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Abstract

This paper illustrates how to handle a sequence of extreme observations—such as those

recorded during the COVID-19 pandemic—when estimating a Vector Autoregression, which

is the most popular time-series model in macroeconomics. Our results show that the ad-hoc

strategy of dropping these observations may be acceptable for the purpose of parameter es-

timation. However, disregarding these recent data is inappropriate for forecasting the future

evolution of the economy, because it may underestimate uncertainty.

1 Introduction

The COVID-19 pandemic is having a devastating impact on the world economy, producing un-

precedented variation in many key macroeconomic variables. For example, in March 2020, U.S.

unemployment increased by 0.7 percentage points, which is approximately 7 times as much as

its typical monthly change. Things got much worse in April, when unemployment reached a

record-high level of 14.7 percent, rising by 10 percentage points in a single month. This change

was two orders of magnitude larger than its typical month-to-month variation. Most other macroe-

conomic indicators experienced changes of similar proportion, including employment, con-

sumption expenditures, retail sales and industrial production, to name just a few examples. It
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is too early to tell whether these extremely large shocks will propagate through the economy in

a standard way, or whether their transmission mechanism will be altered. Unfortunately, an-

swering this question requires observing a much longer time span of data. But even with an

unchanged transmission mechanism, the massive data variation of the last few months consti-

tutes a challenge for the estimation of standard time-series models. When it comes to inference,

should we treat the data from the pandemic period as conventional observations? Or will these

observations distort the parameter estimates of our models? Should we instead discard these re-

cent data? These questions are not only essential for the estimation of time-series models during

the outbreak of COVID-19, but they will remain crucial for many years to come, since data from

the pandemic period will “contaminate” any future sample of time-series observations.

This paper provides a simple solution to this inference problem in the context of Vector Au-

toregressions (VARs), the most popular time-series model in macroeconomics. Our solution

consists of explicitly modeling the change in shock volatility, to account for the exceptionally

large macroeconomic innovations during the period of the epidemic. What makes our recipe

different, and simpler than standard models of time-varying volatility, is the fact that we know

the exact timing of the increase in the variance of macroeconomic innovations due to COVID-19.

As a result, we can both flexibly model and easily estimate these volatility changes.

For example, suppose to work with a monthly VAR based on U.S. macroeconomic data. We

know that March 2020 was the first month of abnormal data variation. We can then simply re-

scale the standard deviation of the March shocks by an unknown parameter s̄0, and do the same

for April and May with two other parameters s̄1 and s̄2. As we show in section 2, the parameters

s̄0, s̄1 and s̄2 can be easily estimated by maximum likelihood or using the Bayesian approach of

Giannone et al. (2015), provided that this re-scaling is common to all shocks. This commonality

assumption is the same assumption underlying the stochastic volatility model of Carriero et al.

(2016), and it should of course only be interpreted as an approximation. But this approximation

seems reasonable in a period in which all variables experienced record variation. This strategy

is also surely preferable to assuming s̄0 = s̄1 = s̄2 = 1, which would be implicit in a treatment of

the data in March, April and May 2020 as conventional observations.

The final step of our simple procedure consists of modeling the evolution of the residual

variance after May 2020. This is considerably more challenging, since there is some uncertainty

about the profile of volatility dynamics after the violent increase in the first few months of the

pandemic. To tackle this task, we assume that the residual variance after May decays at a con-

stant monthly rate, ρ. We also conduct inference on this parameter, which plays an important
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role for using the VAR to derive predictive densities, since the dispersion of these densities de-

pends on the future value of the residual variances. It is important to stress that this assumption

of an exponential decay after May 2020 constitutes a parsimonious starting point, and seems

broadly consistent with the data observed so far. However, if necessary, this assumption can be

easily reconsidered and modified in light of the evolution of the pandemic and its impact on the

macroeconomy.

To illustrate the properties of our procedure, we estimate a monthly VAR including data on

employment, unemployment, consumption and prices, and we use the estimated model to per-

form two exercises. First, we compute the impulse responses to the forecast error in unemploy-

ment. To be clear, these responses do not have any structural interpretation, but we use them

only as summary statistics of the estimated dynamics. When we attempt to compute these im-

pulse responses using a standard estimation strategy that does not downweight the data from

the pandemic period, the outcome of this experiment is entirely dependent on the end of the

estimation sample. For example, with data up to June 2020, the results are misleading, since the

error bands are explosive. With more data beyond June 2020, these impulse responses become

progressively more conventional, although they are still quite different from those obtained us-

ing pre-pandemic observations, even when estimated using the most recent vintage of data end-

ing in May 2021. This finding suggests that the observations since March 2020, despite being a

small fraction of the whole sample, are so wild that they can influence parameter estimates sub-

stantially (and not necessarily in a good way). Not surprisingly, this model without downweight-

ing fits the data very poorly, as evident from the value of its marginal likelihood. When the VAR is

estimated using our proposed procedure, the impulse responses are instead very similar to those

that we would obtain by estimating the VAR with data until February 2020, as recommended by

Schorfheide and Song (2020). This finding suggests that the ad-hoc procedure of dropping—or

dummying out—the extreme observations from the pandemic is acceptable for the purpose of

parameter estimation, at least given the data available at the time of writing of this paper.

This approach based on disregarding the recent data, however, might be inappropriate for

generating predictions for the future evolution of the economy, because it underestimates un-

certainty. We demonstrate this point in a second application, in which we use the estimated

VAR to produce density forecasts of various macroeconomic variables, conditional on specific

paths of the unemployment rate. When we perform this exercise in June 2020 by estimating the

model without the data from the pandemic, the predictions of employment, consumption ex-

penditures and prices are excessively sharp. Instead, our proposed estimation strategy captures
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the idea that economic fluctuations may be quite volatile for several months to come. As a con-

sequence, our predictions are more accurate because they are consistent with a much broader

range of possible recovery paths from the COVID-19 crisis, including the one actually observed

between July 2020 and May 2021. Another result of the paper is that forecast uncertainty after

May 2021 is substantially lower than in the first phase of the pandemic.

The literature on time variation in macroeconomic shock volatility is vast, and its compre-

hensive review is beyond the scope of this paper. However, it is important to contrast the simple

volatility modeling strategy we propose here with the more typical time-varying volatility mod-

els that have recently been adopted in the context of VARs, unobserved-component or DSGE

models (e.g. Cogley and Sargent, 2005, Primiceri, 2005, Sims and Zha, 2006, Carriero et al., 2016,

Stock and Watson, 2007, Fernandez-Villaverde and Rubio-Ramirez, 2007, Justiniano and Prim-

iceri, 2008, Curdia et al., 2014). A potential issue with these approaches is that the degree of time

variation in volatility is always informed by past data. For example, if historically shock volatil-

ities have varied by at most a factor of two or three from month to month, estimated ARCH,

GARCH, Markov-switching or stochastic volatility models may have a hard time capturing the

massive increase in volatility associated with the outbreak of the COVID-19 pandemic, at least

initially. Similarly, these models may interpret the volatility increase during COVID-19 as having

the same persistence of historically more typical volatility changes, which can be misleading.

To tackle this problem, Carriero et al. (2021) propose to augment a standard stochastic volatil-

ity model with i.i.d. outliers of two kinds. The first type of outliers are modeled as draws from

an inverse-gamma distribution. They effectively “transform” the Gaussian innovations of the

model into t-distributed shocks, similar to the stochastic volatility model with fat-tails in the

mean equation innovations of Jacquier et al. (2004), and the VAR extensions of Clark and Ravaz-

zolo (2015) and Chiu et al. (2017). The second type of outliers in Carriero et al. (2021) are meant

to account for more extreme observations. They are modeled as draws from a mixture between

a Dirac-delta and a uniform distribution with large support, following the strategy adopted by

Stock and Watson (2016) for the estimation of their univariate model of inflation.

Compared to our method, the approach of Carriero et al. (2021) has the advantage of al-

lowing for separate outliers and scaling factors for each variable in the system, which may be

helpful if the impact of COVID-19 on volatility is asymmetric across variables. The strength of

our method, instead, is that it models the increase in volatility during COVID-19 as being auto-

correlated over the duration of the pandemic, as opposed to a combination of fully permanent

and i.i.d. components. This autocorrelation feature is a parsimonious way to capture the persis-
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tent, but likely temporary, impact of COVID-19 on the variance of economic shocks and on the

dispersion of predictive densities. The second important advantage of our methodology relative

to more standard approaches in the literature is its simplicity: We exploits the fact that the time

of the volatility change is known in the case of COVID-19, which greatly simplifies the estimation

of the model.

The rest of the paper is organized as follows. Section 2 describes the methodology we propose

to handle the extreme observations recorded during the COVID-19 era. Section 3 presents the

results of our two empirical applications, and section 4 concludes.

2 The methodology

To account for the large variance of macroeconomic shocks associated with the outbreak of

COVID-19, we modify a standard VAR as follows:

yt = C +B1yt−1 + ...+Bpyt−p + stεt (1)

εt ∼ N (0,Σ) ,

where yt is an n× 1 vector of variables, modeled as a function of a constant term, their own past

values, and an n× 1 vector of forecast errors εt. In expression (1), the factor st is used to scale up

the residual covariance matrix during the period of the pandemic. More precisely, st is equal to

1 before the time period in which the epidemic begins, which we denote by t∗. We then assume

that st∗ = s̄0, st∗+1 = s̄1, st∗+2 = s̄2, and st∗+j = 1 + (s̄2 − 1) ρj−2, where θ ≡ [s̄0, s̄1, s̄2, ρ] is a

vector of unknown coefficients. This flexible parameterization allows for this scaling factor to

take three (possibly) different values in the first three periods after the outbreak of the disease,

and to decay at a rate ρ after that. This modeling strategy is particularly suitable for monthly

and quarterly time series, given that the amount of data variation was substantially different in

the months of March, April and May 2020, and in the first, second and third quarter of 2020.

We note, however, that alternative parameterizations are possible, even though they would not

affect the results and their interpretation.

How can we estimate equation (1)? This task is actually relatively easy. To see why, begin by

assuming that st is known, and rewrite (1) as

yt = Xtβ + stεt,
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where Xt ≡ In ⊗ x′t, xt ≡
[
1, y′t−1, ..., y

′
t−p
]

and β ≡ vec
(
[C,B1, ..., Bp]

′). Dividing both sides of

this equation by st, we obtain

ỹt = X̃tβ + εt,

in which ỹt ≡ yt/st and X̃t ≡ Xt/st. For given st, ỹt and X̃t are simple transformations of our

data. Therefore, the parameters β and Σ can be estimated using the transformed data ỹt and X̃t,

and the researcher’s preferred approach to inference, such as ordinary least squares, maximum

likelihood, or Bayesian estimation.

While the previous insight applies to all estimation procedures (and in the appendix we show

how to estimate the model by maximum likelihood), it is now useful to specialize our discussion

to the case of Bayesian inference, given the well-known advantages of this approach in the con-

text of heavily parameterized models like VARs. As in Giannone et al. (2015), we focus on prior

distributions for VAR coefficients belonging to the conjugate Normal-Inverse Wishart family

Σ ∼ IW (Ψ, d)

β|Σ ∼ N (b,Σ⊗ Ω) ,

where the elements Ψ, d, b and Ω are typically functions of a lower dimensional vector of hy-

perparameters γ. This class of densities includes the flat prior, the popular Minnesota, Single-

Unit-Root and Sum-of-Coefficients priors, as well as the Prior for the Long Run (Litterman, 1980,

Doan et al., 1984, Sims and Zha, 1998, Giannone et al., 2019). Giannone et al. (2015) propose a

simple method to evaluate the posterior of of β, Σ and γ in a model without st. But if we assume

that st is known and replace yt and Xt with ỹt and X̃t, we can use the exact same methodology

to estimate (1).

Of course, in practice, st is unknown and must be estimated as well. Fortunately, the poste-

rior of the parameter vector θ that governs the evolution of st can be evaluated like the posterior

of γ. More precisely,

p (γ, θ|y) ∝ p (y|γ, θ) · p (γ, θ) , (2)

where y = [yp+1, ..., yT ]′. In this expression, the first element of the product corresponds to the

so-called marginal likelihood, and it can be computed as

p (y|γ, θ) =

∫
p (y|γ, θ) p (β,Σ|γ) d (β,Σ) ,

which has an analytical expression. The second density on the right-hand side of (2) is the hy-
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perprior, i.e. the prior on the hyperparameters. Our prior on the elements of γ is the same as in

Giannone et al. (2015). As a prior for s̄0, s̄1 and s̄2, we use a Pareto distribution with scale and

shape equal to one, which has a very fat right tail, and is thus consistent with possible large in-

creases in the variance of the VAR innovations. For ρ, instead, we impose a Beta prior with mode

and standard deviation equal to 0.8 and 0.2, respectively. We stress that the hyperpriors on s̄0, s̄1,

s̄2 and ρ are not particularly important for any of the results presented below, because the data

are very informative about these parameters.

Appendix A presents some additional technical details of the posterior evaluation procedure.

In addition, if a researcher wishes to pursue a frequentist approach, appendix B describes how

to easily estimate the full set of unknown parameters in (1), β, Σ and θ, by maximum likelihood.

Matlab codes to implement these procedures are also available.

3 Two applications

To illustrate the working and advantages of our modeling approach, we estimate a VAR with

some key U.S. macroeconomic indicators. We use the estimated model (i) to track the effects

of a surprise change in unemployment; and (ii) to forecast the evolution of the U.S. economy,

conditional on the observed path of unemployment and its consensus prediction from the June

2021 release of the Blue Chip Forecasts.

We specify our VAR at the monthly frequency—the highest available frequency for conven-

tional macroeconomic variables—to track more timely the potential changes in shock volatility

during the pandemic. In terms of variables, we do not include the federal funds rate, given that

it has been stuck at the zero lower bound during much of the recent sample. Instead, relative to

more standard monthly VARs, our model incorporates a more detailed characterization of con-

sumption expenditures and their price. This choice is motivated by the fact that the markedly

different behavior of consumer goods and services—relative to previous recessions—has been

one of the defining features of the COVID-19 downturn.

More precisely, the VAR includes the following seven monthly variables: (i) unemployment,

measured by the civilian unemployment rate; (ii) employment, measured by the logarithm of

the total number of nonfarm employees; (iii) PCE, measured by the logarithm of real personal

consumption expenditures; (iv) PCE: services, measured by the logarithm of real personal con-

sumption expenditures in services; (v) PCE (price), measured by the logarithm of the price index

7



HOW TO ESTIMATE A VAR AFTER MARCH 2020

of personal consumption expenditures; (vi) PCE: services (price), measured by the logarithm of

the price index of personal consumption expenditures in services; and (vii) core PCE, measured

by the logarithm of the price index of personal consumption expenditures excluding food and

energy. The VAR has 13 lags and it is estimated on the sample from 1988:12 to 2021:5 using a

standard Minnesota prior, whose tightness is chosen as in Giannone et al. (2015).1 We do not

extend the sample before 1988:12 because Del Negro et al. (2020) document a reduced reaction

of inflation to fluctuations in real activity since the 1990s, compared to the pre-1990 period.

Figure 1 plots the posterior distribution of the five (hyper)parameters of the model. The top

panel presents the posterior of the overall standard deviation of the Minnesota prior (denoted

by λ), which provides information on the appropriate degree of shrinkage on the β coefficients.

The other panels of the figure show instead the posterior distribution of the volatility scaling

factors in March, April and May 2020, and the rate of subsequent volatility decay. The posteriors

of s̄0, s̄1 and s̄2 peak around 17, 65 and 20, suggesting that the innovation standard deviation in

these three months were about one and two orders of magnitude larger than in the pre-COVID-

19 period. The posterior of ρ is centered just below 0.8, indicating that volatility has been roughly

falling by one fifth each month since June 2020. For comparison, figure 1 also reports the poste-

rior of λ when the VAR is estimated in a standard way, without st. When the post-February 2020

observations are excluded from the estimation sample (essentially assuming s̄0 = s̄1 = s̄2 =∞),

the posterior of λ is similar to the one implied by our baseline model, consistent with the fact

that our inferential procedure assigns comparatively less weight to these most recent observa-

tions. When instead the observations from the COVID-19 period are included in the estimation

sample and treated as conventional data (essentially assuming s̄0 = s̄1 = s̄2 = 1), the posterior

of λ exhibits a large shift to the right, implying much less shrinkage for the β coefficients. This

reduction in shrinkage is the necessary cost to pay to fit the large variability of the latest data

with a change in the estimated β.

We now illustrate the implications of these estimation results in two empirical applications.

3.1 Generalized impulse responses

In our first application, we study the dynamic response of the variables in the VAR to a positive

1-percentage-point shock to unemployment, when it is ordered first in a Cholesky identifica-

tion scheme. Therefore, this shock corresponds to the typical linear combination of structural

1As a hyperprior on the tightness parameter of the Minnesota prior, we impose a Gamma density with mode equal
to 0.2 and standard deviation equal to 0.4, as in Giannone et al. (2015).
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Figure 1: Posterior distribution of the overall standard deviation of the Minnesota prior, the March, April and May

2020 volatility scaling factors, and the post-May 2020 volatility decay parameter.
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Figure 2: Impulse responses to a 1-percentage-point shock to the unemployment equation. The shock is identified

using a Cholesky strategy, with unemployment ordered first.

disturbances that drives the one-step-ahead forecast error of unemployment. We do not assign

a structural interpretation to these impulse responses, but just use them as summary statistics

of the estimated dynamics.2 Figure 2 presents their posterior when the VAR is estimated using

the procedure outlined in section 2. The real economy (employment, unemployment and con-

sumption) initially slows down and then partially recovers. Prices also experience some down-

ward pressure.

2An alternative strategy could have been to compute the impulse responses to specific identified shocks, which
would be more easily interpretable from a structural point of view. The disadvantage of this strategy, however, is that
the usual structural innovations identified with structural VARs typically only drive a limited share of macroeconomic
fluctuations. Instead, the one-step-ahead forecast error of unemployment represents a combination of structural
shocks that are collectively responsible for a considerably larger share of the business cycle variation of our time
series. Therefore, the associated impulse responses are more representative of typical business cycle dynamics—a
crucial property, given our objective of determining the extent to which the addition of the pandemic data distorts
parameter estimates.
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As we did earlier, it is useful to compare these results to those obtained when estimating the

model in more conventional ways. The dotted lines in figure 2 represent the posterior medi-

ans of the impulse responses implied by a standard VAR estimation that excludes all the data

after February 2020 (we do not report their error bands to avoid clogging the figure). Observe

that they are relatively similar to the baseline responses. Instead, the dashed-dotted lines in fig-

ure 2 are the median responses obtained by including the latest observations in the estimation

sample without any special treatment. These impulse responses are very different from those

produced by our baseline model and by the one estimated only using pre-pandemic data. In ad-

dition, their shape is sensitive to the end of the estimation sample. For example, if we had used

data up to June 2020, as we will do in the next subsection, their error bands would have been

explosive. With more data beyond June 2020, these impulse responses become progressively

less misleading. However, they remain quite different from those obtained using pre-pandemic

observations, even when using the last vintage of available data, as shown in figure 2.

To compare more formally the fit of our baseline model to that of a conventional VAR with-

out downweighting of the pandemic observations, we also compute their marginal likelihoods.

Under a uniform prior over the model space, the marginal likelihood is proportional to the pos-

terior model probability. It is also a measure of a model’s one-step-ahead density forecast abil-

ity. In our case, the marginal likelihood can be computed using the modified harmonic mean

method (Gelfand and Dey, 1994, Geweke, 1999). The results are quite striking: The marginal

likelihood of the baseline model exceeds that of a conventional VAR by the astounding amount

of 965 log-points. These findings illustrate the importance of explicitly modeling the change in

shock volatility during the COVID-19 era.

We summarize the lesson from this first application as follows: For the purpose of estimat-

ing the parameters β and Σ, we recommend to adopt the procedure we described in section 2,

which involves a minimal deviation from the conventional VAR estimation. However, if a re-

searcher still wishes to estimate a VAR “as usual,” it is much better to exclude the data from the

pandemic rather than including them and treating them as any other observation in the sample.

It is likely that the latter approach will produce a model that fits the data very poorly, as it did in

our application.
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3.2 Conditional forecasts

We now illustrate a second empirical application in which the gains of our approach to infer-

ence are even more evident. In this application, we conduct a scenario analysis to highlight the

impact of the change in shock volatility and its expected future evolution on the U.S. economic

outlook and the uncertainty surrounding it.

We begin with an experiment meant to get a rough sense of the prediction accuracy of differ-

ent methods during the pandemic. More precisely, we put ourselves in the shoes of a forecaster

estimating the model with data until June 2020, and compute the predictions of employment,

consumption and prices that she would have obtained had she known the actual realization of

unemployment between July 2020 and May 2021, and the June 2021 release of the Blue Chip

Forecasts. According to these Blue Chip projections, unemployment will continue to decline

over the next few months, reaching 4.5 percent by 2022.3 Although not available in real time, we

give this forecaster the knowledge of the exact future path of unemployment and the consensus

Blue Chip Forecasts to control for the uniqueness of the COVID-19 downturn, which was much

more violent and less persistent than more typical recessions. We compute these conditional

forecasts using the method of Banbura et al. (2015). They cast the VAR into a general state-space

form, treating the variables that do not belong to the conditioning scenario as missing data.

The only difference from the original application of Banbura et al. (2015) is that, in our case,

the Kalman filter and smoother recursions reflect the time-varying covariance matrix of the VAR

errors assumed in section 2.4

The left panels of figure 3 show the density forecasts of employment, consumption and prices

obtained using our model that accounts for the change in shock volatility after February 2020.

The figure also plots the actual realization of the VAR variables between July 2020 and May

2021. Observe that these data are well within the range of possible outcomes predicted using

our methodology.

The second column of figure 3 presents the conditional forecasts obtained by estimating the

model in a more standard way, i.e. using data up to February 2020. Despite a broad similarity

in the qualitative features, these conditional forecasts show important quantitative differences.

In particular, the VAR estimated with our proposed procedure incorporates a higher innovation

3The Blue Chip Forecasts report quarterly projections. To translate them into monthly projections, we simply
interpolated them using a smooth exponential curve.

4For this exercise, we use revised data from the latest available release, for simplicity and comparability with an-
other experiment that we run later in this section.
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Figure 3: Forecasts as of June 2020 of the variables in the VAR, conditional on unemployment following the path

in the top subplots. The solid lines are posterior medians, while the shaded areas correspond to 68- and 95-percent

posterior credible regions. The crosses are data realizations between July 2020 and May 2021.
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variance not only between March and June 2020, but also in the subsequent months. As a conse-

quence, the estimated conditional forecasts in the left panels of figure3 exhibit a higher degree of

uncertainty about the future prospects of the U.S. economy, relative to those in the right panels.

This higher forecast uncertainty seems warranted in light of the subsequent data realizations

between July 2020 and May 2021. In contrast, the conditional forecasts obtained by dummying

out the post-February 2020 data are generally excessively sharp.5

In our next exercise, we study the evolution of forecast uncertainty beyond May 2021. To ad-

dress this question, we compute the predictions of employment, consumption and prices based

on our entire dataset ending in May 2021. As before, we condition these predictions on the con-

sensus unemployment projection from the June 2021 release of the Blue Chip Forecasts, which

are plotted in the top panels of figure 4. Relative to figure 3, which was constructed with data up

to June 2020, the differences between the left and right panels of figure 4 are much less evident.

This similarity in forecast dispersion across the two models—our model with volatility change

and a model estimated by dropping all the observations after February 2020—is driven by two

factors. On the one hand, the estimated rate of volatility decay, ρ, implies convergence of shock

volatilities to pre-COVID-19 levels. More precisely, our estimates of s̄2 and ρ suggest that the

shock volatility in June 2021 is on average 85 percent higher than in pre-COVID-19 times. De-

spite being large in an absolute sense, this number is small relative to the orders of magnitude

of the volatility change in March, April and May 2020. On the other hand, these density forecasts

combine the uncertainty induced by shock volatility with parameter uncertainty. As it turns out,

the latter plays a proportionally larger role in our last forecasting exercise, and is similar across

the two models. This explanation suggests that the similarity in forecast uncertainty between

the two methods might not hold for forecasts obtained using models that are more parsimo-

nious than VARs, for which parameter uncertainty might play a less prominent role.

More generally, there are a number of reasons why the strategy of dropping all the observa-

tions related to the pandemic might not be an appropriate solution to deal with this challenging

inferential problem. First of all, there is still a fair amount of uncertainty about whether the

level of shock volatility will continue to fall, as it has done on average since June 2020. In fact,

the recent resurgence of the epidemic (driven by the so-called delta variant of the virus, which is

spreading in the summer of 2021), or a hopefully fast recovery following mass vaccination, might

5The conditional forecasts based on a model estimated with data until June 2020, without downweighting of the
pandemic observations, are also similarly sharp. We do not report them to save space and make the figure more
readable.
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Figure 4: Forecasts as of May 2021 of the variables in the VAR, conditional on unemployment following the path

in the top subplots. The solid lines are posterior medians, while the shaded areas correspond to 68- and 95-percent

posterior credible regions.
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bring about a new uprise in shock volatility.6 Second, the “dummying out” strategy requires a

number of ad-hoc choices related to which observations to drop and when to start using data

for inference again. These ad-hoc assumptions are instead not necessary with an explicit mod-

eling of the change in volatility dynamics. Finally, generalizing the discussion to a broader set of

macro-econometric tools, the estimation of models with latent variables cannot be easily dealt

with by simply dropping all the observations related to the pandemic. This is because these

models require filtering and smoothing techniques that are generally sensitive to the value of

shock volatilities. Therefore, not properly accounting for the drastic increase of such volatilities

since February 2020 might lead to misleading results, not only in terms of inference about the la-

tent variables of these models, but also about other objects of interest in the period immediately

after the pandemic.

4 Concluding Remarks

The sequence of wild macroeconomic variation experienced during the COVID-19 pandemic

constitutes a challenge for the estimation of macro-econometric models in general, and VARs

in particular. In this paper, we propose a simple solution to this problem, which consists of

explicitly modeling the large change in shock volatility during the outbreak of the disease. We

also show that estimating such a model is quite straightforward, because the time of the volatility

change is known. Our empirical results show that the ad-hoc procedure of dropping the extreme

observations from the pandemic era is acceptable for the purpose of parameter estimation—at

least given the data available at the time of writing of this paper—but may be inappropriate for

forecasting the future evolution of the economy, because it underestimates uncertainty.

Our paper is motivated by the massive macroeconomic variation generated by the COVID-

19 pandemic. However, our methodology can be usefully applied in other contexts, particu-

larly those with clustered extreme observations, when there are reasons to believe that volatility

might evolve differently than in normal times. These situations typically emerge when shock

volatilities change suddenly and by an unusually large amount, and when such high volatility is

likely to persist, but for an uncertain period of time. Barro (2006), Barro and Ursua (2008) and,

more recently, Campbell (2020) and Ludvigson et al. (2020) enumerate a number of disaster-like

episodes that might fit this profile in the U.S. and around the world.

6In this case, as we have noted in the introduction, it might be necessary to modify our simple assumption of an
exponential volatility decay after May 2020.
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A Posterior Evaluation

This appendix describes the technical details of the MCMC algorithm that we use to evaluate the

posterior of the model parameters. This algorithm is a standard Metropolis algorithm, almost

identical to that in Giannone et al. (2015), consisting of the following steps:

1. Initialize the hyperparameters γ and θ at their posterior mode, which requires a prelimi-

nary numerical maximization of their marginal posterior (whose analytical expression is

derived below).

2. Draw a candidate value [γ∗, θ∗] of the hyperparameters from a Gaussian proposal distribu-

tion, with mean equal to
[
γ(j−1), θ(j−1)

]
and variance equal to c ·W , where

[
γ(j−1), θ(j−1)

]
is the previous draw of [γ, θ], W is the inverse Hessian of the negative of the log-posterior

of the hyperparameters at the peak, and c is a scaling constant chosen to obtain an accep-

tance rate of approximately 25 percent.

3. Set [
γ(j), θ(j)

]
=

 [γ∗, θ∗] with pr. α(j)[
γ(j−1), θ(j−1)

]
with pr. 1− α(j),

where

α(j) = min

{
1,

p (γ∗, θ∗|y)

p
(
γ(j−1), θ(j−1)|y

)}

4. Draw
[
β(j),Σ(j)

]
from p

(
β,Σ|y, γ(j), θ(j)

)
, which is a Normal-Inverse-Wishart density (see

details below).

5. Increment j to j + 1 and go to 2.

In step 3, the density p (γ, θ|y) is given by

p (γ, θ|y) ∝ p (y|γ, θ) · p (γ, θ) ,

where the second term of the product corresponds to the hyperprior. The first term is instead

the marginal likelihood, and it can be computed analytically as in Giannone et al. (2015). If we

condition on the initial p observations of the sample, which is a standard assumption, we obtain

p (y|γ, θ) =
T∏

t=p+1

p (yt|Xt, γ, θ) =
T∏

t=p+1

p
(
ỹt|X̃t, γ, θ

)
snt

,
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where the denominator on the right-hand side captures the Jacobian of the transformation ỹt =

yt/st. From the results in Giannone et al. (2015), it follows immediately that

p (y|γ, θ) =

 T∏
t=p+1

s−nt

( 1

π

)n(T−p)
2 Γn

(
T−p+d

2

)
Γn

(
d
2

) ·

|Ω|−
n
2 · |Ψ|

d
2 ·
∣∣x̃′x̃+ Ω−1

∣∣−n
2 ·∣∣∣∣Ψ + ˆ̃ε′ ˆ̃ε+

(
ˆ̃B − b̂

)′
Ω−1

(
ˆ̃B − b̂

)∣∣∣∣−T−p+d
2

,

where x̃t ≡
[
1, y′t−1, ..., y

′
t−p
]
/st, x̃ ≡ [x̃p+1, ..., x̃T ]′, ỹ ≡ [ỹp+1, ..., ỹT ]′, ˆ̃B ≡

(
x̃′x̃+ Ω−1

)−1 (
x̃′ỹ + Ω−1b̂

)
,

ˆ̃ε ≡ ỹ − x̃ ˆ̃B, and b̂ is a matrix obtained by reshaping the vector b in such a way that each column

corresponds to the prior mean of the coefficients of each equation (i.e. b ≡ vec
(
b̂
)

).

The posterior of (β,Σ) in step 4 is given by

Σ|Y ∼ IW
(

Ψ + ˆ̃ε′ ˆ̃ε+
(

ˆ̃B − b̂
)′

Ω−1
(

ˆ̃B − b̂
)
, T − p+ d

)

β|Σ, Y ∼ N
(

vec
(

ˆ̃B
)
,Σ⊗

(
x̃′x̃+ Ω−1

)−1)
.

B Maximum Likelihood Estimation

This appendix describes how to estimate our model using a frequentist, maximum likelihood

method. The likelihood function of model (1) is given by

p (y|β,Σ, θ) ∝
T∏

t=p+1

∣∣s2tΣ∣∣− 1
2 · exp

−1

2

T∑
t=p+1

(
yt −X ′tβ

)′ (
s2tΣ

)−1 (
yt −X ′tβ

)
∝

 T∏
t=p+1

s−nt

 · |Σ|−T−p
2 · exp

{
−1

2

(
Ỹ − X̃β

)′
(Σ⊗ IT−p)−1

(
Ỹ − X̃β

)}
, (3)

where Ỹ ≡ vec (ỹ) and X̃ ≡ In ⊗ x̃, and we are conditioning on the initial p observations, as

usual.

The maximum likelihood estimators of β and Σ, as functions of θ, are given by

B̂mle (θ) =
(
x̃′x̃
)−1

x̃′ỹ (4)

18



HOW TO ESTIMATE A VAR AFTER MARCH 2020

β̂mle (θ) = vec
[
B̂mle (θ)

]
(5)

Σ̂mle (θ) =
ˆ̃ε′mle

ˆ̃εmle

T − p
, (6)

where ˆ̃εmle ≡ ỹ − x̃B̂mle (θ). Recall that all variables with a “̃” depend on θ, although we do not

make this dependence explicit to streamline the notation. Substituting (4)-(6) into (3) yields the

concentrated likelihood, which, after some algebraic manipulations, can be written as

p
(
y|β̂mle (θ) , Σ̂mle (θ) , θ

)
∝

T∏
t=p+1

s−nt ·

∣∣∣∣∣ ˆ̃ε′mle
ˆ̃εmle

T − p

∣∣∣∣∣
−T−p

2

. (7)

The parameters θ can then be estimated by numerically maximizing (7), and the estimates of

β and Σ can be obtained using (4)-(6).
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