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In this appendix, we (i) re-estimate the model of Primiceri (2005) using Algorithm 2

(the sampler from the approximate posterior) and Algorithm 3 (the sampler from the true

posterior), and compare these results with those obtained with Algorithm 1 (the original

algorithm of Primiceri, 2005); (ii) present a more formal treatment of Algorithm 2 and

Algorithm 3; (iii) formally explain why Algorithm 1 provides a poor approximation of the

posterior distribution; and (iv) apply Geweke’s (2004) “Joint Distribution Tests of Posterior

Simulators” to Algorithm 1, 2 and 3, and present the results of these tests.

1 New Results Based on Algorithm 2 and 3

In this section, we reproduce the figures of Primiceri (2005) using Algorithm 2 (the sampler

from the approximate posterior) and Algorithm 3 (the sampler from the true posterior),

and compare these results with those obtained with Algorithm 1 (the original algorithm of

Primiceri, 2005). The new results are based on 70,000 draws of the Gibbs sampler, discarding

the first 20,000 to allow for convergence to the ergodic distribution.

The first thing to notice is that the results based on Algorithm 3 are qualitatively similar

to the original ones obtained with Algorithm 1, but they are not the same (figures 1-8). The

main difference is that some estimates of the time-varying objects are now smoother. For
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example, the standard deviation of monetary policy shocks (figure 1c) exhibits substantial

time variation, but not as much as in the original results. A similar comment applies to the

interest rate response to a permanent increase in inflation and unemployment (figures 5 and

7).

The results obtained using Algorithm 2 and 3 are instead indistinguishable from each

other (figures 9-16), suggesting that the mixture-of-normals approximation error involved

in the procedure of Kim, Shephard and Chib (1998, KSC hereafter) is negligible in our

application (as it was in theirs).

2 A Formal Treatment of Algorithm 2 and 3

In this section, we present a formal derivation of Algorithm 2 and 3.

2.1 Algorithm 2

The joint posterior distribution of ΣT and θ is given by

p(ΣT , θ|yT ) ∝ p(yT |ΣT , θ) · p(ΣT , θ) (1)

where p(yT |ΣT , θ) is the likelihood function implied by equation (1.1) of the corrigendum,

and p(ΣT , θ) is the prior density of ΣT and θ. In principle, one could use a two-block Gibbs

sampler in ΣT and θ with steps: i) draw ΣT from p(ΣT |yT , θ) ∝ p(yT |ΣT , θ) ·p(ΣT |θ), and ii)

draw θ from p(θ|yT ,ΣT ) ∝ p(yT |ΣT , θ) · p(θ|ΣT ). While step (ii) is straightforward, step (i)

is not: the time-varying volatilities ΣT enter the model multiplicatively, making it impossi-

ble to use linear and Gaussian state-space methods. KSC’s idea consists of approximating

the likelihood p(yT |θ,ΣT ) using the mixture-of-normals

∫
p̃(yT |ΣT , θ, sT )π(sT )dsT , where

sT represents the components of the mixture for each date and variable, π(sT ) are the cor-

responding mixture weights, and p̃(yT |ΣT , θ, sT ) is the likelihood of the data conditional on

the mixture components sT .1

1Note that there is a clear abuse of notation in writing

∫
p̃(yT |θ,ΣT , sT )π(sT )dsT given that the sT are

discrete indicators, but this shortcut simplifies the notation considerably.
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Let p̃(ΣT , θ, sT |yT ) denote the product of p̃(yT |ΣT , θ, sT ) and the prior of θ, ΣT and sT ,

that is

p̃(ΣT , θ, sT |yT ) = p̃(yT |ΣT , θ, sT ) · p(ΣT , θ) · π(sT ). (2)

In addition, for the sake of argument, suppose that the mixture-of-normals provides a perfect

approximation of the likelihood, i.e. that p(yT |θ,ΣT ) =

∫
p̃(yT |ΣT , θ, sT )π(sT )dsT . Inte-

grating out the mixture components sT from p̃(ΣT , θ, sT |yT ) in (2), we obtain p(yT |θ,ΣT ) ·

p(ΣT , θ), which is proportional to the the posterior of interest p(θ,ΣT |yT ). This implies that,

if we device an algorithm for drawing from p̃(ΣT , θ, sT |yT ), after discarding the draws of sT ,

we are left with draws of θ and ΣT from the desired distribution. Algorithm 2 , which we

rewrite below, represents such an algorithm:

1. Draw ΣT from p̃
(
ΣT |yT , θ, sT

)
∝ p̃(yT |ΣT , θ, sT ) · p(ΣT |θ)

2. Draw (θ, sT ) from p̃
(
θ, sT |yT ,ΣT

)
, which is accomplished by

(a) Drawing θ from p
(
θ|yT ,ΣT

)
∝ p(yT |ΣT , θ) · p(θ|ΣT ).

(b) Drawing sT from p̃
(
sT |yT ,ΣT , θ

)
∝ p̃(yT |ΣT , θ, sT ) · π(sT ).

As emphasized in the note, Algorithm 2 is conceived as a two-blocks sampler, with blocks

ΣT and (θ, sT ). We draw from the joint of (θ, sT ) given ΣT and yT by first drawing from the

marginal p
(
θ|yT ,ΣT

)
and then from the conditional p̃

(
sT |yT ,ΣT , θ

)
. It is precisely the fact

that we draw from the marginal of θ that allows us to use the original likelihood p(yT |ΣT , θ)

in step 2a: under the assumption that there is no approximation error, integrating out the

sT from the joint distribution (2) yields

p(ΣT , θ) ·
∫
p̃(yT |ΣT , θ, sT )π(sT )dsT = p(yT |ΣT , θ) · p(ΣT , θ) ∝ p(yT |ΣT , θ) · p(θ|ΣT ).

Furthermore, step 1 is also simple: as discussed in the paper, conditional on sT , the model is

linear and Gaussian in the log-volatilities, making the distribution p̃(yT |ΣT , θ, sT ) amenable

to the use of linear and Gaussian state-space methods.
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2.2 Algorithm 3

In the previous section we have provided a justification for Algorithm 2 under the assumption

that p(yT |θ,ΣT ) =

∫
p̃(yT |ΣT , θ, sT )π(sT )dsT . Of course, in practice, this is not correct: the

mixture of normals is only an approximation of the true likelihood. In this subsection we

present a formal treatment of Algorithm 3, which addresses this issue.

Construct a joint posterior of ΣT , θ and sT as follows:

p(θ,ΣT , sT |yT ) = p(θ,ΣT |yT ) · p̃(sT |ΣT , θ, yT )

∝ p(yT |θ,ΣT ) · p(ΣT , θ) · p̃(sT |ΣT , θ, yT ), (3)

with

p̃(sT |ΣT , θ, yT ) =
p̃(yT |ΣT , θ, sT ) · π(sT )

c(ΣT , θ, yT )
, (4)

where c(ΣT , θ, yT ) ≡
∫
p̃(yT |ΣT , θ, sT )π(sT )dsT guarantees that the density in (4) integrates

to one.

As discussed above, a perfectly fine approach for obtaining draws from the posterior of

interest, p(θ,ΣT |yT ), is to sample from p(θ,ΣT , sT |yT ), and then discard the draws of sT .

This is precisely what Algorithm 3 does. Like Algorithm 2, Algorithm 3 has the structure

of a two-block sampler, with blocks ΣT and
(
θ, sT

)
. However, Algorithm 3 follows Stroud et

al. (2003) in using a Metropolis-Hastings step for drawing ΣT conditional on (θ, sT ), where

the proposal pdf is given by

p̃
(
ΣT |yT , θ, sT

)
∝ p̃(yT |ΣT , θ, sT ) · p(ΣT |θ), (5)

which is the density used in step 1 of Algorithm 2.2

Specifically, Algorithm 3 consists of the following steps:

2Stroud et al. (2003) study the use of mixture approximations in Gibbs samplers, and thus generalize

the results of KSC.
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1. Draw ΣT from p
(
ΣT |yT , θ, sT

)
as follows: Draw a candidate Σ̃T from the proposal

density p̃
(
ΣT |yT , θ, sT

)
of Algorithm 2, and set

Σ(j) T =

 Σ̃T with probability α

Σ(j−1) T with probability 1− α
,

where the superscript (j) denotes the iteration of the sampler, and where

α =
p
(

Σ̃T |yT , θ, sT
)

p (Σ(j−1) T |yT , θ, sT )

p̃
(
Σ(j−1) T |yT , θ, sT

)
p̃
(

Σ̃T |yT , θ, sT
) .

2. Draw (θ, sT ) from p
(
θ, sT |yT ,ΣT

)
, which is accomplished by

(a) Drawing θ from

p
(
θ|yT ,ΣT

)
=

∫
p(θ, sT |yT ,ΣT )dsT

∝ p(yT |θ,ΣT ) · p(θ|ΣT ) ·
∫
p̃(sT |ΣT , θ, yT )dsT = p(yT |ΣT , θ) · p(θ|ΣT ).

(b) Drawing sT from p̃
(
sT |yT ,ΣT , θ

)
∝ p̃(yT |ΣT , θ, sT ) · π(sT ).

Observe that, since step 1 takes θ and sT as given, the acceptance probability can be

rewritten as

α =
p
(

Σ̃T , θ, sT |yT
)

p (Σ(j−1) T , θ, sT |yT )

p̃
(
Σ(j−1) T |yT , θ, sT

)
p̃
(

Σ̃T |yT , θ, sT
) .

Using (3), (4) and (5), we then obtain

α =
p(yT |θ, Σ̃T )

p(yT |θ,Σ(j−1) T )

c(Σ(j−1) T , θ, yT )

c(Σ̃T , θ, yT )
.

Finally, notice that c(ΣT , θ, yT ) coincides with the mixture-of-normals approximation of the

original likelihood p(yT |ΣT , θ), hence

α =

(∏
t

φ
(
y∗t |0n×1, Σ̃tΣ̃

′
t

))(∏
t

∏
i

mnKSC

(
y∗∗i,t − 2 log σ

(j−1)
i,t

))
(∏

t

φ
(
y∗t |0n×1,Σ

(j−1)
t Σ

(j−1) ′
t

))(∏
t

∏
i

mnKSC

(
y∗∗i,t − 2 log σ̃i,t

)) , (6)

where y∗t = At (yt − ct −B1,tyt−1 − ...−Bk,tyt−k), y∗∗i,t = log
(
y∗2i,t + 0.001

)
, σi,t is the i-th ele-

ment of the diagonal of Σt, φ
(
·|0n×1, Σ̃tΣ̃

′
t

)
is the pdf of an n−variate Gaussian distribution

with mean zero and variance Σ̃tΣ̃
′
t, and mnKSC (·) denotes the pdf of the mixture-of-normals

distribution with means, variances and mixing proportions specified in KSC.
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3 The Fixed-Point Integral Equation

In this section, we formally explain why the original algorithm of Primiceri (2005) is not

a proper Gibbs sampling. The reason can be understood from inspecting the key equa-

tion showing why the Markov chain converges (we omit the conditioning on yT to simplify

notation):

p(θ,ΣT ) =

∫
h
(
θ,ΣT |θ′,ΣT ′) p (θ′,ΣT ′) d

(
θ′,ΣT ′) (7)

where h
(
θ,ΣT |θ′,ΣT ′) is a Markov transition kernel defined by

h
(
θ,ΣT |θ′,ΣT ′) =

∫
p(θ,ΣT |sT )p(sT |θ′,ΣT ′)dsT . (8)

Equation (7) defines a fixed point integral equation for which the true marginal p(θ,ΣT ) is

a solution, which is readily seen by plugging (8) into (7) and changing the order of integra-

tion, as shown below (Chib and Greenberg, 1996 and references therein discuss why i) it is

the unique solution, and ii) there is convergence from any initial p
(
θ′,ΣT ′) under general

conditions). Omitting to condition on sT when drawing from p(θ,ΣT |sT ) (as done in step

3) implies using the wrong kernel, hence the fixed point argument breaks down: even if one

were to draw (θ′,ΣT ′) from the correct joint distribution, the resulting (θ,ΣT ) in the next

iteration would not be from p(θ,ΣT ).

In the three-block Gibbs sampler, equation (3.1)—the fixed point integral equation—

becomes

p(θ,ΣT , sT ) =

∫
..

∫
h
(
θ,ΣT , sT |θ′

,ΣT ′
, sT

′
)
p
(
θ
′
,ΣT ′

, sT
′
)

dθ
′
dΣT ′

dsT
′

(9)

where h
(
θ,ΣT , sT |θ′

,ΣT ′
, sT

′
)

is a Markov transition kernel defined by

h
(
θ,ΣT , sT |θ′

,ΣT ′
, sT

′
)

= p(θ|ΣT , sT )p(ΣT |θ′, sT )p(sT |θ′
,ΣT ′

). (10)

Here we follow Chib and Greenberg (1996) and show that p(θ,ΣT , sT ) is indeed the solution

to (9). In fact, one can write the right hand side of expression (9), after substituting in the

definition of the transition kernel (10), as:∫
..

∫
p(θ|ΣT , sT )p(ΣT |θ′, sT )p(sT |θ′

,ΣT ′
)p
(
θ
′
,ΣT ′

, sT
′
)

dθ
′
dΣT ′

dsT
′
=∫

..

∫
p(θ|ΣT , sT )

p(ΣT |sT )p(θ′|ΣT , sT )

p(θ′|sT )

p(sT )p(θ
′
,ΣT ′|sT )

p(θ′ ,ΣT ′)
p
(
θ
′
,ΣT ′

, sT
′
)

dθ
′
dΣT ′

dsT
′
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where we used Bayes law to express p(ΣT |θ′, sT ) and p(sT |θ′
,ΣT ′

). Note that the terms

p(θ|ΣT , sT )p(ΣT |sT )p(sT ) = p(θ,ΣT , sT )

can be taken out of the integral as they do not depend on the ′ variables, and their product

is precisely p(θ,ΣT , sT ). Therefore we just have to show that∫
..

∫
p(θ′|ΣT , sT )

p(θ′|sT )

p(θ
′
,ΣT ′|sT )

p(θ′ ,ΣT ′)
p
(
θ
′
,ΣT ′

, sT
′
)

dθ
′
dΣT ′

dsT
′
= 1.

This is the case because∫
..

∫
p(θ′|ΣT , sT )

p(θ′|sT )

p(θ
′
,ΣT ′|sT )

p(θ′ ,ΣT ′)
p(θ

′
,ΣT ′

, sT
′
)dθ

′
dΣT ′

dsT
′
=∫

..

∫
p(θ′|ΣT , sT )

p(θ′|sT )

p(θ
′ |sT )p(ΣT ′|θ′

, sT )

p(θ′ ,ΣT ′)
p(θ

′
,ΣT ′

)p(sT
′ |θ′

,ΣT ′
)dθ

′
dΣT ′

dsT
′
=∫

p(θ′|ΣT , sT )

(∫
p(ΣT ′ |θ′

, sT )

(∫
p(sT

′|ΣT ′
, sT

′
)dsT

′
)

dΣT ′
)

dθ
′
= 1,

where in the second line we again used Bayes law and in the fourth line we realized that

we are left with three conditional distributions, all integrating to one. Clearly, omitting to

condition on sT when drawing from p
(
θ|ΣT , sT

)
implies using the wrong kernel, and the

fixed-point arguments breaks down.

4 Geweke’s (2004) “Getting It Right”

In this section, we apply Geweke’s (2004) “Joint Distribution Tests of Posterior Simulators”

to the three algorithms discussed in the note, and present further evidence that Algorithm

3 is fully correct, Algorithm 2 provides a close approximation to the true posterior distri-

bution, while Algorithm 1 provides a poor approximation. Geweke’s idea is to compare two

ways of obtaining draws from the joint distribution of the data and the model parameters,

p
(
yT , θ,ΣT , sT

)
:

a. Draw the parameters from the prior, and then the data from the data-generating

process (that is, draw sequentially from p
(
θ,ΣT , sT

)
and p

(
yT |θ,ΣT , sT

)
).
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b. Draw from the posterior using the MCMC algorithm given a draw of the data, and then

use this draw to generate another draw from data, and so on (that is, draw sequentially

from p
(
θ,ΣT , sT |yT

)
and then from p

(
yT |θ,ΣT , sT

)
).

If the MCMC algorithm is correct, (a) and (b) should yield the same distribution, and in

particular the same marginal for the model parameters (which, in the case of (a), is of course

the prior). Therefore, if the MCMC algorithm is correct, P-P plots constructed using the

draws from (a) and (b) should lie on the 45-degree line.

We now present the results obtained by applying this procedure to the various algorithms

that we have discussed so far. Note that, for computational reasons, we use T = 10 in running

these tests, which is smaller than the actual sample size. For a T as large as that in the

sample, it simply takes so many draws for (b) to converge (even if the MCMC algorithm is

right) that the test is computationally not feasible. Since Geweke’s approach applies to any

T , we are justified in using a smaller T that makes the comparison feasible.

We concentrate on the P-P plots for the distribution of the log-volatilities at a particular

point in time (t = 7), because the differences are smaller for the other coefficients. Figure 17

shows the results related to the original algorithm (Algorithm 1). It is evident that the P-P

plots are very far from the 45-degree line, indicating that the draws generated with (a) and

(b) belong to different distributions. This suggests that Algorithm 1 generates draws from

a distribution which is quite different from the true posterior, as we have argued above.

Figure 18 plots the results obtained using Algorithm 2. The fact that the P-P plots in

figure 18 are now much closer to the 45-degree line is a sign of dramatic improvement in

the accuracy of the algorithm. The natural question is of course why these P-P plots do

not lie exactly on top of the 45-degree line, but just close to it. This is due to the minor

error involved in the mixture-of-normals approximation proposed by KSC. A property of

the Geweke (2004) approach is that it amplifies subtle discrepancies in the sampler, such as

these small approximation errors. Figure 19 confirms this conjecture by presenting the P-P

plots obtained by running the Geweke procedure using Algorithm 3. In this case, the P-P

plots essentially coincide with the 45-degree lines, which verifies that there is no problem
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with Algorithm 2, other than the fact that it uses the mixture approximation to increase effi-

ciency and speed of convergence. Recall from section 1 that this approximation is absolutely

inconsequential for the estimation results, i.e. for the construction the posterior distribution

given the observed data. Conversely, applying the same correction for the mixture-of-normals

approximation error in step 1 of the original algorithm does not improve the P-P plots at

all, as shown in figure 20.
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Figure 1: Posterior mean, 16th and 84th percentiles of the standard deviation of (a) the
residuals of the inflation equation, (b) the residuals of the unemployment equation and (c)
the residuals of the interest rate equation or monetary policy shocks.
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Figure 2: (a) impulse responses of inflation to monetary policy shocks in 1975:I, 1981:III
and 1996:I, (b) difference between the responses in 1975:I and 1981:III with 16th and 84th
percentiles, (c) difference between the responses in 1975:I and 1996:I with 16th and 84th
percentiles, (d) difference between the responses in 1981:III and 1996:I with 16th and 84th
percentiles.
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Figure 3: (a) impulse responses of unemployment to monetary policy shocks in 1975:I,
1981:III and 1996:I, (b) difference between the responses in 1975:I and 1981:III with 16th
and 84th percentiles, (c) difference between the responses in 1975:I and 1996:I with 16th and
84th percentiles, (d) difference between the responses in 1981:III and 1996:I with 16th and
84th percentiles.
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Figure 4: Interest rate response to a 1% permanent increase of inflation with 16th and 84th
percentiles. (a) Simultaneous response, (b) response after 10 quarters, (c) response after 20
quarters, (d) response after 60 quarters.
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Figure 5: Interest rate response to a 1% permanent increase of unemployment with 16th
and 84th percentiles. (a) Simultaneous response, (b) response after 10 quarters, (c) response
after 20 quarters, (d) response after 60 quarters.
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Figure 6: Interest rate response to a 1% permanent increase of unemployment with 16th
and 84th percentiles. (a) Simultaneous response, (b) response after 10 quarters, (c) response
after 20 quarters, (d) response after 60 quarters.
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Figure 7: Interest rate response to a 1% permanent increase of unemployment.
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Figure 8: Counterfactual historical simulation drawing the parameters of the monetary policy
rule from their 1991-1992 posterior. (a) Inflation, (b) unemployment.
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Figure 9: Posterior mean, 16th and 84th percentiles of the standard deviation of (a) the
residuals of the inflation equation, (b) the residuals of the unemployment equation and (c)
the residuals of the interest rate equation or monetary policy shocks.
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Figure 10: (a) impulse responses of inflation to monetary policy shocks in 1975:I, 1981:III
and 1996:I, (b) difference between the responses in 1975:I and 1981:III with 16th and 84th
percentiles, (c) difference between the responses in 1975:I and 1996:I with 16th and 84th
percentiles, (d) difference between the responses in 1981:III and 1996:I with 16th and 84th
percentiles.
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Figure 11: (a) impulse responses of unemployment to monetary policy shocks in 1975:I,
1981:III and 1996:I, (b) difference between the responses in 1975:I and 1981:III with 16th
and 84th percentiles, (c) difference between the responses in 1975:I and 1996:I with 16th and
84th percentiles, (d) difference between the responses in 1981:III and 1996:I with 16th and
84th percentiles.
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Figure 12: Interest rate response to a 1% permanent increase of inflation with 16th and 84th
percentiles. (a) Simultaneous response, (b) response after 10 quarters, (c) response after 20
quarters, (d) response after 60 quarters.
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Figure 13: Interest rate response to a 1% permanent increase of unemployment with 16th
and 84th percentiles. (a) Simultaneous response, (b) response after 10 quarters, (c) response
after 20 quarters, (d) response after 60 quarters.
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Figure 14: Interest rate response to a 1% permanent increase of unemployment with 16th
and 84th percentiles. (a) Simultaneous response, (b) response after 10 quarters, (c) response
after 20 quarters, (d) response after 60 quarters.
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Figure 15: Interest rate response to a 1% permanent increase of unemployment.
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Figure 16: Counterfactual historical simulation drawing the parameters of the monetary
policy rule from their 1991-1992 posterior. (a) Inflation, (b) unemployment.
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Figure 17: P-P plots obtained by applying the Geweke’s (2004) procedure to Algorithm 1.
The plots refer to the distribution of log σi,t, with t = 7, and i = 1 in panel (a), i = 2 in
panel (b), and i = 3 in panel (c).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
a

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
b

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
c

 

 

P−P plot

45−degree line

Figure 18: P-P plots obtained by applying the Geweke’s (2004) procedure to Algorithm 2.
The plots refer to the distribution of log σi,t, with t = 7, and i = 1 in panel (a), i = 2 in
panel (b), and i = 3 in panel (c).
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Figure 19: P-P plots obtained by applying the Geweke’s (2004) procedure to Algorithm 3.
The plots refer to the distribution of log σi,t, with t = 7, and i = 1 in panel (a), i = 2 in
panel (b), and i = 3 in panel (c).
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Figure 20: P-P plots obtained by applying the Geweke’s (2004) procedure to Algorithm 1
augmented with a Metropolis-Hastings step to correct for the mixture-of-normals approxi-
mation error. The plots refer to the distribution of log σi,t, with t = 7, and i = 1 in panel
(a), i = 2 in panel (b), and i = 3 in panel (c).
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