
SUPPLEMENT TO

ECONOMIC PREDICTIONS WITH BIG DATA: THE ILLUSION OF
SPARSITY

DOMENICO GIANNONE, MICHELE LENZA, AND GIORGIO E. PRIMICERI

This document contains some additional results and technical details not included in

the main body of the paper. In particular, we present: i) more Monte Carlo simulation

evidence; ii) the details of our out-of-sample forecasting exercise. This supplement is not

self-contained, so readers are advised to read the main paper first.

Appendix A. Additional Simulations

This appendix expands the simulation evidence of section 2.1 of the main paper, by con-

sidering alternative designs in which the regression coefficients are drawn from a Laplace

distribution or from mixtures of Gaussian distributions with a bimodal shape. These simu-

lations are otherwise identical to the second set of simulations described in section 2.1 and

figure 2.2, i.e. they include non-Gaussian and heteroskedastic disturbances. In the last part

of this appendix, we also study what type of extreme assumptions might alter the overall

good performance of the model.

A.1. Alternative distributions of the nonzero regression coefficients. Figure A.1

considers the case in which the non-zero regression coefficients are drawn from a Laplace

distribution with mean zero and variance equal to one. Relative to a Gaussian, the Laplace

density has more mass around zero and in the tails. Figure A.2 analyzes instead the

outcome of simulations with non-zero coefficients drawn from a mixture of two Gaussian

distributions. The first component of the mixture is a Gaussian with mean equal to −2/
√

5

and variance 1/5. The second mixture component is equal to the first, but its mean is 2/
√

5.

The mixture weights are equal to 1/2. The resulting mixture distribution has mean zero

and variance equal to one, and it is bimodal. Finally, figure A.3 studies the case in which

the non-zero regression coefficients are drawn from a mixture of Gaussian distributions with

positive mean. This mixture is similar to the one just described, except for the fact that
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Figure A.1. Simulations with non-Gaussian and heteroskedastic errors,
and with non-zero coefficients drawn from a Laplace distribution: Kernel ap-
proximation of the distribution of the posterior mode of q across simulations
(solid line); fraction of non-zero coefficients estimated in each simulation by
a lasso regression, with penalty parameter based on the asymptotically op-
timal criterion proposed by Bickel et al. (2009) and the tuning constants
recommended by Belloni et al. (2011) (dots); and fraction of non-zero coef-
ficients in each simulation design (starred dot).

the means of the two components are 0 and 4/
√

5, so that the overall mean and variance of

the distribution are 2/
√

5 and 1. Figures A.1, A.2 and A.3 show that the model continues

to detect the true level of sparsity quite well, and its performance is thus not particularly

sensitive to the exact distribution of the non-zero regression coefficients.

A.2. Testing the boundaries of our model. These results—in combination with those

of section 2.1 in the main paper—are comforting, as they show that our model is able

to detect the true level of sparsity even if its parametric assumptions are substantially
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Figure A.2. Simulations with non-Gaussian and heteroskedastic errors,
and with non-zero coefficients drawn from a zero-mean mixture of Gaus-
sians: Kernel approximation of the distribution of the posterior mode of q
across simulations (solid line); fraction of non-zero coefficients estimated in
each simulation by a lasso regression, with penalty parameter based on the
asymptotically optimal criterion proposed by Bickel et al. (2009) and the
tuning constants recommended by Belloni et al. (2011) (dots); and fraction
of non-zero coefficients in each simulation design (starred dot).

different from those of the DGP. What type of extreme assumptions about the DGP could

then undermine the performance of the method? We explore this question in our last two

sets of simulations, which are designed to “test the boundaries” of our model. Given the

focus of this paper, we are particularly interested in uncovering situations in which the true

DGP is sparse, but the posterior mode of q is likely to erroneously point towards density.

For this reason, our next experiment analyzes the case in which the true DGP is not

exactly sparse, but only approximately so, in the sense of Belloni et al. (2011). Specifically,



SUPPLEMENT TO ECONOMIC PREDICTIONS WITH BIG DATA: THE ILLUSION OF SPARSITY 4

Figure A.3. Simulations with non-Gaussian and heteroskedastic errors,
and with non-zero coefficients drawn from a positive-mean mixture of Gaus-
sians: Kernel approximation of the distribution of the posterior mode of q
across simulations (solid line); fraction of non-zero coefficients estimated in
each simulation by a lasso regression, with penalty parameter based on the
asymptotically optimal criterion proposed by Bickel et al. (2009) and the
tuning constants recommended by Belloni et al. (2011) (dots); and fraction
of non-zero coefficients in each simulation design (starred dot).

we repeat the baseline simulations of figure 2.1 with s = 5. However, instead of setting

the remaining k − s regression coefficients to zero, we draw them from a standard Normal

distribution, and then re-scale them so that the combined effect of the corresponding k− s

regressors on the response variable has a variance equal to σ2 s
T . As evident from the first

row of figure A.4, the model is still able to detect the true level of sparsity quite well, even

though sparsity is now contaminated by noise.
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Figure A.4. Simulations with approximate sparsity (first row) and a factor
structure for the predictors (second, third and fourth rows): Kernel approx-
imation of the distribution of the posterior mode of q across simulations
(solid line); fraction of non-zero coefficients estimated in each simulation
by a lasso regression, with penalty parameter based on the asymptotically
optimal criterion proposed by Bickel et al. (2009) and the tuning constants
recommended by Belloni et al. (2011) (dots); and fraction of non-zero coef-
ficients in each simulation design (starred dot).

Our final experiment captures situations in which a few active predictors are highly

correlated with many inactive ones. In these cases, a linear combination of the latter might

be able to proxy for the former, and our posterior analysis might then point towards density,

even if the DGP is sparse. Unfortunately, implementing this intuition in a simulation is
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not as simple as assuming a very high correlation among all the predictors, for example

corr (xit, xjt) = 0.9 for i 6= j, instead of the Toeplitz correlation matrix of our baseline

simulations. The reason is that a widespread high correlation among all regressors also

increases the extent to which the inactive regressors are collinear with each other, making

it harder for them to span the space of the true regressors.1 Hence, we need a more flexible

framework that allows us to boost the correlation between the active and the inactive

predictors, while keeping the correlation among the inactive predictors at low values. This

is accomplished by generating the regressors using the factor structure

xact = ft + vt

xint = Λft + wt,

where xact are the s active predictors, xint are the k− s inactive ones, and xt =
[
xac

′
t xin

′
t

]′
.

In these expressions, ft is an s-dimensional vector of common factors and Λ is a (k − s)× s

matrix of loadings, all drawn from standard Gaussian distributions. The errors vt and wt

are also Normal. We calibrate the variance of wt so that the common factors explain 50

percent of the variance of xint , on average. As for the variance of vt, we experiment with σ2v
equal to 1, 0.053, and 0, which imply that the ratio between the variance of the common

factors and that of xact is 50, 95 or 100 percent. After generating the x’s as just described,

the rest of the simulation is identical to the baseline.

The second, third and fourth row of figure A.4 present the outcome of this last set of

simulations. When σ2v is high and xact are imperfect proxies of the common factors (as

imperfect as xint ), the model is still able to recover the true degree of sparsity. The perfor-

mance of the model starts to deteriorate only when σ2v is very low or zero, corresponding

to the admittedly extreme circumstance in which the variables xact are almost or exactly

equal to the common factors. In this case, everything continues to work well if the degree of

predictability is 50 percent. If it is equal to 25 percent, however, the posterior distribution

often peaks around high values of q, suggesting that in many simulations a linear combi-

nation of all inactive predictors can span the space of the true ones. This said, we argue

that it is unclear whether this result signals a failure of the model to detect the true level

1In fact, when we simulate artificial data with corr (xit, xjt) = 0.9 for i 6= j, instead of the Toeplitz
correlation matrix, the model continues to perform very well.



SUPPLEMENT TO ECONOMIC PREDICTIONS WITH BIG DATA: THE ILLUSION OF SPARSITY 7

of sparsity, given that these last simulations are exactly designed so that a dense model is

a good approximation of the sparse one.

Appendix B. Details of the Out-of-Sample Prediction Exercise

This appendix provides the details of the out-of-sample exercise presented in the main

text. This exercise is designed as a standard forecasting exercise for applications with time-

series data, as a cross-validation exercise for applications with cross-sectional data, and as

a combination of the two for the micro 1 and micro 2 applications.2 Table 1—which is also

reported in the main body of the paper—provides some details about the construction of

the training and evaluation samples in each of the six applications.

The measures of forecasting accuracy reported in the main text are computed by aver-

aging the log-predictive scores and the squared forecast errors over the elements of a test

sample, and across all test samples.

We evaluate the prediction accuracy of the following baseline and restricted versions

of our model: BMA-all, which is our full model that combines all the possible individual

models, weighted by their posterior probability; BMA-5 and BMA-10, which restrict the

model space to the combinations of individual models with up to five and ten predictors

respectively, weighted by their relative posterior probability; and SS-k, which is the dense

model including all the predictors. The predictive density of yT+1 implied by these models

is a mixture of Gaussian densities with means u′T+1φ
(j) + x′T+1β

(j) and variances σ2(j),

where φ(j), β(j) and σ2(j), j = 1, ...,M , are draws from their posterior distribution. The

predictive score is computed as the value of this density at the actual realization of yT+1.

We use the mean of the predictive density as the point forecast for the computation of the

mean squared forecast error (with the exception of micro 2, for which we use the mode of the

density evaluated at the three possible values of the response variable in this application).

To select the “best” individual models for each training sample, we employ three different

sparse modeling strategies:

• Spike-and-slab (SS). Within our spike-and-slab framework, we select SS-5 and

SS-10 as the individual models with the highest posterior probability in the set of

those with up to five and ten predictors. To robustify the procedure, instead of

2Combining time series and cross-section cross-validation strategies is necessary in the case of micro 1 and
micro 2, because these applications involve full sets of year, and year and circuit dummies, respectively.
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Training and evaluation samples

Macro 1 We estimate the model on data from 1960:2 to 1969:12, evaluating its predictions for
the 1970:1–1970:12 observations. We repeat this exercise 45 times, each time
expanding the training sample by one year and shifting the evaluation sample
accordingly.

Macro 2 We estimate the model on a randomly selected sample of 50 percent of the countries,
evaluating its predictions for the remaining 50 percent of the observations. We
repeat this exercise 100 times.

Finance 1 We estimate the model on data from 1948 to 1964, evaluating its prediction for the
1965 observation. We repeat this exercise 51 times, each time expanding the training
sample by one year and shifting the evaluation sample accordingly.

Finance 2 We estimate the model on data from 1963:1 to 1974:12, evaluating its predictions for
the 1975:1–1975:12 observations of all the stock returns. We repeat this exercise 40
times, each time expanding the training sample by one year and shifting the
evaluation sample accordingly.

Micro 1 We estimate the model using data from 1986 to 1989 for all states, and from 1990 to
1997 for a 50 percent randomly selected sample of states. We evaluate the model
predictions for this last group of states in year 1990. We repeat this procedure 8
times (including the random selection of 50 percent of the states), each time adding
one year of data to the training sample and shifting the evaluation sample
accordingly. We repeat the whole exercise 13 times, for a total of 104 training and
evaluation samples.

Micro 2 We estimate the model using data from 1979 to 1984 for all circuits, and from 1985
to 2004 for a 50 percent randomly selected sample of circuits. We evaluate the model
predictions for this last group of circuits in year 1985. We repeat this procedure 20
times (including the random selection of 50 percent of the circuits), each time adding
one year of data to the training sample and shifting the evaluation sample
accordingly. We repeat the whole exercise 5 times, for a total of 100 training and
evaluation samples.

Table 1. Details of the training and evaluation samples in the out-of-
sample prediction exercise.

simply counting the number of times an individual model is visited by the MCMC

algorithm, we numerically compute the posterior model probability of all models

that are visited at least once, and pick the model with the highest.3 The predic-

tive density of yT+1 implied by these models is a mixture of Gaussian densities

with means u′T+1φ
(j) + x′T+1β

(j) and variances σ2(j), where φ(j), β(j) and σ2(j),

j = 1, ...,M , are draws from their posterior distribution. We use the mean of the

3If models with less than 5 or 10 predictors receive less than 0.05 percent of the total posterior weight, we
consider progressively larger models until we reach this lower bound. The only application where this is an
issue is finance 2, where small models are essentially never visited.
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predictive density as the point forecast for the computation of the mean squared

forecast error.

• Lasso (L) and Post-lasso (PL). As an alternative way to identify good-fitting

individual small models, we also consider the popular lasso method (Tibshirani,

1996). We consider the following variants of this methodology. (i) L-5 and L-10:

lasso with a fixed number of five and ten predictors; (ii) L-asy: lasso with a penalty

parameter based on the asymptotic criterion proposed by Bickel et al. (2009), im-

plemented using the iterative procedure and the tuning constants recommended by

Belloni et al. (2011) (notice that this criterion is designed for valid inference, not

necessarily best prediction); (iii) L-cv2, L-cv5 and L-cv10: lasso with selection of

the number of predictors based on 2-, 5- and 10-fold cross validation.4 It is well

known that constructing the full predictive density implied by lasso is challenging,

and there is no agreement in the literature about how to tackle this problem (Hastie

et al., 2015). For this reason, we use two alternative rough approximations of the

density of yT+1.

The first method consists of treating the lasso parameter estimates as known, and

assuming Gaussian errors and a flat prior on their variance. Under these assump-

tions, the density of yT+1 is a non-centered Student-t distribution, with mean

u′T+1φ̂L + x′T+1β̂L, scale
√
r̂L/(T − 2) and degrees of freedom T − 2, where φ̂L,

β̂L and r̂L are the lasso estimates of φ, β and the sum of squared residuals. As

before, we use the mean of the predictive density (u′T+1φ̂L + x′T+1β̂L) as the point

forecast for the computation of the mean squared forecast error (with the exception

of micro 2, for which we use the mode of the density evaluated at the three possible

values of the response variable in this application).

An alternative method to construct the predictive density is based on post-selection

inference. It consists of running a simple ordinary least squares regression of the

response variable on the regressors selected by lasso (Belloni and Chernozhukov,

2013). This “post-lasso” procedure reduces the bias of the lasso estimator and may

better approximate the solution of the best subset selection problem (Beale et al.,

1967 and Hocking and Leslie, 1967). With Gaussian errors and a flat prior on the

4We approximate the lasso estimates with five and ten predictors with the fifth and tenth step of the least-
angle regression (LARS) algorithm. Similarly, for the case of cross-validation, we search over the possible
number of steps in the LARS algorithm as opposed to the values of the penalty, to improve speed.
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second-stage regression, the implied predictive density of yT+1 is a non-centered

Student-t distribution, with mean u′T+1φ̂PL + x′T+1β̂PL, scale√(
[u′T+1, x

′
T+1] ([U,X]′[U,X])−1 [u′T+1, x

′
T+1]

′ + 1
)
r̂PL/(T − l − n− 2) and degrees

of freedom T − l − n − 2, where φ̂PL, β̂PL and r̂PL are the ordinary least squares

estimates of φ, β and the sum of squared residuals in the second-stage regression,

and n is the dimension of the vector β̂PL. This post-selection approach allows us to

incorporate parameter uncertainty in the predictive density, although the parame-

ter estimates in the second stage are of course different from the lasso estimates. It

is important to stress that this strategy is appropriate only under the stringent as-

sumptions guaranteeing that model selection does not impact the asymptotic distri-

bution of the parameters estimated in the post-selection step (Bhulmann and van de

Geer, 2011; see also Leeb and Potscher, 2005, 2008a,b for a thorough discussion of

the fragility of this approach, and Chernozhukov et al., 2015 for a comprehensive

review of these topics). In the figures of the paper, we denote the log-predictive

scores implied by this method as PL-5, PL-10, PL-asy, PL-cv2, PL-cv5 and PL-

cv10, depending on the lasso variant used in the selection stage. For completeness,

we also report the mean squared forecast error based on post-lasso, using the mean

of the predictive density (u′T+1φ̂PL+x′T+1β̂PL) as the point forecast (with the usual

exception of micro 2).

• Single best replacement (SBR). This class of methods (also known as forward

stepwise) is a fast and scalable approximation of the solution of the best subset

selection problem, and thus provides yet another way to choose good-fitting sparse

individual models. We use the SBR computation algorithm of Soussen et al. (2011)

and Polson and Sun (2019), and consider the following variants of this method. (i)

SBR-5 and SBR-10: SBR with a fixed number of five and ten predictors; (ii) SBR-

cv2, SBR-cv5 and SBR-cv10: SBR with selection of the number of predictors based

on 2-, 5- and 10-fold cross validation. The predictive density and point forecast of

yT+1 implied by these models are constructed as in the post-lasso case.

• Test-based forward model selection (TBFMS). As an alternative forward

model selection procedure, we also experiment with the test-based method pro-

posed by Kozbur (2020). This class of algorithms selects covariates of progressively
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larger-scale models and determines model size based on the outcome of statisti-

cal hypothesis tests. Following Kozbur (2020), we consider four versions of this

method: (i) TBFMS-I, based on hypothesis tests for heteroskedastic disturbances;

(ii) TBFMS-II, based on simplified hypothesis tests for heteroskedastic disturbances;

(iii) TBFMS-III, based on fit-streamlined hypothesis tests for heteroskedastic dis-

turbances; and (iv) TBFMS-IV, based on hypothesis tests for homoskedastic distur-

bances. The predictive density and point forecast of yT+1 implied by these models

are constructed as in the post-lasso case.
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