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Abstract

It is well known that standard frequentist inference breaks down in IV regressions with

weak instruments. Bayesian inference with diffuse priors suffers from the same problem.

We show that the issue arises because flat priors on the first-stage coefficients overstate in-

strument strength. In contrast, inference improves drastically when an uninformative prior

is specified directly on the concentration parameter—the key nuisance parameter capturing

instrument relevance. The resulting Bayesian credible intervals are asymptotically equiva-

lent to the frequentist confidence intervals based on conditioning approaches, and remain

robust to weak instruments.

1 Introduction

In this paper, we study Bayesian inference in the canonical instrumental variables (IV) model.

We argue that a flat prior on the concentration parameter—the crucial nuisance parameter that

captures instrument strength—best embodies the notion of non-informativeness in this model.

We derive such prior and show that it yields posterior inference with both desirable frequentist

properties and robustness to weak instruments.

It is well documented that conventional asymptotic approximations to the distribution of

standard IV estimators—such as the popular Two-Stage Least Squares (TSLS) estimator—are
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unreliable when the instruments are weakly correlated with the endogenous regressors. The

reason is that the distribution of these estimators depends on a key nuisance parameter, known

as the concentration parameter, which reflects the strength of the instruments. When the instru-

ments are weak, there is little sample information about the parameter of interest—a situation

analogous to having a small sample size (Rothenberg, 1984). Correspondingly, the small value

of the concentration parameter distorts the shape of the estimator’s distribution, undermining

the adequacy of its Gaussian asymptotic approximation. Moreover, small values of the concen-

tration parameter cannot be consistently estimated, limiting the ability to adjust the asymptotic

distribution to better reflect finite-sample behavior.

Bayesian inference based on naive priors suffers from similar problems and can exhibit poor

frequentist properties. For example, when instruments are weak, a flat prior on the first-stage

coefficients leads to a posterior distribution for the parameter of interest that is excessively con-

centrated away from the true value. This occurs even in simulation settings where the likelihood

function is correctly specified, indicating that the issue lies with the prior. We show that this

pathology stems from the induced prior on the concentration parameter. To see why as simply

as possible, suppose that the model involves only two unknown parameters: the parameter of

interest, call it β, and the (nuisance) concentration parameter, denote it by µ2. For the sake of

clarity, we temporarily abstract from other unknowns such as error variances, covariances, and

so on. In this simplified setting, Bayesian inference yields a joint posterior distribution over β

and µ2. To obtain the marginal posterior of β, we need to integrate out µ2 with respect to its

prior. If this prior favors large values of µ2—that is, regions of the parameter space where the

instruments are strong and their variation is very informative about β—the resulting marginal

posterior of β is very concentrated. As it turns out, a flat prior on the first-stage coefficients

unintentionally induces exactly this kind of prior on µ2, particularly when the number of in-

struments is moderate or large. With one instrument, instead, the implied prior on µ2 is overly

concentrated around 0.

Building on this intuition, we argue that this pathology can be entirely resolved by eliciting

a prior that places neutral weight over the concentration parameter space, avoiding undue em-

phasis on regions associated with strong instruments. We derive such a prior and show that

it belongs to a class of distributions that reduces overfitting by shrinking the first-stage coeffi-

cients toward zero, and that it can be implemented through a hierarchical specification. We also

demonstrate that the frequentist properties of Bayesian inference improve substantially when

using this prior. Specifically, the resulting credible intervals are conservative when instruments
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are irrelevant, and they achieve correct coverage when instruments are weak or strong. In sum,

this approach yields Bayesian inference that is robust to weak instruments. Moreover, these

credible intervals are nearly identical to those obtained by inverting the Conditional Likelihood

Ratio test of Moreira (2003).

We establish these results using four complementary approaches: prior elicitation argu-

ments, simulation evidence, a revisit of the classic application of estimating the return to school-

ing (Angrist and Krueger, 1991), and a theoretical exploration of the connections between Bayesian

and classical inference in IV regressions. Regarding the latter, we are able to show that our

Bayesian approach has desirable frequentist properties, closely mirroring those of conditional

(similar) inference, due to the existence of a one-to-one re-parameterization of the model that

satisfies two key properties: (i) the likelihood function is symmetric in the deviation of the pa-

rameter of interest from its maximum likelihood estimate; and (ii) the parameter of interest and

the nuisance parameter are orthogonal, in the sense that the Fisher information matrix is diag-

onal. Intuitively, the first property ensures that, conditional on the nuisance parameter, both

the posterior and the distribution of the maximum likelihood estimator of the parameter of in-

terest are nearly Gaussian. The second property implies that these distributions are nearly free

of the nuisance parameter, because there exist a statistic—depending only on the data—that

is approximately sufficient for it. As a result, integrating out the nuisance parameter based on

the observed data, as in Bayesian inference, or conditioning inference on a sufficient statistic

for it, as in Moreira (2003), leads to very similar inferential outcomes. To be clear, these are not

finite-sample results, but are established under a “many-instruments” asymptotic framework,

in which the number of instruments k grows with the sample size T . Nevertheless, we show that

the rate of convergence in our asymptotic results is twice as fast as that of conventional asymp-

totics: Our approximations improve at rate 1/k, rather than the usual 1/
√
k. Consequently, as

confirmed by our simulations, the results hold remarkably well even with a small number of

instruments—including a single one. In sum, our contributions can be viewed as restoring the

alignment between classical and Bayesian inference in the non-regular IV setting with weak in-

struments.

1.1 An overview of the related literature

Nelson and Startz (1990b,a) and Bound et al. (1995) provide early simulation evidence that stan-

dard IV estimators are biased and lead to invalid inference when instruments are weak. In par-

ticular, Bound et al. (1995) study how the weak instrument problem affects the analysis of the
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returns to schooling in Angrist and Krueger (1991). It is widely regarded as the first paper to for-

mally diagnose the weak instruments problem in applied econometrics, effectively launching

the modern methodological literature on the topic and spurring greater awareness in empirical

work.

The seminal contribution by Staiger and Stock (1997) provided the first formal definition of

weak instruments in large samples, showing that standard Gaussian-based inference can break

down when the concentration parameter is small. They introduced the first-stage F-statistic as

a diagnostic and proposed the now-standard rule of thumb: If F < 10, instruments may be too

weak for reliable inference. Stock et al. (2002) and Stock and Yogo (2005) extended the analysis

of Staiger and Stock (1997) to GMM settings and models with multiple endogenous regressors,

developing formal weak instrument tests with critical values based on tolerable bias or size dis-

tortion. Together, these contributions have established the F-statistic as the standard diagnostic

tool for assessing instrument strength in applied work. More recent work has focused on test-

ing for weak instruments under heteroskedasticity, with either single or multiple endogenous

regressors (see Montiel Olea and Pflueger, 2013, Lewis and Mertens, 2025, and Andrews et al.,

2019, for a comprehensive survey). In contrast to this line of research, we focus on developing a

method that yields valid inference regardless of instrument strength.

Our paper is more closely related to studies that propose inference procedures that remain

valid under weak identification. The classic test of Anderson and Rubin (1949) is based on a

pivotal statistic and retains correct size under the null, but it tends to be conservative and has

low power in over-identified settings. The test of Kleibergen (2002) and Kleibergen (2005) is

also based on an asymptotically pivotal statistic whose distribution does not depend on the nui-

sance parameter, and it is typically more powerful than the Anderson-Rubin’s test, even though

its power function can be non monotonic. A central contribution to this literature is the work of

Moreira (2003), which introduces the Conditional Likelihood Ratio test, leveraging the distribu-

tion of the likelihood ratio statistic conditional on a sufficient statistic for the nuisance parame-

ter. This test has excellent power properties, and Andrews et al. (2006) show that it is essentially

optimal among all similar tests that are invariant to rotations of the instruments. More recently,

Lee et al. (2022) have proposed an adjusted t-test for the IV model with a single instrument. Their

adjustment of the TSLS asymptotic standard errors is a function of the first-stage F-statistic. Like

these procedures, our approach delivers robust inference in the presence of weak instruments,

offering a Bayesian alternative to frequentist tests.

Several studies prior to ours have examined Bayesian inference in IV regressions. Kleiber-
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gen and Zivot (2003) survey the early literature, including the approach of Drèze (1976) based

on uninformative priors, and the subsequent critique by Maddala (1976). The latter highlights

that flat priors can lead to misleadingly sharp posteriors for the parameter of interest even when

the model is not identified, which is one of the observations that motivate our paper. Kleiber-

gen and van Dijk (1998), Chao and Phillips (1998) and Hoogerheide et al. (2007b) stress that

flat priors also lead to a local non-identification problem, because the parameter of interest is

not identified if the first-stage coefficients are equal to zero, an issue that renders the posterior

improper if the number of instruments and endogenous variables is the same. Kleibergen and

Zivot (2003) derive the priors that yield posterior distributions with the same functional form as

the sampling distributions of the TSLS and Limited Information Maximum Likelihood (LIML)

estimators. The latter, a Jeffreys prior, was also discussed in the analyses of Kleibergen and van

Dijk (1998), Chao and Phillips (1998) and Hoogerheide et al. (2007a), among others. While the

Jeffreys prior is able to overcome the local non-identification problem, none of these priors ex-

hibit the same robustness to weak instruments that characterizes inference with our flat prior on

the concentration parameter. From this perspective, we argue that such prior best embodies the

notion of non-informativeness in IV models. This contribution also resolves the ambiguity left

in Chamberlain (2007), who acknowledged the challenge of specifying a prior on some param-

eters in his decision theoretic analysis of the IV model. In addition, as we have stressed above,

our prior also yields posteriors with favorable frequentist properties and aligns closely with the

conditional inference of Moreira (2003) and the optimal procedures developed by Andrews et al.

(2006).

Our paper also relates to work that leverages Bayesian ideas to develop improved frequentist

procedures, including Chamberlain and Imbens (2004), Chamberlain (2007) and Montiel Olea

(2020). These contributions treat only certain parameters as random, as a device to regularize

inference or average loss functions. This perspective has supported the construction of decision

rules and confidence intervals with strong frequentist properties under weak identification. In

contrast, we adopt a fully Bayesian approach based on a hierarchical prior and study the fre-

quentist properties of the resulting posterior.

We study these properties in a setting where the number of instruments grows large, con-

necting our work to the literature on IV regressions with many instruments. As emphasized

by Mikusheva (2020) and Mikusheva and Sun (2024), adding instruments brings informational

gains, but also contributes to overfitting in the first-stage regression. This overfitting, in turn, in-

troduces bias into the second-stage estimation of the parameter of interest. In fact, the TSLS esti-
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mator is consistent only when instrument strength grows faster than the number of instruments—

that is, when µ2/k → ∞ (Bekker, 1994). The literature has addressed this bias through two re-

lated but distinct approaches. The first emphasizes bias correction by breaking the endogeneity

caused by using the same data in the estimation of both model equations. Examples include

sample-splitting, jackknife and deleted-diagonal estimators (Angrist and Krueger, 1995, Angrist

et al., 1999, Hansen et al., 2008). The second approach focuses on regularization techniques

designed to reduce the effective dimensionality of the instrument set, including principal com-

ponent methods, ridge regressions, random coefficient models, and sparsity-inducing methods

such as the lasso (Bai and Ng, 2009, 2010, Kapetanios and Marcellino, 2010, Kapetanios et al.,

2016, Carrasco, 2012, Carriero et al., 2020, Chamberlain and Imbens, 2004, Belloni et al., 2012).

The paper most closely related to ours is Chamberlain and Imbens (2004). As mentioned ear-

lier, their approach is not explicitly Bayesian, but their modeling of the first-stage coefficients

as random coefficients resembles our hierarchical shrinkage prior. Despite these similarities,

there are two important differences between our work and theirs. First, we show that shrinkage

priors can enhance and robustify inference even in settings with very few instruments, not nec-

essarily many, like in their work. Second, we provide both theoretical and simulation-based ev-

idence that our approach aligns with conditional frequentist inference, which has been shown

to achieve near-optimality. In fact, a key aspect of our contribution is demonstrating that our

Bayesian methodology yields credible intervals that are almost equivalent to the confidence in-

tervals produced by frequentist approaches based on conditioning, and are robust to weak in-

struments.

To establish these theoretical results, we adopt the simultaneous asymptotic framework in-

troduced by Bekker (1994), and extended by Chao and Swanson (2005), Stock and Yogo (2005),

and Andrews and Stock (2007b,a), in which both the sample size and the number of instruments

increase. In this setting, Mikusheva and Sun (2022) demonstrate that µ2/
√
k → ∞ is a necessary

condition for consistent estimation when the number of instruments is large and no assump-

tions are made on the form of their optimal combination (Mikusheva and Sun, 2024 survey this

type of assumptions commonly imposed in the literature and emphasize that the performance

of the associated estimators can deteriorate substantially if the true data-generating process fails

to satisfy them; a related point has been made by Giannone et al., 2021 in the context of predic-

tion models). Crudu et al. (2021), Anatolyev and Sølvsten (2023), Matsushita and Otsu (2024)

and Mikusheva and Sun (2022, 2024)—propose pre-testing procedures and robust Anderson-

Rubin and Lagrange-Multiplier tests based on the jackknife estimator that perform well even
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in severely adverse scenarios in which the condition µ2/
√
k → ∞ is violated. In comparison,

our results require µ2/k → c, where c is an arbitrarily small constant—a condition that accom-

modates virtually all empirically relevant configurations. Rather than focusing on robustness to

asymptotic assumptions, we examine the frequentist validity of Bayesian approaches and their

robustness with respect to the prior. Our theoretical contribution is to characterize the condi-

tions under which Bayesian credible intervals converge to frequentist confidence intervals, and

to show that this convergence occurs at a faster rate than under conventional asymptotics. In

this sense, our results can be viewed as a Bernstein–von Mises–type theorem as they restore the

concordance between classical and Bayesian inference in the non-regular IV setting with weak

instruments.

1.2 The outline of the paper

The remainder of the paper is organized as follows. Section 2 reviews the problem of weak in-

struments in IV regressions, with particular attention to the limitations of standard Bayesian

inference in this context, which resemble those of frequentist methods. Section 3 introduces a

Bayesian approach based on an uninformative prior on the concentration parameter, and shows

that it delivers posterior inference with both desirable frequentist properties and robustness to

weak instruments. Section 4 revisits the classic application of estimating the return to school-

ing using multiple quarter-of-birth instruments. Section 5 presents the theoretical results on

the connection between our proposed Bayesian procedure and frequentist inference. Section 6

concludes.

2 IV regressions and the problem of weak instruments

Consider the model

y = xβ + δν + ε (1)

x = zπ + ν, (2)

where y ∈ RT is an observed dependent variable, x ∈ RT is an observed regressor, z ∈ RT×k

are observed instrumental variables, ν, ε ∈ RT are unobserved shocks uncorrelated with each

other, and β ∈ R, δ ∈ R and π ∈ Rk are unknown parameters.1 The parameter of interest is β,

1Equations (1) and (2) can easily be extended to incorporate additional controls, but we omit them here for clar-
ity, simplifying both the notation and the presentation of our contribution. Appendix B provides full details on the
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which captures the causal effect of x on y. If δ = 0, Ordinary Least Squares (OLS) is a consistent

estimator of β, because ε is assumed to be uncorrelated with the regressor x. But when δ ̸= 0,

the OLS estimator of β becomes biased and inconsistent—a well known result.

The key insight behind IV regressions is that, in such cases, we can consistently estimate β

by leveraging the variation of x induced by z, as long as these instruments satisfy two crucial

conditions: (i) exogeneity—z must be uncorrelated with the shocks ν and ε; and (ii) relevance—z

must be (possibly strongly) correlated with the endogenous regressor x. The most widely used

IV estimator of β is the Two-Stage Least Squares (TSLS) estimator, which is obtained by first

regressing x on z, and then using the fitted value x̂ in place of x in the second-stage regression

of y on x̂:

β̂TSLS =
x̂′y

x̂′x̂
,

where x̂ = (z′z)−1 z′x. Under the assumption of conditional homoskedasticity, the asymptotic

variance of the TSLS estimator can be estimated by σ̂2 (x̂′x̂)−1, where σ̂2 is a consistent estimator

of the variance of δν + ε.

To fix ideas, consider the well-known problem of estimating the returns to schooling (Angrist

and Krueger, 1991, AK hereafter). In this example, y represents the logarithm of the wage earned

by a typical US male, x denotes his years of schooling, and β captures the causal effect of an

additional year education on wages—the object of interest. The major challenge in estimating

β using a simple regression of y on x is endogeneity: Individuals with higher innate ability may

choose to stay in school longer, leading to a biased estimate of β. To address this concern, AK

have proposed using an individual’s quarter of birth as an instrumental variable for his years of

schooling. They argued that being born in September versus April should have no direct impact

on earnings, making the quarter of birth a plausibly exogenous instrument. As for instrument

relevance, the quarter of birth influences schooling because state laws on compulsory education

require children to start school in September of the year they turn 6, and to remain in school until

at least age 16. As a result, individuals born later in the year tend to stay in school longer.

But what if the instruments are only marginally relevant, meaning they are only weakly cor-

related with the endogenous regressors? Bound et al. (1995) argued that, in such cases, con-

ventional IV methods become unreliable, including TSLS, and that this issue may have affected

the analysis of AK. These findings have sparked an extensive literature, leading to the consensus

that, with weak instruments, standard “IV estimators can be badly biased, while t-tests may fail

to control size, and conventional IV confidence intervals may cover the true parameter value far

estimation procedure, including the treatment of additional controls.
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Figure 1: Frequency of inclusion in the 95-percent TSLS confidence interval, the 95-percent Bayesian
credible interval based on a flat prior on π, and the 95-percent Bayesian credible interval based on a
flat prior on µ2. The results are based on 10, 000 simulations from model (1)-(2) with T = 250, β = 0,
ε ∼ N (0, IT ), ν ∼ N (0, IT ), π = 0k×1, δ = 0.75 and k = 10.

less often than intended” (Andrews et al., 2019, p. 728).

To highlight the severity of the problem, let us briefly examine the extreme case of completely

irrelevant instruments. Specifically, we simulate 10, 000 datasets from (1)-(2) using the parame-

ter values T = 250, k = 10, β = 0, δ = 0.75, ε ∼ N (0, IT ), ν ∼ N (0, IT ), and π = 0. For each

simulation, we construct the 95-percent confidence interval for β based on the conventional

asymptotic distribution of the TSLS estimator. The blue line in figure 1 summarizes the results

of this Monte Carlo experiment. It represents the frequency across simulations with which each

possible β ∈ [−1.5, 1.5] falls within the 95-percent TSLS confidence interval. Unfortunately, the

true value of β = 0 belongs to the 95-percent confidence interval only 40 percent of the times,

not 95, revealing a massive size distortion. Instead, values of β between 0.5 and 1 are almost al-

ways included in the 95-percent confidence interval. This pattern arises because, with irrelevant

instruments, TSLS converges in probability to the (biased) probability limit of the OLS estimator,

which in our simulations is given by β + δ = 0.75. In addition, the standard errors of the TSLS

estimator are way too tight.

The green line in figure 1 represents the frequency across simulations with which each pos-
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sible β ∈ [−1.5, 1.5] falls within the equal-tailed 95-percent Bayesian credible interval, obtained

using a flat prior on all the model parameters of (1)-(2), including π. Notably, the green line

tracks the blue line, suggesting that the frequentist properties of flat-prior Bayesian methods

are just as poor as those of TSLS. The most puzzling aspect of this result is that the Bayesian

approach behind the green line in figure 1 relies on the likelihood function, which, according

to the likelihood principle, should fully encapsulate all sample evidence relevant for inference.

Moreover, the likelihood function is correctly specified in our controlled experiment. So, is the

likelihood principle somehow failing in our context? Of course not. In the next section, we

demonstrate that the issue stems from an implicit prior that distorts Bayesian inference by unin-

tentionally favoring instrument strength, even when the instruments are weak in practice. From

a Bayesian perspective, “correcting” this prior resolves the problem.

3 Robust Bayesian inference

To develop more intuition about the weak instrument problem, suppose that a researcher ob-

serves data generated by (1)-(2), knowing that π = 0. In this situation, x and ν are perfectly

collinear, and only β + δ is identified in equation (1), not β and δ separately. Put differently, a

researcher who knows that π = 0 would end up with an infinitely wide confidence interval for

β. If the instruments are truly irrelevant, this is the correct conclusion: There is nothing we can

say about the causal effect of x on y. This simple argument clarifies why conventional IV confi-

dence intervals are too tight when instruments are irrelevant, as implied by the results displayed

in figure 1. It is because researchers do not know that π = 0 but must estimate it, leading to an

estimate of π that differs from the true value of 0—a classic case of overfitting.

To formalize this argument from a Bayesian perspective, note that the posterior variance of

β, conditional on the other parameters, is given by

var
(
β|y, x, z, π, σ2

ε , σ
2
ν

)
≈ σ2

ε

σ2
ν

· 1

µ2
, (3)

whereµ2 = π′z′zπ
σ2
ν

is the so-called concentration parameter. The largerµ2, the greater the share of

variation of x induced by the exogenous instruments z, and the lower our posterior uncertainty

about β. Conversely, if we knew with certainty that π = 0, then µ2 would also be 0, and the

posterior variance of β would be infinity. In other words, if we knew that π = 0, the green line in

figure 1 would be flat and equal to 1. The fact that it is not indicates that the posterior of µ2 does
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not concentrate on 0, but on large positive value. Why does this happen?

Since the likelihood function is correctly specified in the Monte Carlo experiment of section

2, this distortion in the posterior distribution must originate from the assumed prior. To under-

stand why, consider the possible prior distribution for π given by

π|γ2, σ2
ν ∼ N

(
0, γ2σ2

ν

(
z′z
)−1
)
, (4)

where γ2 is a hyperparameter controlling the prior tightness, while σ2
ν and (z′z)−1 are convenient

scaling factors. Given (4), it is easy to verify that the implied prior on µ2 is a scaled chi-square

distribution with k degrees of freedom, i.e.

µ2|γ2 ∼ γ2 · χ2
k.

Its expected value is E
(
µ2|γ2

)
= γ2k and its mode is γ2max (k − 2, 0). The larger the value of γ2,

the flatter the prior on π, and the more the prior distribution of µ2 shifts its mass towards large

positive values. In addition, the extent of this shift depends on the number of instruments, with

more instruments worsening the problem. This is intuitive: As the prior on π becomes more

diffuse, it places increasing probability mass on large absolute values of π, with the unintended

consequence of concentrating more mass on high values of the concentration parameter µ2. In

sum, the more agnostic the prior is on π, the more informative it becomes on µ2, which is the

parameter that matters most in the weak instruments setting. Finally, notice that the flat prior

on π used to generate the green line in figure 1 is a special case of (4), corresponding to infinite

variance, i.e. γ2 → ∞.

This insight into the root of the problem—as outlined above—is essential, as it naturally

points toward a solution. Since the issue arises from the fact that a flat prior on π favors high

values of the concentration parameter, and thus stronger instruments, it is natural to consider a

prior that is instead flat on µ2 directly. The following proposition outlines how to obtain such a

prior.

Proposition 1. The improper prior p
(
π|σ2

ν

)
∝
(
π′z′zπ
σ2
ν

)− k−2
2
(

1
σ2
ν

) k
2

implies a flat prior on the

concentration parameter µ2. When k > 2, this prior is equivalent to a hierarchical specification

that combines (4) with a flat hyperprior on γ2. The corresponding posterior is always proper.

Proof. See appendix A.

Remark 1. Proposition 1 highlights that the prior on π that induces a flat prior on µ2 depends
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on the number of instruments k. A flat prior on π yields a flat prior on µ2 only when k = 2.

For k > 2, as noted above, a flat prior on π places disproportionate mass on large values of µ2,

effectively favoring strong instruments. Conversely, when k = 1, it produces an asymptote at

zero in the implied prior for µ2, making the naive-Bayesian approach overly conservative in the

exactly identified case. The prior on π in Proposition 1 offsets these distortions and always yields

an uninformative prior on µ2. When k = 2, no adjustment is needed and the prior on π is flat;

when k = 1, the required prior on π shifts mass away from zero; and when k > 2, the prior on π

is a shrinkage prior concentrating near zero.

Remark 2. It is useful to compare the prior in Proposition 1 with the Jeffreys prior discussed in

the work of Kleibergen and van Dijk (1998), Chao and Phillips (1998), Kleibergen and Zivot (2003)

and Hoogerheide et al. (2007a), among others. The Jeffreys prior is proportional to (π′z′zπ)1/2

(see, for example, equation (21) in Chao and Phillips, 1998). Therefore, it shifts mass on π in

a manner similar to our prior only in the exactly identified case of k = 1. Unlike the prior in

Proposition 1, however, the Jeffreys prior does not depend on k. Consequently, when k > 1, it

induces no shrinkage and places excessive mass on large values of the concentration parameter.

In this sense, it suffers from precisely the problem that motivates our approach.

In what follows, we adopt a diffuse prior for all other model parameters, β, δ, σ2
ε and σ2

ν ,

and evaluate the posterior distribution using the simple Gibbs sampling algorithm described in

appendix B.2

Does this prior—flat on µ2 rather than on π—lead to substantially different posterior infer-

ence? Yes, it does, as illustrated by the behavior of the red line in figure 1. The position and

shape of this line indicate that the 95-percent Bayesian credible intervals obtained under a flat

prior on µ2 are very wide across nearly all simulations with irrelevant instruments—almost al-

ways covering the entire range of β ∈ [−1.5, 1.5]. Put differently, Bayesian inference based on a

flat prior on µ2 is far more effective than both TSLS and the Bayesian approach with a flat prior

on π at capturing the substantial uncertainty surrounding β that arises when instruments are

truly irrelevant. From now on, for brevity, we will refer to the Bayesian approach with a flat prior

on π as the naive-Bayesian approach (NB-IV), and to the Bayesian approach with a flat prior on

µ2 as the weak-instrument-robust-Bayesian approach (WIRB-IV).

2An alternative to (4) could be π|γ2, σ2
ν ∼ N

(
0, γ2σ2

νIk
)

, which closely resembles the distribution of the random
coefficients proposed by Chamberlain and Imbens (2004). A drawback of this prior, however, is that when combined
with a flat hyperprior on γ2, it induces only an approximately flat prior on µ2 , rather than an exactly flat one. That
said, the posterior results obtained using the two priors are virtually indistinguishable in our experiments with real
and simulated data.

12



BAYESIAN INFERENCE IN IV REGRESSIONS

So far, our Monte Carlo experiment has focused exclusively on the case of irrelevant instru-

ments. To evaluate the performance of our approach when instruments are weak—but not

entirely irrelevant—we now conduct an additional simulation study. Specifically, we simulate

25, 000 datasets using the same parameter values as in section 2, except that we no longer set

π = 0. Instead, π is drawn from a N (0, s2Ik), where s is uniformly distributed between 0 and

0.25. The exact range of s is not critical; what matters is that the resulting distribution of first-

stage F-statistics spans values from 0 up to approximately 20. Since F-statistics below 10 are

typically associated with weak instruments (Staiger and Stock, 1997, Stock and Yogo, 2005), this

setup allows us to evaluate the performance of WIR-BIV in both weak and moderately strong

instrument scenarios.

Figure 2 summarizes the results of this simulation experiment. As before, the solid lines show

the frequency with which the confidence (or credible) intervals from various inferential meth-

ods cover different values of β. We compare the performance of WIRB-IV to NB-IV, TSLS and

Moreira’s (2003) conditional likelihood ratio test (CLR)—a frequentist procedure that is robust

to weak instruments. The CLR test is based on the likelihood ratio statistic, whose distribution

is evaluated conditional on the observed value of another statistic that is sufficient for the nui-

sance parameters. As a result, the CLR test has always the correct size, as evident from figure 2.

The corresponding confidence intervals are obtained by inverting the test, as in Mikusheva and

Poi (2006) and Mikusheva (2010).

Panel (a) presents the results of the simulations in which the first-stage F-statistic falls be-

tween 0 and 2—a scenario with essentially irrelevant instruments. As expected, TSLS-based

tests exhibit substantial size distortion, and the corresponding confidence intervals concentrate

around the biased OLS estimate, like in figure 1. As shown earlier, NB-IV performs similarly to

TSLS. In contrast, the CLR test maintains correct size, and the confidence intervals obtained by

inverting it are generally quite wide. Notice that the red line in panel (a) is above the yellow

one, suggesting that our WIRB-IV approach is even more conservative than CLR, yielding even

wider credible intervals. The subsequent panels of the figure examine groups of simulations

with progressively higher F-statistics. The discrepancy between WIRB-IV and TSLS (as well as

NB-IV) remains substantial until the F-statistic approaches 10. Remarkably, in the simulations

with F-statistics between 2 and 4 (panel b), the results based on WIRB-IV and CLR are strikingly

similar—and for values above 4, the two methods become virtually indistinguishable. Appendix

D shows that similar results hold across different simulation settings, with the number of instru-

ments equal to 1, 5, 25, or 100, and with a higher degree of endogeneity (δ = 3, corresponding to

13
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Figure 2: Frequency of inclusion in the 95-percent confidence (credible) interval based on (i) the asymp-
totic distribution of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test (CLR); (iii)
the naive-Bayesian approach (NB-IV); and (iv) our weak-instrument-robust Bayesian approach (WIRB-
IV). The results are based on 25, 000 simulations from model (1)-(2) with T = 250, β = 0, ε ∼ N (0, IT ),
ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 0.75 and k = 10.
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a correlation of the structural shocks of approximately 0.95).

The similarity between WIRB-IV and CLR in these simulations is notable for at least two rea-

sons. First, there is no known theoretical justification for expecting the two procedures to pro-

duce such similar results. Second, Andrews et al. (2006) have shown that Moreira’s (2003) CLR

test is nearly optimal among all invariant similar tests, which implies that the robust Bayesian

method proposed in this paper achieves near-optimality as well. In section 5, we will explore

these observations in more depth, demonstrating that they are not mere coincidences but re-

flect strong theoretical links between the two approaches.

It is also instructive to compare these approaches with the popular pre-testing approach,

which remains the most widely used method among applied researchers concerned with weak

instruments. This approach involves estimating β using TSLS only if the first-stage F-statistic ex-

ceeds 10, following the recommendations of Staiger and Stock (1997) and Stock and Yogo (2005).

Importantly, applying this rule would lead to infinitely wide confidence intervals in all the sce-

narios shown in panels (a) through (e), resulting in a substantial loss of information. In contrast,

for panel (f), where the F-statistic exceeds 10, the pre-testing approach would yield the same

result as TSLS.

4 Estimating the returns to schooling

In this section, we revisit the AK estimates of the returns to schooling using our WIRB-IV ap-

proach. The data unambiguously show that higher levels of education are associated with higher

earnings (for instance, see U.S. Bureau of Labor Statistics, 2024). However, establishing a causal

link between the two has proven challenging, mostly because a simple regression of earnings on

years of schooling is likely to suffer from an endogeneity bias (see Card, 1999 and, more recently,

Gunderson and Oreopolous, 2020, for a survey of the literature). For example, pre-schooling

levels of ability may affect both the level of education, via schooling choices, and earnings, as

highlighted by Griliches (1977) and Card (2001), among others.

To address this endogeneity bias, AK have proposed using an individual’s quarter of birth

as an instrumental variable for years of schooling. The validity of this instrument relies on a

specific institutional feature of the U.S. education system: In many states, compulsory schooling

laws require students to start going to school in September of the year in which they turn 6,

and allow students to leave school upon turning 16. As a result, individuals born early in the
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calendar year tend to reach the minimum school-leaving age during an earlier grade than those

born later, making them more likely to leave school with fewer years of education. Using the

quarter of birth as an instrument, AK find that the return to education is both economically and

statistically significant.

In an influential paper, however, Bound et al. (1995) have raised concerns about some of

the IV regressions in AK, due to the weak correlation between the instrumental variables and

the endogenous regressor measuring the level of education. Their criticism was particularly

geared toward AK’s least parsimonious model, a specification with a large set of instruments ob-

tained by interacting the quarter of birth with the year and the state of birth of an individual.

To demonstrate the severity of the problem, Bound et al. (1995) generate 500 artificial datasets

by interacting the year and state of birth of the individuals with random quarters of birth. Their

work show that standard IV estimators, such as TSLS, yield economically and statistically signif-

icant estimates of the return to education even with entirely “fake” instrumental variables that

are uncorrelated with the endogenous regressor. Moreover, these estimates are similar in mag-

nitude to those obtained using the actual data. These results illustrate how the large-sample ap-

proximation of the distribution of conventional IV estimators can be severely misleading when

instruments are weak, as we have seen in section 2. Since the publication of Bound et al. (1995),

the AK study has become a testing ground for assessing the extent to which various methodolo-

gies are robust to the presence of weak instruments (Angrist and Krueger, 1995, Angrist et al.,

1999, Kleibergen, 2002, Chamberlain and Imbens, 2004, Imbens and Rosenbaum, 2005, Cruz

and Moreira, 2005, Hoogerheide and van Dijk, 2006, Hoogerheide et al., 2007a, Hansen et al.,

2008, Andrews and Armstrong, 2017, Mikusheva and Sun, 2024).

In the remainder of this section, we replicate the AK estimates using TSLS and compare them

to those obtained with our WIRB-IV approach. The data come from the 1980 U.S. Census and

consist of men born between 1930 and 1939.3 In the notation of equations (1)-(2), the depen-

dent variable (y) is the logarithm of weekly wages in 1979, while the endogenous regressor (x)

represents the years of completed schooling. We focus on the specification that was under par-

ticular scrutiny in Bound et al. (1995). It includes 177 instruments (z), constructed by interacting

individuals’ quarter of birth with their year and state of birth. The model also includes control

variables for year and state of birth, race, marital status, census region, and residence in a Stan-

dard Metropolitan Statistical Area. The dataset comprises a large sample of 329, 509 individuals.

3The original dataset and the AK replication package can be downloaded at
https://economics.mit.edu/people/faculty/josh-angrist/angrist-data-archive.
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ACTUAL DATA ARTIFICIAL DATA

TSLS
0.083

[0.065− 0.102]
98.2%

NB-IV
0.083

[0.064− 0.101]
97.6%

WIRB-IV
0.100

[0.070− 0.132]
0.2%

CLR
NA

[0.065− 0.127]
4.4%

Table 1: Estimation results of the AK model with actual and artificial data. The column “Actual Data”
reports point estimates and 95-percent confidence intervals (credible intervals, in the NB-IV and WIRB-IV
cases). The CLR method only yields confidence sets, so we omit its point estimate. The column “Artificial
Data” displays the percentage of simulations with random instruments yielding statistically significant
estimates at the 5-percent level.

Table 1 reports our estimation results. The first entry of the table replicates the estimates of

AK using TSLS, suggesting that an additional year of schooling increases an individual’s weekly

earnings by 8.3 percent.4 The corresponding 95-percent confidence interval is relatively tight,

ranging from 6.5 to 10.2 percent. However, the first-stage F-statistic is only 2.43, indicating that

the instruments are likely to be very weak, and casting doubt on the reliability of these estimates.

Indeed, when we repeat the analysis using artificial data (second column of table 1), following

the design of Bound et al. (1995), we find that nearly all the 500 simulated datasets produce

statistically significant estimates at the 5-percent level—despite the instruments being randomly

generated. The Naive-Bayesian approach performs almost exactly like TSLS, as reported in the

second row of the table.

The third row of table 1 shows that the point estimate based on WIRB-IV is 10 percent—

broadly similar to, if not slightly higher than the TSLS and NB-IV estimates—although the as-

sociated credible interval is somewhat wider. Importantly, WIRB-IV correctly recognizes that

the artificial instruments provide little information about the return to education. In fact, the

estimated effect is not statistically distinguishable from zero in the vast majority of the artifi-

cial datasets. For comparison, the final row of the table reports the estimation results based on

Moreira’s (2003) CLR method, which are nearly identical to those obtained using our Bayesian

approach. Like WIRB-IV, CLR yields statistically significant estimates in artificial datasets only a

small fraction of the time. This is expected, since CLR is specifically designed to control size in

the presence of weak instruments.

4These estimates correspond to those of table VII (column 6) in Angrist and Krueger (1991).
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5 Theoretical results

In the previous sections, we have used prior elicitation arguments, simulation evidence, and

an empirical application to show that Bayesian inference based on a flat prior over the concen-

tration parameter delivers both desirable frequentist properties and robustness to weak instru-

ments. This section complements the earlier analysis by examining the frequentist properties of

our approach from a theoretical perspective, and by relating it to frequentist methods for han-

dling nuisance parameters through conditioning.

To derive these theoretical results, we suppose that the observed data are generated by the

“reduced-form” version of the model of section 2, given by

x = zπ + ν (5)

y = zπβ + e, (6)

where ν, e ∈ RT are the unobserved i.i.d. shocks. Equation (6) can be obtained by substituting (2)

into (1). We assume that u ≡ [ν, e] ∼ MN (0, IT ,Σ), or, equivalently, vec (u) ∼ N (02T×1,Σ⊗ IT ).

We also impose that z has full column rank k, ruling out designs with k > T . In addition, we

treat Σ as given, addressing the case of an unknown Σ only at the end of the section. This model

representation and assumptions are identical to those in Andrews et al. (2006), and all results,

lemmas and propositions stated below are derived under these assumptions unless otherwise

noted.

To facilitate the exposition of our results, it is useful to consider the inferential problem of

three distinct econometricians, each confronted with the same data. While all three believe that

the observed data are generated by model (5)-(6), they differ in their assumptions about the

underlying model parameters.

5.1 Econometrician B

Econometrician B—short for “Bayesian”—treats the coefficients π and β as realizations of ran-

dom variables. Specifically, she assumes that π is drawn by nature from a N
(
0, γ2σ2

ν (z
′z)−1

)
,

with γ2|β ∼ U
(
0,M

(
σ2
νb

′Σ−1b
)−1
)

and p (β) ∝
(
b′Σ−1b

)−1, where b ≡ [1, β]′. Here, U (s, s) de-

notes the uniform distribution with support on the interval [s, s], and M is a large positive con-

stant. This joint distribution for (γ2, β) is similar in spirit to the flat prior in section 3, but not
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identical. The upper bound for γ2 depends on β, and the marginal distribution of β is Cauchy.

These features will be useful when we later re-parameterize the model in polar coordinates, as

they induce a uniform distribution over a rectangular support in those coordinates, greatly sim-

plifying the proofs. In addition, unlike the improper uniform priors of section 3, the current

specification is proper.

Under these assumptions, it can be shown that the statistic Γ̂ ≡ C ′w′z (z′z)−1 z′wC is suffi-

cient for inference about β and γ2, where w ≡ [x, y] and C is any matrix such that CC ′ = Σ−1.

Moreover, the distribution of Γ̂ is given by

Γ̂|β, γ2 ∼ W
(
I2 + γ2σ2

νC
′bb′C, k

)
,

where W (S, d) denotes the Wishart distribution with scale matrix S and degrees of freedom d.

Finally, to enable a clearer comparison of the inference conducted by our three econometri-

cians (for reasons that will become evident shortly), it is useful to re-parameterize the model in

polar coordinates, as in Chamberlain (2007):

Γ̂|θ, r ∼ W
(
I2 + rϕθϕ

′
θ, k
)
, (7)

where the parameter of interest is now θ, and r is the nuisance parameter. The one-to-one map-

ping from
(
γ2, β

)
to (r, θ) is given by r = γ2σ2

ν (b
′CC ′b) and θ = arctan

(
[C′b]2
[C′b]1

)
, where [C ′b]j

denotes the jth element of the vector C ′b. By choosing C to be upper triangular with positive

diagonal entries, the mapping from β to θ becomes not only one-to-one but also monotoni-

cally increasing, which is convenient. By the standard change-of-variables formula, the speci-

fied distribution for
(
γ2, β

)
induces a uniform distribution for (r, θ) over the rectangular support

[0,M ]×
[
−π

2 ,
π
2

]
.

In sum, econometrician B assumes that the data-generating process (DGP) of Γ̂ is given by (7),

with θ and r randomly drawn from uniform distributions.

5.2 Econometrician RC

Econometrician RC—short for “random coefficients”—makes identical assumptions to B, ex-

cept that she treats θ as a fixed but unknown parameter, rather than the realization of a random

variable. In sum, econometrician RC assumes that the DGP of Γ̂ is given by (7), with r randomly

drawn from a uniform distribution and θ = θ0, where θ0 is a fixed but unknown value.
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5.3 Econometrician FC

EconometricianFC—short for “fixed coefficients”—is endowed with the true DGP: She correctly

believes that none of the coefficients are random, but they are all fixed and unknown. Under

these assumptions, Andrews et al. (2006) show that

Γ̂|β, µ2 ∼ Wn
(
I2, k, µ

2σ2
νC

′bb′C
)
,

where Wn (S, d,N) is the non-central Wishart distribution with scale matrix S, degrees of free-

dom d, and non-centrality matrix N . Switching again to polar coordinates, we obtain

Γ̂|θ, ρ ∼ Wn
(
I2, k, ρϕθϕ

′
θ

)
, (8)

where the parameter of interest is now θ, and ρ is the nuisance parameter. The one-to-one map-

ping from
(
µ2, β

)
to (ρ, θ) is given by ρ = µ2σ2

ν (b
′CC ′b) and θ = arctan

(
[C′b]2
[C′b]1

)
.

In sum, econometrician FC assumes that the DGP of Γ̂ is given by (8), with θ = θ0 and ρ = ρ0,

where θ0 and ρ0 are fixed but unknown values.

5.4 Additional notation and preliminary results

Before proceeding further, it is useful to establish some additional notation and preliminary

results.

Define the eigenvalues of Γ̂ by λ̂1 and λ̂2, with λ̂1 > λ̂2. Let v̂ denote the eigenvector of Γ̂

associated with λ̂1, and define the angle of this unit-length vector by θ̂ = arctan
(
v̂2
v̂1

)
. By exam-

ining the likelihood function of Γ̂ implied by (7) or (8), it is easy to show that θ̂ is the maximum

likelihood estimator (MLE) of θ under the model of all three econometricians. Importantly, θ̂

does not depend on the nuisance parameters—namely, r under (7) or ρ under (8). This property

implies that the parameters are orthogonal in the sense of Cox and Reid (1987), a fact that will

play an important role later on.

With a slight abuse of notation, we do not explicitly distinguish between estimators and their

realizations, using the same symbol for both. The context—particularly the conditioning set—

will make clear whether we are referring to a sampling or a posterior density. Finally, when

there is potential ambiguity, we will be explicit about whether a given density corresponds to

the model of a specific econometrician.
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5.5 Comparing inferential approaches

To study the frequentist properties of our Bayesian approach, we now compare the inferential

strategies adopted by our three econometricians. The following lemma establishes a relation-

ship between the inference conducted by econometricians B and RC.

Lemma 1. Let pB

(
θ|Γ̂
)

denote the (posterior) distribution of the random parameter θ given the

observed data, according to the model of econometrician B. Let pRC

(
θ̂|θ, λ̂1, λ̂2

)
denote the sam-

pling distribution of θ̂ conditional on θ, λ̂1 and λ̂2, based on the DGP of econometrician RC.

Then,

pB

(
θ|Γ̂
)
∝ pRC

(
θ̂|θ, λ̂1, λ̂2

)
and both densities depend only on a periodic and even function of θ − θ̂.

Proof. See appendix C.

Lemma 1 implies that, under the model of econometrician RC and conditional on the sam-

ple realization of the eigenvalues of Γ̂, the sampling distribution of θ̂ − θ given θ coincides with

the posterior distribution of θ − θ̂.5 This result goes a long way toward providing a frequentist

interpretation of Bayesian inference, but it does not go all the way for two reasons. First, the

lemma relates the posterior to a sampling distribution obtained by integrating out nuisance pa-

rameters, thereby adopting a Bayesian treatment of those parameters. Second, the sampling

distribution is constructed conditional on the observed eigenvalues, rather than treating them

as random. We now address these two limitations by relating the inference conducted by econo-

metricians RC to that of FC, who adopts a more strictly frequentist perspective. Specifically, the

next proposition establishes that the asymptotic distribution of θ̂ coincides under the models of

econometricians RC and FC, it is invariant to whether one conditions on λ̂1 and λ̂2, and it is

Gaussian.

Proposition 2. Suppose that there exists a constant c > 0 such that limT,k→∞
ρ
k ≥ c. Then,

θ̂ − θ

Ŝ
= R+Op

(
1

k

)
as T, k → ∞,

5Because both the posterior of θ and the sampling distribution of θ̂ are supported on the finite interval [−π/2, π/2],

the distributions of
(
θ − θ̂

)
|θ̂ and

(
θ̂ − θ

)
|θ need not be symmetric around zero simply because their support is not

centered there. However, both densities are periodic with period π. Hence, their support can be shifted arbitrarily
and re-centered at zero, at which point the two densities coincide. This reflects the familiar “wrapping argument”
from circular statistics: A variable defined on the real line is mapped onto a circle of circumference π by treating
any two values that differ by an integer multiple of π as the same point. In essence, the posterior of the wrapped
difference (θ − θ̂) mod π and the sampling distribution of the wrapped difference (θ − θ̂) mod π coincide.
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where Ŝ =

√
λ̂1

λ̂1−λ̂2
and R ∼ N (0, 1) is a standard Normal random variable. This result holds both

conditional on the sample realization of λ̂1 and λ̂2 and unconditionally, under the models of

both econometrician RC and FC.

Proof. See appendix C.

A few remarks help contextualize and interpret this proposition.

Remark 3. Proposition 2 states that the sampling distribution of the Wald-type statistic θ̂−θ
Ŝ

is

nearly Gaussian, regardless of whether the nuisance parameters are treated as random (as done

by econometrician RC) or fixed (as done by econometrician FC), and regardless of whether in-

ference is conditional on the sample realization of the eigenvalues of Γ̂. Together with Lemma 1,

these results imply that the sampling distribution of θ̂−θ
Ŝ

and the posterior distribution of θ−θ̂
Ŝ

are

asymptotically equivalent. In short, Bayesian inference about θ aligns with frequentist inference.

Remark 4. Given the Gaussian approximation, inference on θ is simple: An (1− α)–level confi-

dence (or credible) interval for θ takes the familiar form
[
θ̂ ± q1−α/2Ŝ

]
, where q1−α/2 denotes the

(1− α/2) quantile of the standard normal distribution.6

Remark 5. The finding that reliable inference can be conducted with a simple Gaussian ap-

proximation stands in sharp contrast to the extensive literature on weak instruments, which

is built on the premise that conventional asymptotics may perform poorly. To understand this

apparent discrepancy, note that Proposition 2 pertains to the Wald statistic for the model re-

parameterized in polar coordinates. In contrast, the distribution of β̂ can be substantially skewed

and does not exhibit a near-Gaussian shape, unless the number of instruments is very large. Put

differently, working in polar coordinates delivers an exact third-order refinement.

Remark 6. The statistic θ̂−θ
Ŝ

in Proposition 2 is pivotal—that is, its distribution does not depend

on any unknown parameters, including the nuisance parameters. This property ensures that

the corresponding test maintains correct size and is robust to weak instruments, and that the

associated confidence intervals attain nominal coverage. As shown in appendix C, the nuisance

parameter effectively vanishes from the limiting distribution because λ̂1, the largest eigenvalue

of Γ̂, provides a very accurate approximation of a sufficient statistic for the nuisance parameter.

As elaborated further in Remark 7, this result follows from parameter orthogonality.

6Because the likelihood and posterior densities are periodic in θ with period π, any portion of this interval that lies
outside the fundamental support of θ can be wrapped onto the circle of circumference π. in this case—which is rare
in practice, since Ŝ converges in probability to zero—the confidence (or credible) interval may appear as two disjoint
arcs (see also Mikusheva, 2010).
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Remark 7. Proposition 2 is derived under a “many-weak-instruments” asymptotic framework, in

which k grows large with the sample size T . This framework has been widely used in the weak-IV

literature to derive tractable approximations, including in the seminal work of Staiger and Stock

(1997) and Stock and Yogo (2005). What is distinctive here is that the Gaussian approximation

is more accurate than in typical settings. In standard cases, the error for approximating the dis-

tribution of the Wald statistic with a Gaussian is of order Op

(
1/
√
k
)

, whereas in our setting it is

of order Op (1/k). As a consequence, our asymptotic framework offers a good approximation to

finite-sample settings not only with many instruments, but also with a modest number of them.

The proof in appendix C clarifies that the accelerated convergence of θ̂−θ
Ŝ

to a standard Normal

random variable is due to two features of the model: (i) the approximate symmetry of the dis-

tribution of θ̂ around θ, which enhances the accuracy of the Gaussian approximation; and (ii)

the fact that the largest eigenvalue of Γ̂ (λ̂1) approximates very accurately a sufficient statistic for

the nuisance parameter (ϕ′
θΓ̂ϕθ), thereby effectively removing this nuisance parameter from the

asymptotic distribution. While our proof of property (ii) in appendix C is model specific, it stems

more generally from the orthogonality between the parameter of interest and the nuisance pa-

rameter, in the sense that the Fisher information matrix is diagonal. To illustrate the importance

of parameter orthogonality, consider the model of econometrician RC. As shown by Cox and

Reid (1987), a direct implication of parameter orthogonality is that r̂θ = r̂ + Op

(
1
k

)
, where r̂ is

the MLE of r, and r̂θ is the MLE of r given θ. Since r̂ = λ̂1
k − 1 and r̂θ =

ϕ′
θΓ̂ϕθ

k − 1, it follows that

λ̂1 = ϕ′
θΓ̂ϕθ + Op

(
1
k

)
. A similar argument applies in the model of econometrician FC, though

the function linking λ̂1 to ρ̂ and ϕ′
θΓ̂ϕθ to ρ̂θ is more complex.

Remark 8. The proof of Proposition 2 relies on the assumption that limT,k→∞
ρ
k ≥ c > 0, ensuring

that a non-negligible fraction of instruments remain relevant as their number grows. This con-

dition does not require any individual instrument to be strong; it merely rules out degenerate

cases in which researchers add an increasing number of purely irrelevant instruments, caus-

ing the fraction of relevant ones to vanish and their weak signal to be entirely diluted in noise.

In other words, the assumption prevents the model from approaching the non-identification

boundary, where the average concentration parameter collapses to zero. As a result, Dufour

(1997) impossibility theorem does not apply, and valid inference does not require unbounded

confidence sets with positive probability. In practice, this requirement is mild—especially given

that the Gaussian approximation in Proposition 2 is already accurate with a moderate number

of instruments. Therefore, researchers need not—and should not—cast an excessively wide net

in search of instruments. A focused selection of moderately sized instrument sets avoids the risk

of accumulating predominantly irrelevant variables that would weaken identification.
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Remark 9. Proposition 2 no longer applies when the condition limT,k→∞
ρ
k ≥ c > 0 is violated. In

that case, the simulation results in figures 1 and 2a–13a, as well as the estimation of the AK model

with fake instruments reported in table 1, indicate that inference becomes conservative, with

95-percent credible intervals containing the true value of the parameter more than 95 percent of

the time. In the case of perfectly irrelevant instruments and a known residual covariance matrix,

it can be shown that the coverage of our credible intervals depends on the correlation of the

structural errors. The intervals remain conservative for correlations as high as 0.935, and even

for correlations as large as 0.975 the size distortion does not exceed 5 percent (see appendix C.5).

Remark 10. Proposition 2 and the remarks above concern the asymptotic equivalence between

Bayesian and frequentist inference about θ. But do these results translate to inference about β,

the primitive parameter? The answer is yes. Because β is a monotone transformation of θ, equal-

tailed credible intervals for θ map directly into equal-tailed credible intervals for β. Likewise,

the frequentist confidence interval—which coincides with the equal-tailed credible interval in

the θ space—can be converted into a confidence interval for β by applying the same monotone

mapping to its endpoints. The monotonicity of the mapping and the use of a pivotal statistic

ensure that the resulting interval is valid for β as well. Thus, asymptotically, Bayesian inference

for β inherits the same desirable frequentist properties as the inference for θ, consistent with our

simulation and empirical results in sections 3 and 4.

In sum, Proposition 2 shows that Bayesian inference, when interpreted from a frequentist

perspective, achieves correct size and is robust to weak instruments. But is it a powerful ap-

proach to inference? Our next proposition explores its connection with the conditional infer-

ence strategy of Moreira (2003), which has been shown to achieve maximum power in a class of

invariant tests (Andrews et al., 2006).

Proposition 3. Let LR = λ̂1 − ϕ′
θΓ̂ϕθ denote the log-likelihood-ratio statistic of Moreira (2003),

obtained as the logarithm of the ratio between the profile likelihoods under the unrestricted and

restricted models. Let Ŵ = θ̂−θ
Ŝ

be pivotal statistic defined in Proposition 2. Then, under the same

assumption of Proposition 2,

LR = Ŵ 2 · ζ +Op

(
1

k

)
as T, k → ∞,

where

ζ =
ϕ′
θΓ̂ϕθ

ϕ′
θΓ̂ϕθ − J

= constant +Op

(
1√
k

)
as T, k → ∞,
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and J is ancillary with respect to θ and asymptotically independent from Ŵ . These results hold

under the models of both econometrician RC and FC.

Proof. See appendix C.

The following observations serve to clarify and interpret the key aspects of this proposition.

Remark 11. Proposition 3 shows that the likelihood-ratio test statistic of Moreira (2003) is ap-

proximately equal to the square of the pivotal statistic from Proposition 2, Ŵ 2, multiplied by a

random scalar ζ. Since ζ converges in probability to a constant, inference based on the likelihood-

ratio statistic and on Ŵ is asymptotically equivalent. And since the mapping between θ and β is

monotone, this equivalence holds also in the β space.

Remark 12. Moreira’s conditional likelihood-ratio test is based on the distribution of LR, con-

ditional on the sample realization of ϕ′
θΓ̂ϕθ. As a result, the only source of randomness in ζ is

the random variable J . Importantly, J is ancillary with respect to θ—thus providing no informa-

tion about the parameter of interest—and asymptotically independent of Ŵ . Consequently, the

LR statistic incorporates an additional source of randomness relative to Ŵ , leading to greater

variance. This result implies that, although LR and Ŵ 2 are asymptotically equivalent, inference

based on Ŵ is generally sharper than that based on LR.

To summarize, the combination of Lemma 1 and Propositions 2 and 3 show that Bayesian

inference—about either θ or β—has desirable frequentist properties and robustness to weak in-

struments, and yields results similar to those based on Moreira’s conditional inference, consis-

tent with our simulation evidence.

Up to this point, we have worked under the assumption that the covariance matrix of the

reduced-form residuals is known. This simplification is justified only if the error in estimating Σ

is small relative to the overall estimation uncertainty and the approximation errors of Proposi-

tions 2 and 3. The following lemma shows that this is indeed the case, provided that k2 is of the

same order of T .

Lemma 2. Let Σ̂ = 1
T−k

(
w − zΠ̂

)′ (
w − zΠ̂

)
, with Π̂ = (z′z)−1 z′w. Let Γ̃ = Ĉ ′w′z (z′z)−1 z′wĈ,

where Ĉ = g
(
Σ̂
)

and g (·) is the same function that maps Σ into C. Then, under the assump-

tions of Proposition 2 and if k2

T = O (1),

1

k
Γ̃ =

1

k
Γ̂ +Op

(
1

k

)
as T, k → ∞.
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This result holds under the model of econometrician FC (i.e. the true DGP).

Proof. See appendix C.

Lemma 2 shows that replacing C with Ĉ—and hence Γ̂ with Γ̃—introduces only an error of

order 1
k , as long as k ≲

√
T . The eigenvalues of symmetric matrices are continuous and dif-

ferentiable functions of the matrix entries, and the same holds for the eigenvectors when the

eigenvalues are well separated—a condition ensured by the assumptions of Proposition 2. It fol-

lows that substituting Γ̃ for Γ̂ does not alter the asymptotic distribution of the components of

the spectral decomposition. Therefore, all results in Propositions 2 and 3 remain valid, as the

difference between Γ̂ and Γ̃ is absorbed within the existing approximation error of order 1
k . The

requirement k ≲
√
T is stronger than the condition established by Andrews and Stock (2007b) as

necessary for correct asymptotic size, k ≲ T 2/3 . However, our 1
k convergence rate is faster than

their standard 1√
k

. Moreover, Andrews and Stock (2007a) show that their results continue to hold

under non-Gaussian errors, provided that the stronger condition k ≲ T 1/3 is satisfied.

6 Concluding remarks

In regular statistical models—where the likelihood is well behaved and standard asymptotic ap-

proximations apply—classical and Bayesian procedures yield similar conclusions, at least asymp-

totically, as formalized by the Bernstein–von Mises theorem. This alignment is reassuring: Bayesian

inference enjoys desirable frequentist properties, classical inference admits a Bayesian interpre-

tation, and researchers with different philosophical views are nonetheless led to the same em-

pirical findings. For a discussion of the advantages of this equivalence from an a theoretical

perspective, see Müller and Norets (2016a,b) and the references therein.

IV regressions with weak instruments, however, are a prominent example of non-regular sta-

tistical models, in which this near equivalence breaks down and naive inference becomes patho-

logical under both paradigms. In such settings, the presence of a non-vanishing nuisance pa-

rameter undermines conventional asymptotic approximations to the distribution of standard IV

estimators—such as TSLS—and similarly compromises Bayesian inference based on diffuse or

flat priors. Substantial progress has been made in addressing this problem from a frequentist

perspective. In particular, Moreira (2003) develops an inferential approach that delivers valid

tests by conditioning on a statistic sufficient for the nuisance parameter, and Andrews et al.

(2006) show that this procedure is optimal within a broad class of invariant, similar tests.
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In this paper, we identify the source of the pathology for Bayesian inference in this class of

IV models: Standard diffuse priors inadvertently concentrate mass on regions of the parameter

space where the instruments are strong. We then construct a corrected prior that removes this

distortion, and show that the resulting Bayesian credible sets are asymptotically equivalent to

Moreira’s confidence sets. Taken together, these results help restore the concordance between

classical and Bayesian inference in the non-regular setting of IV regressions with weak instru-

ments.

A Proof of Proposition 1

This appendix proves each of the three statements that constitute Proposition 1.

A.1 Flat prior on the concentration parameter

We begin by proving the first part of proposition 1, namely that

p
(
π|σ2

ν

)
∝
(
π′z′zπ

σ2
ν

)− k−2
2
(

1

σ2
ν

) k
2

(9)

induces a flat prior on the concentration parameter. First, observe that the concentration pa-

rameter can be written as

µ2 =
π′z′zπ

σ2
ν

= π̃′π̃,

where π̃ ≡ 1√
σ2
ν

(z′z)
1
2 π. Expressing π̃ in polar coordinates yields π̃ = q · φ(η), where q = ∥π̃∥ =√

µ2 represents the length (or norm) of the vector, and φ (η) ∈ Sk−1 is a unit vector that captures

its direction on the (k − 1)-dimensional unit sphere, parameterized by the angular coordinates

η. By the change-of-variables formula, the joint density of q and η satisfies

p
(
q, η|σ2

ν

)
= p

(
π (q, η) |σ2

ν

)
·
∣∣∣∣∂π (q, η)

∂ (q, η)

∣∣∣∣ , (10)

where the second term on the right-hand side is the determinant of the Jacobian of the transfor-

mation from (q, η) to π. This Jacobian can be characterized as∣∣∣∣∂π (q, η)

∂ (q, η)

∣∣∣∣ = ∣∣∣∣√σ2
ν

(
z′z
)− 1

2
∂π̃ (q, η)

∂ (q, η)

∣∣∣∣
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∝
(
σ2
ν

) k
2

∣∣∣∣∂π̃ (q, η)

∂ (q, η)

∣∣∣∣
∝
(
σ2
ν

) k
2 qk−1

k−2∏
j=1

sink−j−1 ηj

 , (11)

where the last line follows from the fact that
∣∣∣∂π̃(q,η)∂(q,η)

∣∣∣ is the volume element associated with the

transformation from Cartesian to spherical coordinates in Rk, capturing how volume scales un-

der the change of variables. Substituting (9) and (11) into (10), we obtain

p
(
q, η|σ2

ν

)
∝ q2−k

(
1

σ2
ν

) k
2

·
(
σ2
ν

) k
2 qk−1

k−2∏
j=1

sink−j−1 ηj



∝ q

k−2∏
j=1

sink−j−1 ηj

 ,

which implies that

p
(
q|σ2

ν

)
∝ q.

Finally, applying the change-of-variables formula once more to derive the implied prior on µ2,

we have

p
(
µ2|σ2

ν

)
= p

(
q
(
µ2
)
|σ2

ν

) ∣∣∣∣∣∂q
(
µ2
)

∂µ2

∣∣∣∣∣ ∝ 1,

which shows that the implied prior on the concentration parameter is indeed flat.

A.2 Equivalence to hierarchical prior

The second part of proposition 1 states that, when k > 2, (9) is equivalent to a hierarchical

specification that combines (4) with a flat hyperprior on γ2. To show this result, observe that (4)

implies

p
(
π|γ2, σ2

ν

)
∝
∣∣∣γ2σ2

ν

(
z′z
)−1
∣∣∣− 1

2
exp

{
−1

2
π′
[
γ2σ2

ν

(
z′z
)−1
]−1

π

}

∝
(
σ2
ν

)− k
2
(
γ2
)− k

2 exp

{
−1

2

1

γ2
π′z′zπ

σ2
ν

}
.

To compute the marginal density of π, we integrate out γ2, using a flat hyperprior. This integra-

tion yields

p
(
π|σ2

ν

)
∝
∫ (

σ2
ν

)− k
2
(
γ2
)− k

2 exp

{
−1

2

1

γ2
π′z′zπ

σ2
ν

}
dγ2
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∝
(
π′z′zπ

σ2
ν

)− k−2
2
(

1

σ2
ν

) k
2

,

where the final proportionality follows from the fact that, when k > 2, the integrand is the kernel

of an Inverse-Gamma density in γ2.

A.3 Proper posterior

To prove the last part of proposition 1, we need to demonstrate that the resulting posterior dis-

tribution is always integrable. The posterior density is given by the product of the prior (9) and

the likelihood of model (1)-(2):

p
(
β, δ, π, σ2

ν , σ
2
ε |y, x, z

)
∝

∝
(

1

σ2
ε

)T
2

e
− 1

2σ2
ε
(y−xβ−(x−zπ)δ)′(y−xβ−(x−zπ)δ)

(
1

σ2
ν

)T
2

e
− 1

2σ2
ν
(x−zπ)′(x−zπ) ·

(
π′z′zπ

σ2
ν

)− k−2
2
(

1

σ2
ν

) k
2

∝
(

1

σ2
ε

)T
2

e
− 1

2σ2
ε
(y−XB)′(y−XB)

(
1

σ2
ν

)T+2
2

e
− 1

2σ2
ν
(x−zπ)′(x−zπ) ·

(
π′z′zπ

)− k−2
2 ,

where X ≡ [x, x− zπ] and B ≡ [β, δ]′. We can now integrate out β and δ, obtaining

p
(
π, σ2

ν , σ
2
ε |y, x, z

)
=

∫ ∫
p
(
β, δ, π, σ2

ν , σ
2
ε |y, x, z

)
dβdδ

∝
(
π′z′zπ

)− k−2
2

(
1

σ2
ν

)T+2
2

e
− 1

2σ2
ν
(x−zπ)′(x−zπ)

(
1

σ2
ε

)T
2
∫

e
− 1

2σ2
ε
[(y−XB)′(y−XB)]

dB

∝
(
π′z′zπ

)− k−2
2

(
1

σ2
ν

)T+2
2

e
− 1

2σ2
ν
(x−zπ)′(x−zπ)

(
1

σ2
ε

)T−2
2

e
− 1

2σ2
ε
(y−XB̂)

′
(y−XB̂) ∣∣X ′X

∣∣− 1
2 ,

where B̂ ≡ (X ′X)−1X ′y and the last expression follows from the fact that the integrand is the

kernel of a Gaussian density. We are now ready to integrate out σ2
ε and σ2

ν , which yields

p (π|y, x, z) =
∫ ∫

p
(
π, σ2

ν , σ
2
ε |y, x, z

)
dσ2

εdσ
2
ν

∝
(
π′z′zπ

)− k−2
2
∣∣X ′X

∣∣− 1
2

∫ (
1

σ2
ν

)T+2
2

e
− 1

2σ2
ν
(x−zπ)′(x−zπ)

dσ2
ν

∫ (
1

σ2
ε

)T−2
2

e
− 1

2σ2
ε
(y−XB̂)

′
(y−XB̂)

dσ2
ε

∝
(
π′z′zπ

)− k−2
2
∣∣X ′X

∣∣− 1
2
[
(x− zπ)′ (x− zπ)

]−T
2

[(
y −XB̂

)′ (
y −XB̂

)]−T−4
2

, (12)

where the last expression follows from the fact that the integrands are kernels of Inverse-Gamma

densities.
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The marginal posterior of π can be further simplified by observing that

∣∣X ′X
∣∣ = ∣∣[x, x− zπ]′ [x, x− zπ]

∣∣ = (x′x) [(x− zπ)′Mx (x− zπ)
]
=
(
x′x
) (

π′z′Mxzπ
)
, (13)

where MA ≡ I−A (A′A)−1A′ denotes the residual-maker matrix, and we have used the property

|a′ab′b− a′bb′a| = |a′a| |b′Mab| = |b′b| |a′Mba|, as in Hoogerheide et al. (2005). Using the same

property, as well as the Frisch–Waugh–Lovell theorem, we can also show that and

(
y −XB̂

)′ (
y −XB̂

)
= y′MXy = (Mxy)

′MMx(x−zπ) (Mxy)

=
y′Mxy

(x− zπ)′Mx (x− zπ)
(x− zπ)′MxMMxyMx (x− zπ)

=
y′Mxy

π′z′Mxzπ

(
π′z′M[y,x]zπ

)
. (14)

Substituting (13) and (14) into (12), we obtain

p (π|y, x, z) ∝
(
π′z′zπ

)− k−2
2
(
π′z′Mxzπ

)− 1
2
[
(x− zπ)′ (x− zπ)

]−T
2

(
π′z′M[y,x]zπ

π′z′Mxzπ

)−T−4
2

,

This is the density of a proper distribution. Its tails exhibit polynomial decay and are sufficiently

thin to ensure integrability as long as T > 1. If k > 1, the posterior distribution has a singularity

at π = 0, but the integral around π = 0 always remains finite. Since π = 0 is a set with measure

zero, the Markov chains generated by Markov Chain Monte Carlo algorithms do not violate the

requirement of irreducibility, ensuring the validity of these algorithms (see definition 6.13 in

Robert and Casella, 2004).

B Algorithm for posterior inference

This appendix provides the details of the Markov Chain Monte Carlo algorithm that we use to

evaluate the posterior distribution of the IV model

y = xβ + cα+ νδ + ε (15)

x = zπ + cρ+ ν, (16)

where y ∈ RT is an observed dependent variable, x ∈ RT is an observed regressor, c ∈ RT×l are

observed control variables, z ∈ RT×k are observed instrumental variables, ν ∼ N
(
0T×1, σ

2
νIT
)
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and ν ∼ N
(
0T×1, σ

2
εIT
)

are unobserved shocks uncorrelated with each other, and β ∈ R, α ∈ Rl,

δ ∈ R, π ∈ Rk, ρ ∈ Rl, σ2
ν ∈ R and σ2

ε ∈ R are unknown parameters. Relative to the model in

section 2, equations (15) and (16) include additional controls. As specified in proposition 1, we

impose the prior distribution

p
(
π|σ2

ν

)
∝
(
π′z′zπ

σ2
ν

)− k−2
2
(

1

σ2
ν

) k
2

, (17)

and flat priors on all remaining model parameters. The remainder of this appendix details the

Markov Chain Monte Carlo algorithm used for posterior inference. We begin with the case of

k > 2, followed by the case where k = 1 or k = 2.

B.1 The case of k > 2

When k > 2, the prior (17) is equivalent to

π|γ2, σ2
ν ∼ N

(
0, γ2σ2

νΩ
)
,

with a flat hyperprior on γ2 and Ω = (z′z)−1. The algorithm described in this appendix, however,

is also valid for other possible choices of Ω, including Ω = Ik. The latter may be a suitable

option when the number of instruments, k, is large relative to the number of observations, T .

In both our simulations and empirical application, the results with Ω = (z′z)−1 or Ik are nearly

indistinguishable.

The posterior distribution is given by

p
(
β, α, δ, π, ρ, σ2

ν , σ
2
ε , γ

2|y, x, z, c
)
∝ p

(
y, x|z, c, β, α, δ, π, ρ, σ2

ν , σ
2
ε , γ

2
)
· p
(
π|γ2, σ2

ν

)
∝ p

(
y|x, z, c, β, α, δ, π, ρ, σ2

ν , σ
2
ε , γ

2
)
· p
(
x|z, c, β, α, δ, π, ρ, σ2

ν , σ
2
ε , γ

2
)
· p
(
π|γ2, σ2

ν

)
∝
(

1

σ2
ε

)T
2

e
− 1

2σ2
ε
[y−xβ−cα−(x−zπ−cρ)δ]′[y−xβ−cα−(x−zπ−cρ)δ]

(
1

σ2
ν

)T
2

e
− 1

2σ2
ν
(x−zπ−cρ)′(x−zπ−cρ)·

·
(

1

γ2σ2
ν

) k
2

e
−π′Ω−1π

2γ2σ2
ν ,

and we can sample from it using the following Gibbs sampling with blocks (i)
(
β, α, δ, σ2

ε

)
, (ii) σ2

ν ,

(iii) (π, ρ) and (iv) γ2:
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(i) The conditional posterior of
(
β, α, δ, σ2

ε

)
is given by

p
(
β, α, δ, σ2

ε |y, x, z, c, π, ρ, σ2
ν , γ

2
)
∝
(

1

σ2
ε

)T
2

e
− 1

2σ2
ε
[y−xβ−cα−(x−zπ−cρ)δ]′[y−xβ−cα−(x−zπ−cρ)δ]

,

which is the kernel of

σ2
ε |y, x, z, c, π, ρ, σ2

ν , γ
2 ∼ IG(

Ŝ

2
,
T − l − 4

2
)

β, α, δ|y, x, z, c, π, ρ, σ2
ν , γ

2, σ2
ε ∼ N

(
ξ̂,
(
x̃′x̃
)−1

σ2
ε

)
,

where x̃ ≡ [x, c, (x− zπ − cρ)], ξ̂ = (x̃′x̃)−1 x̃′y and Ŝ =
(
y − x̃ξ̂

)′ (
y − x̃ξ̂

)
.7

(ii) The conditional posterior of σ2
ν is given by

p
(
σ2
ν |y, x, z, c, β, α, δ, π, ρ, σ2

ε , γ
2
)
∝
(

1

σ2
ν

)T+k
2

e
− 1

2σ2
ν

[
(x−zπ−cρ)′(x−zπ−cρ)+π′Ω−1π

γ2

]
,

which is the kernel of

σ2
ν |y, x, z, c, β, α, δ, π, ρ, σ2

ε , γ
2 ∼ IG

(
(x− zπ − cρ)′ (x− zπ − cρ)

2
+

π′Ω−1π

2γ2
,
T + k − 2

2

)
.

(iii) The conditional posterior of ω ≡ [π, ρ]′ is given by

p
(
ω|y, x, z, c, β, α, δ, σ2

ν , σ
2
ε , γ

2
)
∝

∝ e
− 1

2σ2
ε
[y−xβ−cα−(x−z̃ω)δ]′[y−xβ−cα−(x−z̃ω)δ]

e
− 1

2σ2
ν

[
(x−z̃ω)′(x−z̃ω)+ω′Pω

γ2

]

∝ e
− 1

2σ2
ε
(ỹ+z̃δω)′(ỹ+z̃δω)− 1

2σ2
ν

[
(x−z̃ω)′(x−z̃ω)+ω′Pω

γ2

]
,

where z̃ ≡ [z, c], P ≡

 Ω−1 0k×l

0l×k 0l×l

 and ỹ ≡ y − x (β + δ)− cα. The last expression can be

manipulated to show that it is proportional to

e
− 1

2σ2
ν

[
(x−z̃ω)′(x−z̃ω)+

σ2
ν

σ2
ε
(ỹ+z̃δω)′(ỹ+z̃δω)+ω′Pω

γ2

]

∝ e
− 1

2σ2
ν

{
ω′

[(
1+

σ2
ν

σ2
ε
δ2

)
z̃′z̃+ 1

γ2
P

]
ω−2

(
x−σ2

ν
σ2
ε
δỹ

)′
z̃ω

}
,

7If a random variable, v, has an Inverse-Gamma distribution with scale parameter s and degrees of freedom d,
v ∼ IG (s, d), then its pdf is p (v|s, d) = Γ (d)−1 sdv−d−1 exp

{
− s

v

}
.
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which is the kernel of

ω|y, x, z, c, β, α, δ, σ2
ν , σ

2
ε , γ

2 ∼ N

(
ω̂, σ2

ν

[(
1 +

σ2
ν

σ2
ε

δ2
)
z̃′z̃ +

1

γ2
P

]−1
)
,

where ω̂ =
[(

1 + σ2
ν

σ2
ε
δ2
)
z̃′z̃ + 1

γ2P
]−1

z̃′
[
x− σ2

ν
σ2
ε
δ (y − x (β + δ)− cα)

]
.

(iv) The conditional posterior of γ2 is given by

p
(
γ2|y, x, z, c, β, α, δ, π, ρ, σ2

ν , σ
2
ε

)
∝
(

1

γ2

) k
2

e
−π′Ω−1π

2γ2σ2
ν ,

which is the kernel of

γ2|y, x, z, c, β, α, δ, π, ρ, σ2
ν , σ

2
ε ∼ IG

(
π′Ω−1π

2σ2
ν

,
k − 2

2

)
.

B.2 The case of k = 1 or k = 2

When k ≤ 2, the previous algorithm requires some slight modifications, as the prior (17) cannot

be implemented through the hierarchical specification described in section B.1. In the case of

k ≤ 2, the posterior is given by

p
(
β, α, δ, π, ρ, σ2

ν , σ
2
ε |y, x, z, c

)
∝ p

(
y|x, z, c, β, α, δ, π, ρ, σ2

ν , σ
2
ε

)
·p
(
x|z, c, β, α, δ, π, ρ, σ2

ν , σ
2
ε

)
·p
(
π|σ2

ν

)
∝
(

1

σ2
ε

)T
2

e
− 1

2σ2
ε
[y−xβ−cα−(x−zπ−cρ)δ]′[y−xβ−cα−(x−zπ−cρ)δ]

(
1

σ2
ν

)T
2

e
− 1

2σ2
ν
(x−zπ−cρ)′(x−zπ−cρ)·

·
(
π′z′zπ

σ2
ν

)− k−2
2
(

1

σ2
ν

) k
2

,

and we can sample from it using the following Gibbs sampling with blocks (a)
(
β, α, δ, σ2

ε

)
, (b) σ2

ν ,

(c) ρ and (d) π:

(a) The conditional posterior of
(
β, α, δ, σ2

ε

)
is identical to the one derived in section B.1.

(b) The conditional posterior of σ2
ν is given by

p
(
σ2
ν |y, x, z, c, β, α, δ, π, ρ, σ2

ε

)
∝
(

1

σ2
ν

)T+2
2

e
− 1

2σ2
ν
(x−zπ−cρ)′(x−zπ−cρ)

,
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which is the kernel of

σ2
ν |y, x, z, c, β, α, δ, π, ρ, σ2

ε ∼ IG

(
(x− zπ − cρ)′ (x− zπ − cρ)

2
,
T

2

)
.

(c) The conditional posterior of ρ is given by

p
(
ρ|y, x, z, c, β, α, δ, σ2

ν , σ
2
ε , π
)
∝

∝ e
− 1

2σ2
ε
[y−xβ−cα−(x−zπ−cρ)δ]′[y−xβ−cα−(x−zπ−cρ)δ]

e
− 1

2σ2
ν
(x−zπ−cρ)′(x−zπ−cρ)

∝ e
− 1

2σ2
ε
(ŷ+cδρ)′(ŷ+cδρ)− 1

2σ2
ν
(x̂−cρ)′(x̂−cρ)

,

where x̂ ≡ x− zπ and ŷ ≡ y−x (β + δ)− cα+ zπδ. The last expression can be manipulated

to show that it is proportional to

e
− 1

2σ2
ν

[
ρ′
[(

1+
σ2
ν

σ2
ε
δ2

)
c′c

]
ρ−2

(
x̂−σ2

ν
σ2
ε
δŷ

)′
cρ

]
,

which is the kernel of

ρ|y, x, z, c, β, α, δ, σ2
ν , σ

2
ε , π ∼ N

(
ρ̂, σ2

ν

[(
1 +

σ2
ν

σ2
ε

δ2
)
c′c

]−1
)
,

where ρ̂ =
[(

1 + σ2
ν

σ2
ε
δ2
)
c′c
]−1

c′
(
x̂− σ2

ν
σ2
ε
δŷ
)

.

(d) The conditional posterior of π is given by

p
(
π|y, x, z, c, β, α, δ, π, ρ, σ2

ν , σ
2
ε

)
∝ e

− 1

2σ2
ε
[y−xβ−cα−(x−zπ−cρ)δ]′[y−xβ−cα−(x−zπ−cρ)δ]·

·e−
1

2σ2
ν
(x−zπ−cρ)′(x−zπ−cρ) (

π′z′zπ
)− k−2

2 ,

which can be manipulated to show that it is proportional to

e
− 1

2σ2
ν

{
π′
[
z′z

(
1+

σ2
ν

σ2
ε
δ2

)]
π−2

(
x̄−σ2

ν
σ2
ε
δȳ

)′
zπ

}
·
(
π′z′zπ

)− k−2
2 , (18)

where ȳ ≡ y − xβ − cα − xδ + cρδ and x̄ ≡ x− cρ. Observe that the first term of (18) is the

kernel of

π|y, x, z, c, β, α, δ, π, ρ, σ2
ν , σ

2
ε ∼ N

(
π̄, σ2

ν

[(
1 +

σ2
ν

σ2
ε

δ2
)
z′z

]−1
)
. (19)
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Therefore, we can sample from (18) using a Metropolis-within-Gibbs strategy. First, we

draw a candidate π, say π∗, from (19), which we interpret as a proposal density. We accept

π∗ with probability

p = min

{
1,

(
π∗′z′zπ∗

π(j−1)′z′zπ(j−1)

)− k−2
2

}
,

where π(j−1) is the previous draw of π in the chain. If π∗ is not accepted, we set π(j) = π(j−1).

Notice that, when k = 1, the acceptance probability simplifies to p = min

{
1, |π∗|

|π(j−1)|

}
.

With k = 2, instead, p = 1 and π∗ is always accepted.

C Proofs of the results presented in section 5

This appendix provides the proofs of Lemma 1, and Propositions 2 and 3, as stated in section 5.

To that end, we begin by establishing two preliminary lemmas.

Lemma 3. Let Pθ be a rotation matrix defined by Pθ =
[
ϕθ | ϕ⊥

θ

]
, with ϕθ ≡ [cos (θ) , sin (θ)]′ and

ϕ⊥
θ ≡ [− sin (θ) , cos (θ)]′. Then, the matrix Γ̂, defined in section 5.1, can be written as

Γ̂ = Pθ

 Q R
√
Q

R
√
Q J +R2

P ′
θ.

In this expression, J , R and Q are mutually independent random variables with distributions

J ∼ χ2
k−1

R ∼ N (0, 1)

Q ∼


(1 + r)χ2

k under the DGP of econometrician B and RC

χ2
k (ρ) under the DGP of econometrician FC,

where χ2
k (ρ) denotes the non-central chi-squared distribution with k degrees of freedom and non-

centrality parameter ρ.

Proof. The result follows directly from equations (7) and (8), combined with the representation

theorem 2.2 in Gleser (1976).

Lemma 4. Let λ̂1 and λ̂2 denote the eigenvalues of Γ̂, with λ̂1 > λ̂2. Let v̂ denote the eigenvector of
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Γ̂ associated with λ̂1, and define the angle of this unit-length vector by θ̂ = arctan
(
v̂2
v̂1

)
. Then, λ̂1

and λ̂2 are ancillary statistics for θ. In addition, λ̂1, λ̂2 and θ̂ satisfy

λ̂1 =
1

2

[
Q+ J +R2 +

√
(Q+ J +R2)2 − 4JQ

]

λ̂2 =
1

2

[
Q+ J +R2 −

√
(Q+ J +R2)2 − 4JQ

]

θ̂ = θ + arctan

(
R
√
Q

λ̂1 − J −R2

)

= θ + arctan

(
λ̂1 −Q

R
√
Q

)
.

Proof. These expressions are obtained by computing the eigenvalues and eigenvectors of Γ̂, us-

ing the representation of Γ̂ derived in Lemma 3. λ̂1 and λ̂2 are ancillary for θ because their dis-

tribution does not depend on θ.

C.1 Proofs of Lemma 1

To prove Lemma 1, recall that Γ̂ is a sufficient statistic for inference under the model of econome-

trician B. Therefore, the (posterior) distribution of the random coefficient θ given the observed

data satisfies

pB

(
θ|Γ̂
)
= pB

(
θ|λ̂1, λ̂2, θ̂

)
∝ pB

(
λ̂1, λ̂2, θ̂|θ

)
∝ pB

(
θ̂|θ, λ̂1, λ̂2

)
∝ pRC

(
θ̂|θ, λ̂1, λ̂2

)
,

where the first equality follows from the one-to-one mapping between Γ̂ and its spectral de-

composition; the second line from the uniform prior on θ; the third line from the ancillarity of

λ̂1 and λ̂2; and the last line from the fact that econometrician B and RC share the same marginal

likelihood function of θ, obtained by integrating out the random coefficient r.
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To show that these functions are symmetric in θ − θ̂, observe that

pB

(
θ, r|Γ̂

)
∝ pB

(
Γ̂|θ, r

)

∝
∣∣I2 + rϕθϕ

′
θ

∣∣− k
2 exp

{
−1

2
tr
[(
I2 + rϕθϕ

′
θ

)−1
Γ̂
]}

∝ (1 + r)−
k
2 exp

{
−1

2
tr
[(
I2 + rϕθϕ

′
θ

)−1
Γ̂
]}

∝ (1 + r)−
k
2 exp

{
1

2

r

1 + r
ϕ′
θΓ̂ϕθ

}

∝ (1 + r)−
k
2 exp

{
1

2

r

1 + r

[
λ̂1 −

(
λ̂1 − λ̂2

)
sin2

(
θ − θ̂

)]}
where the first line follows from the uniform prior on (θ, r); the second line from (7); the third

line from the fact that the eigenvalues of I2 + rϕθϕ
′
θ are 1 and 1 + r; the fourth line from the

Woodbury matrix identity; and the last line from the spectral decomposition of Γ̂, given by

Γ̂ = Pθ̂

 λ̂1 0

0 λ̂2

P ′
θ̂
, and from the fact that ϕ′

θPθ̂ = ϕ′
θ−θ̂

. Since pB

(
θ, r|Γ̂

)
depends only on

a periodic and even function of θ − θ̂ for any given r, the marginal density of θ, obtained as

pB

(
θ|Γ̂
)
=

∫ M

0
pB

(
θ, r|Γ̂

)
dr,

depends only on a periodic and even function of θ − θ̂ as well.

Although not needed for this proof, it can be shown that the posterior density admits the

closed-form representation

pB(θ | Γ̂) ∝ 1F1

(
1,

k

2
, ϕ′

θΓ̂ϕθ

)
,

where 1F1 denotes the confluent hypergeometric function of the first kind.

C.2 Proof of Proposition 2

To prove Proposition 2, we require the following lemma describing the asymptotic behavior of

the eigenvalues of Γ̂. Unless otherwise stated, all limits are taken as T, k → ∞.

Lemma 5. Suppose that there exists a constant c > 0 such that limT,k→∞
ρ
k ≥ c. Then,

λ̂1

k
=

Q

k
+Op

(
1

k

)
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and
λ̂2

k
=

J

k
+Op

(
1

k

)
,

under both the DGP of econometrician B and FC.

Proof. From Lemma 4,

λ̂1 =
1

2

[
Q+ J +R2 +

√
(Q+ J +R2)2 − 4JQ

]
.

Rearranging the terms inside the square root, we obtain

λ̂1 =
1

2

[
Q+ J +R2 +

√
(Q− J −R2)2 + 4QR2

]

=
1

2

[
Q+ J +R2 +

∣∣Q− J −R2
∣∣√1 +

4QR2

(Q− J −R2)2

]
.

Notice that R2

k = Op

(
1
k

)
, J

k = 1 + Op

(
1√
k

)
, and Q

k = 1 + ρ
k + Op

(
1√
k

)
under the model of

econometrician FC, and Q
k = 1 +EB (r) +Op

(
1√
k

)
under the model of econometricians B and

RC. Since
4QR2

(Q− J −R2)2
=

4Q
k

R2

k(
Q
k − J

k − R2

k

)2 = Op

(
1

k

)
,

we can perform a Taylor expansion of

√[
1 + 4QR2

(Q−J−R2)2

]
around 1, which yields

λ̂1 =
1

2

[
Q+ J +R2 +

∣∣Q− J −R2
∣∣(1 + 1

2

4QR2

(Q− J −R2)2
+Op

((
QR2

(Q− J −R2)2

)2
))]

=
1

2

[
Q+ J +R2 +

∣∣Q− J −R2
∣∣ (1 +Op

(
1

k

))]
.

This expression implies

λ̂1

k
=

1

2

[
Q

k
+

J

k
+

R2

k
+

∣∣∣∣Qk − J

k
− R2

k

∣∣∣∣ (1 +Op

(
1

k

))]

=
1

2

[
Q

k
+

J

k
+

R2

k
+

∣∣∣∣Qk − J

k
− R2

k

∣∣∣∣+Op

(
1

k

)]

=
Q

k
+Op

(
1

k

)
,
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where the last equality follows from the fact that
∣∣∣Qk − J

k − R2

k

∣∣∣ = Q
k − J

k − R2

k +Op

(
1
k

)
.8

Similar steps can be used to establish the second part of the lemma, namely that

λ̂2

k
=

J

k
+Op

(
1

k

)
.

In sum, Lemma 5 states that λ̂1 and λ̂2 are extremely accurate approximations of Q and J ,

which is a key input into the proof of the main claim of Proposition 2. To prove this proposition,

recall from Lemma 4 that

θ̂ − θ = arctan

(
R
√
Q

λ̂1 − J −R2

)
.

Since R
√
Q

λ̂1−J−R2
= Op

(
1√
k

)
, we can perform a Taylor expansion of arctan

(
R
√
Q

λ̂1−J−R2

)
around 0.

Given that the second derivative of the arctan function evaluated at the origin is equal to 0, we

have

θ̂ − θ =
R
√
Q

λ̂1 − J −R2
+Op

((
R
√
Q

λ̂1 − J −R2

)3
)

=
R
√
Q

λ̂1 − J −R2
+Op

(
1

k
√
k

)
,

which implies

√
k
(
θ̂ − θ

)
= R

√
Q
k

λ̂1
k − J

k − R2

k

+Op

(
1

k

)

= R

√
λ̂1
k +Op

(
1
k

)
λ̂1
k − λ̂2

k +Op

(
1
k

) +Op

(
1

k

)

= R

√
λ̂1
k

λ̂1
k − λ̂2

k

+Op

(
1

k

)
,

where the second line follows from applying the results of Lemma 5, and the last line from the

fact that

√
λ̂1
k
+Op( 1

k )
λ̂1
k
− λ̂2

k
+Op( 1

k )
=

√
λ̂1
k

λ̂1
k
− λ̂2

k

+Op

(
1
k

)
.

8To show that
∣∣∣Qk − J

k
− R2

k

∣∣∣ −
(

Q
k
− J

k
− R2

k

)
≡ D = Op

(
1
k

)
, notice that D ={

0 if Q ≥ J +R2

2
(

J
k
+ R2

k
− Q

k

)
if Q < J +R2 . Applying Chebyshev inequality, we obtain Pr

{∣∣∣D > M̄
k

∣∣∣} =

Pr
{
J +R2 −Q > M̄

2

}
≤ 4(k+ρ)

(M̄/2+ρ)2
. It follows that D = Op

(
1
k

)
, since, for any ϵ > 0, there exists an M̄ such

that Pr
(∣∣∣D > M̄

k

∣∣∣) < ϵ for large k.
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Finally, since

√
λ̂1
k

λ̂1
k
− λ̂2

k

= Op (1), we can divide both the left- and right-hand sides of the last

expression by this term to obtain

θ̂ − θ√
λ̂1

λ̂1−λ̂2

= R+Op

(
1

k

)
,

which concludes the proof of Proposition 2.

C.3 Proof of Proposition 3

The log-likelihood-ratio test statistic of Moreira (2003) is defined as

LR = 2

[
max
β,π

log p (y, x|z, β, π)−max
π

log p (y, x|z, β, π)
]
,

where

p (y, x|z, β, π) ∝ exp

{
−1

2
tr
[
Σ−1

(
w − zπb′

)′ (
w − zπb′

)]}
(20)

is the likelihood function implied by equations (5)-(6), and w ≡ [x, y]. To compute the profile

likelihood, we maximize (20) with respect to π, by setting π equal to

π̂β =
(z′z)−1 z′wΣ−1b

b′Σ−1b
.

Substituting π = π̂β into p (y, x|z, β, π), and simplifying the resulting expression, we obtain

max
π

p (y, x|z, β, π) ∝ exp

{
1

2

b′C

(b′Σ−1b)
1
2

Γ̂
C ′b

(b′Σ−1b)
1
2

}
.

Switching to polar coordinates yields the simpler expression

max
π

p (y, x|z, θ, π) ∝ exp

{
1

2
ϕ′
θΓ̂ϕθ

}
,

which reaches its maximum, exp
{

1
2 λ̂1

}
, when θ = θ̂, the MLE defined in section 5.4. In sum, the

log-likelihood-ratio test statistic of Moreira (2003) is

LR = λ̂1 − ϕ′
θΓ̂ϕθ

= λ̂1 −Q,
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where the second line follows from Lemma 3.

To prove Proposition 3, recall from Lemma 4 that

θ̂ − θ = arctan

(
λ̂1 −Q

R
√
Q

)
.

Since λ̂1−Q
R
√
Q

= Op

(
1√
k

)
, we can perform a Taylor expansion of arctan

(
λ̂1−Q
R
√
Q

)
around 0. Given

that the second derivative of the arctan function evaluated at the origin is equal to 0, we have

θ̂ − θ =
λ̂1 −Q

R
√
Q

+Op

( λ̂1 −Q

R
√
Q

)3


=
λ̂1 −Q

R
√
Q

+Op

(
1

k
√
k

)
,

which implies
√
k
(
θ̂ − θ

)
=

λ̂1 −Q

R
√

Q
k

+Op

(
1

k

)
,

or, equivalently,

λ̂1 −Q =
√
k
(
θ̂ − θ

)
R

√
Q

k
+Op

(
1

k

)
.

Multiplying and dividing the right-hand-side of this expression by

√
λ̂1
k

λ̂1
k
− λ̂2

k

, and substituting the

expression for R derived in Proposition 2, we obtain

λ̂1 −Q =
√
k

(
θ̂ − θ

)
√

λ̂1
k

λ̂1
k
− λ̂2

k

λ̂1
k

λ̂1
k − λ̂2

k

R+Op

(
1

k

)

=
√
k

(
θ̂ − θ

)
√

λ̂1
k

λ̂1
k
− λ̂2

k

λ̂1
k

λ̂1
k − λ̂2

k

√k

(
θ̂ − θ

)
√

λ̂1
k

λ̂1
k
− λ̂2

k

+Op

(
1

k

)+Op

(
1

k

)

=

√k

(
θ̂ − θ

)
√

λ̂1
k

λ̂1
k
− λ̂2

k


2

λ̂1
k

λ̂1
k − λ̂2

k

+Op

(
1

k

)
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= Ŵ 2
λ̂1
k

λ̂1
k − λ̂2

k

+Op

(
1

k

)
,

where Ŵ = θ̂−θ√
λ̂1

λ̂1−λ̂2

is the pivotal statistic defined in Proposition 2. Finally, using the results of

Lemma 5, we have

λ̂1 −Q = Ŵ 2 Q

Q− J
+Op

(
1

k

)
.

Recall from Lemma 3 that J ∼ χ2
k−1, and it is thus ancillary for θ. In addition, J is asymptotically

independent from Ŵ , since Ŵ converges in probability to R.

C.4 Proof of Lemma 2

To prove Lemma 2, we first show that

Σ̂ = Σ +Op

(
1

k

)
.

To see this, note that Σ̂ = 1
T−k

(
w − zΠ̂

)′ (
w − zΠ̂

)
can be decomposed as

Σ̂ =
1

T − k
(w − zΠ)′ (w − zΠ)− 2

T − k

(
Π̂−Π

)′
z′ (w − zΠ) +

1

T − k

(
Π̂−Π

)′
z′z
(
Π̂−Π

)

=
1

T − k
u′u− 1

T − k
u′z
(
z′z
)−1

z′u

=
1

T − k
u′
[
I − z

(
z′z
)−1

z′
]
u,

where Π = [π, πβ] and u = (w − zΠ). Under the assumption that z′z is full rank, the matrix

Mz = I − z (z′z)−1 z′ is symmetric and idempotent, and it has rank equal to T − k. Since

u ∼ MN (0, I2,Σ) ,

standard results (e.g. Anderson, 2003) imply that

Σ̂ ∼ 1

T − k
W (Σ, T − k) .
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It follows that

Σ̂ = Σ +Op

(
1√

T − k

)
= Σ+Op

(
1

k

)
, (21)

where the last equality uses the assumption that k2

T = Op (1).

We now use this result to prove the main claim of Lemma 2. Given the definitions of Γ̂ and Γ̃,

note that we can re-write Γ̃ as

Γ̃ =
(
C−1Ĉ

)′
Γ̂
(
C−1Ĉ

)
= (I2 + E)′ Γ̂ (I2 + E) , (22)

where

E ≡ C−1
(
Ĉ − C

)
.

Since C = g (Σ), Ĉ = g
(
Σ̂
)

, g is continuous, and Σ and C are of full rank, expression (21) implies

that E = Op

(
1
k

)
. It follows from (22) that

1

k
Γ̃ =

1

k
Γ̂ +Op

(
1

k

)
.

C.5 The case of irrelevant instruments

When instruments are perfectly irrelevant, the credible intervals produced by our Bayesian ap-

proach are typically conservative, and small size distortions arise only in very extreme cases. To

make this statement precise, recall that the mapping from θ to β is given by θ = arctan
(
[C′b]2
[C′b]1

)
,

where C is upper triangular with positive diagonal entries and satisfies C ′C = Σ−1. The inverse

mapping is therefore

β =
Σ12

Σ11
+

[det (Σ)]
1
2

Σ11
tan (θ) .

If the data are generated by the structural model (1)-(2) with “true” parameters β0, δ0, σ0,ε and

σ0,ν , then Σ11 = σ2
0,ν , Σ12 = (β0 + δ0)σ

2
0,ν , Σ22 = (β0 + δ0)

2σ2
0,ν + σ2

0,ε, and det(Σ) = σ2
νσ

2
ε . Hence,

the mapping can equivalently be written as

β = β0 + δ0 +
σ0,ε
σ0,ν

tan (θ)

= β0 +
σ0,ε
σ0,ν

[√
ϱ20

1− ϱ20
+ tan (θ)

]
, (23)
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Figure 3: Coverage of 95-percent confidence (credible) intervals based on (i) the asymptotic distribu-
tion of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test (CLR) with known Σ;
(iii) our weak-instrument-robust Bayesian approach (WIRB-IV) with known Σ. The results are based on
10, 000 simulations for each value of k from model (1)-(2) with irrelevant instruments (i.e. π = 0k×1). The
coverage of CLR and WIRB-IV does not depend on any other parameters. For TSLS, the simulations use
T = 250, but its dependence on T is negligible.

where the second equality follows from the definition of the correlation coefficient of the struc-

tural errors, ϱ0 ≡ cov(ν,δ0ν+ε)√
var(ν)var(δ0ν+ε)

=
δ0σ2

0,ν√
σ2
0,ν(δ20σ2

0,ν+σ2
0,ε)

.

Expression (23) shows that the credible interval for β contains the true value β0 if and only

if the corresponding credible interval for tan(θ) contains −
√

ϱ20/(1− ϱ20). The posterior distri-

bution of θ admits the closed-form expressions derived in appendix C.1. When instruments are

irrelevant, Γ̂ ∼ W (I2, k), and its behavior in repeated samples only depends on k, so coverage

can easily be evaluated by simulation. Figure 3 reports the coverage of the 95-percent equal-

tailed credible intervals for β as a function of ϱ0, for different values of k. Even for large values of

this correlation coefficient, the Bayesian credible intervals remain valid and are indeed conser-

vative. Size distortions appear only when |ϱ0| exceeds about 0.935, and even then remain below

5 percent as long as |ϱ0| ≤ 0.975. Finally, these results are essentially independent of the number

of instruments.

For comparison, the figure also reports the coverage of standard TSLS 95-percent confidence

intervals. With a single irrelevant instrument, coverage falls below the nominal level as soon
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as the degree of endogeneity implies a correlation exceeding about 0.64. Moreover, as is well

known, adding instruments substantially worsens performance. The figure also shows the cov-

erage of 95-percent confidence intervals obtained by inverting the CLR test, which has exact

nominal size by construction. Relative to WIRB-IV, CLR is almost always less conservative, and

becomes comparatively preferable only when endogeneity is extremely high (roughly |ϱ0| >

0.935).

D Additional simulation evidence

This appendix presents additional simulation evidence on the performance of WIRB-IV. Relative

to the Monte Carlo experiment in the main text, we consider settings with varying numbers of

instruments and different degrees of endogeneity. For completeness, recall that the baseline

simulation results in the main text are obtained using model (1)-(2) with T = 250, β = 0, ε ∼

N (0, IT ), ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 0.75 and k = 10. Here, we

experiment with k = 1, 5, 10, 25 and 100, and with δ = 0.75 and 3. The results are presented in

figures 4-13, which have the same format of figure 2 in section 3.
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Figure 4: Frequency of inclusion in the 95-percent confidence (credible) interval based on (i) the asymp-
totic distribution of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test (CLR); (iii)
the naive-Bayesian approach (NB-IV); and (iv) our weak-instrument-robust Bayesian approach (WIRB-
IV). The results are based on 25, 000 simulations from model (1)-(2) with T = 250, β = 0, ε ∼ N (0, IT ),
ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 0.75 and k = 1. With k = 1, NB-IV yields an
improper posterior unless additional restrictions are imposed. To obtain a proper posterior in this case,
we truncate the uniform prior over a sufficiently wide interval.

46



BAYESIAN INFERENCE IN IV REGRESSIONS

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
(a): simulations with 0 < Fstat  2

tr
u

e
 

confidence level

TSLS

CLR

NB-IV

WIRB-IV

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
(b): simulations with 2 < Fstat  4

tr
u

e
 

confidence level

TSLS

CLR

NB-IV

WIRB-IV

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
(c): simulations with 4 < Fstat  6

tr
u

e
 

confidence level

TSLS

CLR

NB-IV

WIRB-IV

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
(d): simulations with 6 < Fstat  8

tr
u

e
 

confidence level

TSLS

CLR

NB-IV

WIRB-IV

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
(e): simulations with 8 < Fstat  10

tr
u

e
 

confidence level

TSLS

CLR

NB-IV

WIRB-IV

-6 -4 -2 0 2 4 6
0

0.2

0.4

0.6

0.8

1
(f): simulations with 10 < Fstat  20

tr
u

e
 

confidence level

TSLS

CLR

NB-IV

WIRB-IV

Figure 5: Frequency of inclusion in the 95-percent confidence (credible) interval based on (i) the asymp-
totic distribution of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test (CLR); (iii)
the naive-Bayesian approach (NB-IV); and (iv) our weak-instrument-robust Bayesian approach (WIRB-
IV). The results are based on 25, 000 simulations from model (1)-(2) with T = 250, β = 0, ε ∼ N (0, IT ),
ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 3 and k = 1. With k = 1, NB-IV yields an im-
proper posterior unless additional restrictions are imposed. To obtain a proper posterior in this case, we
truncate the uniform prior over a sufficiently wide interval.
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Figure 6: Frequency of inclusion in the 95-percent confidence (credible) interval based on (i) the asymp-
totic distribution of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test (CLR); (iii)
the naive-Bayesian approach (NB-IV); and (iv) our weak-instrument-robust Bayesian approach (WIRB-
IV). The results are based on 25, 000 simulations from model (1)-(2) with T = 250, β = 0, ε ∼ N (0, IT ),
ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 0.75 and k = 5.
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Figure 7: Frequency of inclusion in the 95-percent confidence (credible) interval based on (i) the asymp-
totic distribution of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test (CLR); (iii)
the naive-Bayesian approach (NB-IV); and (iv) our weak-instrument-robust Bayesian approach (WIRB-
IV). The results are based on 25, 000 simulations from model (1)-(2) with T = 250, β = 0, ε ∼ N (0, IT ),
ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 3 and k = 5.
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Figure 8: Frequency of inclusion in the 95-percent confidence (credible) interval based on (i) the asymp-
totic distribution of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test (CLR); (iii)
the naive-Bayesian approach (NB-IV); and (iv) our weak-instrument-robust Bayesian approach (WIRB-
IV). The results are based on 25, 000 simulations from model (1)-(2) with T = 250, β = 0, ε ∼ N (0, IT ),
ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 0.75 and k = 10.
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Figure 9: Frequency of inclusion in the 95-percent confidence (credible) interval based on (i) the asymp-
totic distribution of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test (CLR); (iii)
the naive-Bayesian approach (NB-IV); and (iv) our weak-instrument-robust Bayesian approach (WIRB-
IV). The results are based on 25, 000 simulations from model (1)-(2) with T = 250, β = 0, ε ∼ N (0, IT ),
ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 3 and k = 10.
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Figure 10: Frequency of inclusion in the 95-percent confidence (credible) interval based on (i) the
asymptotic distribution of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test
(CLR); (iii) the naive-Bayesian approach (NB-IV); and (iv) our weak-instrument-robust Bayesian ap-
proach (WIRB-IV). The results are based on 25, 000 simulations from model (1)-(2) with T = 250, β = 0,
ε ∼ N (0, IT ), ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 0.75 and k = 25.
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Figure 11: Frequency of inclusion in the 95-percent confidence (credible) interval based on (i) the
asymptotic distribution of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test
(CLR); (iii) the naive-Bayesian approach (NB-IV); and (iv) our weak-instrument-robust Bayesian ap-
proach (WIRB-IV). The results are based on 25, 000 simulations from model (1)-(2) with T = 250, β = 0,
ε ∼ N (0, IT ), ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 3 and k = 25.
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Figure 12: Frequency of inclusion in the 95-percent confidence (credible) interval based on (i) the
asymptotic distribution of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test
(CLR); (iii) the naive-Bayesian approach (NB-IV); and (iv) our weak-instrument-robust Bayesian ap-
proach (WIRB-IV). The results are based on 25, 000 simulations from model (1)-(2) with T = 250, β = 0,
ε ∼ N (0, IT ), ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 0.75 and k = 100.
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Figure 13: Frequency of inclusion in the 95-percent confidence (credible) interval based on (i) the
asymptotic distribution of TSLS; (ii) the inversion of Moreira’s (2003) conditional likelihood ratio test
(CLR); (iii) the naive-Bayesian approach (NB-IV); and (iv) our weak-instrument-robust Bayesian ap-
proach (WIRB-IV). The results are based on 25, 000 simulations from model (1)-(2) with T = 250, β = 0,
ε ∼ N (0, IT ), ν ∼ N (0, IT ), π ∼ N (0, s2Ik), s ∼ Uniform (0, 0.25), δ = 3 and k = 100.
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