state by means of collisions or 

radiation), at 210-220 nm only the transitions with energy hν > (IESiO – Eg –∆EF)/2 can result in ionization 

of SiO. Here IESiO is the ionization energy, Eg is the ground state (rotational and vibrational) energy and 

∆EF is the depreciation of the SiO IE due to the electric field in the trap. Fig 2a shows energies of the SiO 

molecule after resonant 2-photon excitation on the A1Π - X1Σ+ transition starting at v”=0-3 level of the 

ground state of SiO. The energies in this diagram are relative to the minimum of the X1Σ potential energy 

curve. The dashed grey line is the IP of SiO where we used the IP value of 11.584 eV, measured by Baig 

and Connerade[5]. To ionize SiO, the two photons should promote it above the IP level. Therefore, SiO 

molecules starting in v”=0 can be ionized via A-X transition when v’≥5, ionization of v”=1 requires v’≥6. 

Higher v” levels require correspondingly higher v’ levels of the A state of SiO.  

The Figure 2 right side plot shows energies of rotational levels of SiO after 2-photon excitation on the 

(5,0) A – X transition starting at J” = 0-25 rotational levels. The red, green and blue curves with hollow 

circles denote to excitation via P, Q and R rotational branches of the (5,0) A – X transition. The grey 

dashed line again is the IP of SiO. It is clear that all initial rotational levels of the 0-5 transition are 

excited above the IP and in principle can result in ionization. The solid black curve in the blue shaded 

area shows the energy of the SiO+ ion at X, v+=0 level with N+ = J±1. When the initial rotational state is J” 

= 7-10 for the P branch, 10-14 for the Q branch and 15-21 for the R branch, the P,Q and R curves lie 

inside the blue shaded area, which means that direct ionization to N+ = J”±2 rotational level of the ion is 

possible. Transitions with lower J” values can also result in direct ionization since excess energy is 

removed by the photoelectron. Transitions with higher J” values cannot produce ions with N+=J±1 

directly since there is not enough energy absorbed. Ionization to lower N+ levels is energetically possible 

but requires removal of one or more quanta of angular momentum by the leaving electron. This could 

be achieved if a Rydberg state with ion core at N+=J±1 is excited by the second photon and pre-ionizes to 

form the SiO+ cation with a lower N+ value. This mechanism however will be in competition with 

radiative and collisional relaxation of the Rydberg state molecules and physical removal of the excited 

molecules out of the stable trap volume. Therefore, it may result in depletion of intensities of high J” 

rotational lines in the (5,0) A – X band transition. This is consistent with the spectrum shown in Graph 1 

where we observe a narrowed band profile of (5,0) A – X band.  



 

Figure 2. The left plot shows the energy of SiO after 2-photon transition via vibrational bands of A-X 

transitions. The right plot shows the energies of rotational states after 2-photon excitation of the (5,0) 

A-X transition.  

 

 

Figure 3 shows a part of the REMPI spectrum with the long wavelength cut-off of the 0-5 X-A band near 

214.05 nm overlaid with simulated rotational line positions. The observed beginning of the cut-off 

corresponds to Q(15), P(11) and R(20) rotational lines which is consistent with prediction made above 

using Figure 2b for IP = 11.584 eV. 

 



The IP of 11.584 eV estimated from our spectrum has to be modified to account for ∆EF   -depreciation 

of ionization energy by electric field in the quadrupole trap. It is known that measured the IP can be 

reduced by the external electric field[32] by 2-6*√𝐸(𝑉 𝑐𝑚⁄ ) cm-1. Our trap simulations suggest that ions 

created in an electric field up to 500 V/cm can be trapped in stable trajectories. Therefore, an upper 

bound for ∆EF can be estimated as 6*√500(𝑉/𝑐𝑚) = 134 cm-1 or ~17 meV, which yields an upper bound 

for the IP of SiO at 11.601 eV. Assuming that the 17 meV depression of the IP due to the field is the 

extreme case and given that most molecules that we ionize will be generated under weaker fields, we 

can estimate that the actual IP is 11.59(1) eV. This value is within error bounds of the most reliable 

previous measurements[4-7]. Interestingly, the most accurate values obtained with PES[6] (11.61(1) eV) 

and Rydberg formula fit[5] of the n=4-16 (11.584(11) eV) disagree with each other and our 

measurement is halfway between those and within error bounds of both of them. 

Our theoretical prediction for the IP = 11.6138(1) eV overestimates the experimental value by ~13 meV. 

It is a good agreement for the CCSD(T)/CBS method which is known to achieve accuracy of 10-20 meV in 

IP calculations[33]. The discrepancy between measured and calculated values may be due to 

unaccounted effects, such as relativistic motion or core correlation, and from high level dynamic 

correlation missing in CCSD(T). Previous calculations by Das et al underestimated the IP by ~0.7 eV, 

probably because the MRDCI method they used could not treat the dynamic correlation in SiO+ and SiO 

at the same level. 

The band near 216 nm has three sharp features that were identified as Q-branch transitions that 

correspond to a small change in bond length, i.e. nearly “vertical”. While a (6,1) A-X band is predicted to 

lie near 216 nm, the shape of the 216 nm band observed in this work is very different from the 

simulated A-X bands.  The bond length in SiO, SiO+ ground electronic states and high Rydberg states with 

[X2Σ+] ion core is very similar. Therefore, it is likely that the 216 nm band is a two-photon excitation to a 

high lying Rydberg state. The (6,1) A-X band is nearly resonant with absorption of the first photon and 

therefore acts to increase intensity of the two-photon transition to the Rydberg states. The “vertical” 

character of the observed bands and the near resonance with (6,1) A-X suggests that the transition 

originates at v”=1 and excites Rydberg states with an [X2Σ+,v+=1] ion core. Under this assumption, the 

Rydberg states involved in this transition are located 900-1100 cm-1 below the v+=1 level. Baig and 

Connerade detected[5] the n=12-13 Rydberg states 900-1000 cm-1 below the [X2Σ+,v+=0] ionization 

threshold. A sharp intense Q-branch can be observed for the ∆-Σ and Σ-Σ two-photon transitions. 

Therefore, the 216 nm band is likely due to (nsσ, npσ, ndσ) 1Σ+ and (ndδ) 1∆ Rydberg states with an 

[X2Σ+,v+=1] ion core and n=12-13. 

Loading of SiO+ in a Paul trap with 1+1 REMPI is efficient. Typically several thousand SiO+ ions are loaded 

per single ablation event followed by REMPI ionization. The most convenient transitions is (5,0) A-X at 

213.977 nm – it is intense and SiO+ can be loaded with ~30-300 cm-1 internal energy. Therefore, loading 

of vibrationally or electronically excited SiO+ is avoided and the rotational temperature of loaded ions is 

significantly lower than that of the ablated SiO. Another advantage of the (5,0) transition is that it is not 

resonant with the A-X and B-X bands of the NO molecule, lying near 215 nm [34]. NO has a relatively low 

IP of ~9.26 eV [35] and can be ionized with two photons below 267 nm. Even though ultrahigh vacuum is 



used in this work and the NOx concentration in the air is <1 ppm, there is enough NO in the vacuum 

chamber to load a few tens of NO+ cations per laser pulse with by 1+1 REMPI. Avoiding strong NO 

transitions near 215 nm ensures that NO+ ions are not loaded into the trap. 

Conclusions 

The 1+1 REMPI spectrum of SiO in the 210-220 nm range is recorded. Observed bands were assigned to 

the A-X band system and 2-photon transitions were tentatively assigned to the n=12-13 [X2Σ+,v+=1] 

Rydberg states. We have reported loading SiO+ ions in a trap by means of 1+1 REMPI via the X-A 

transition of neutral SiO. This provides an efficient method for loading an ion trap and allows for starting 

with vibrationally and electronically cold SiO+, while minimizing rotational energy. We estimate the IP of 

SiO to be 11.59(1) eV, in agreement with previous measurements. 
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