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A Self-confirming equilibrium

Appendix A formally defines a self-confirming equilibrium and derives the self-confirming equilib-

rium of the model of section 2, in the case of constant gain learning. Let yπt , y
u
t , x

π
t , x

u
t , β̂

π
and

β̂
u
be the same objects defined in section 2.3. I follow Sargent (1999) in defining a self-confirming

equilibrium in this framework:

Definition 1 A self-confirming equilibrium is a set of policymakers’ beliefs about the models’ pa-

rameters β̂ ≡ [β̂π, β̂u, ûN ], a fixed optimal policy rule g(β̂) and an associated stationary stochastic
process for the vector

£
πt, ut, Vt, u

N
t

¤
such that: (a) ûN , β̂

π
and β̂

u
satisfy

E
£
ut − ûN

¤
= 0 (I)

E
h
xit

³
yit − xi0t β̂

i
´i

= 0, i = {π, u} (II)

where the expectations are taken with respect to the probability distribution generated by (5), (2),

(3) and (9); (b) the vector
£
πt, ut, Vt, u

N
t

¤
is generated by the stationary stochastic process implied

by (5), (2), (3) and (9).

It is straightforward to verify that the set of beliefs ûN = u∗, β̂
π
= [0;α1;α2; θ1; θ2] and

β̂
u
= [0; ρ1; ρ2] satisfy (I) and (II) and therefore represents a self-confirming equilibrium, in the

case of σ2τ = 0. When σ2τ > 0, finding the self-confirming equilibrium is more involved and

requires a numerical solution of the system of equations given by (I) and (II). The procedure

works as follows: any given fixed value of ûN , β̂
π
and β̂

u
implies a linear stochastic process for£

πt, ut, Vt, u
N
t

¤
via equations (5), (2), (3) and (9). The linear process can be rewritten as a first

order system of the form zt = C + Azt−1 + Bνt. Thus E(zt) = (I − A)−1C and V ar(zt) can
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be found by solving the Lyapunov equation V ar(zt) = AV ar(zt)A
0 + BV ar(νt)B

0. The elements
of E(zt) and V ar(zt) can be used to compute E

£
ut − ûN

¤
and E

h
xit(y

i
t − xi0t β̂

i
)
i
, for i = {π, u},

which, in general, will not be equal to zero. A simple equation solver can be used to solve for

the set of beliefs ûN , β̂
π
and β̂

u
, which satisfy (I) and (II). Of course the solution will depend

on the value of the true parameters of the model. As an illustrative example I consider the case

in which the true parameters of the model are the point estimates of the baseline specification,

presented in the first column of table 1. The self-confirming equilibrium in this case corresponds to

ûN = 6, β̂
π
= [0.0394; 0.7203; 0.2623;−0.8409; 0.7637] and β̂

u
= [0; 1.5703;−0.6269]. Furthermore,

the eigenvalues of the Jacobian of the expressions contained in (I) and (II), evaluated at the self-

confirming equilibrium, have negative real parts. This guarantees the stability of the equilibrium.

As V ar
¡
uNt
¢
increases the mistakes associated with the estimation of the current level of the

natural rate of unemployment will bias toward zero the estimate the slope of the Phillips curve and of

the persistence of unemployment deviations from the natural rate in the aggregate demand equation.

This leads to self-confirming equilibria whose distance from the true values of the parameters is

increasing in V ar
¡
uNt
¢
. Finally, when V ar

¡
uNt
¢
is large with respect to σ2ε and σ

2
η, the model does

not admit a self confirming equilibrium anymore. Figure 1 plots the Euclidean distance between

the true parameters ([0;α1;α2; θ1; θ2; 0; ρ1; ρ2;u
∗]) and the set of beliefs about these parameters

corresponding to the self-confirming equilibria. These self-confirming equilibria are computed for

different values of V ar
¡
uNt
¢ ≥ 0. This graph confirms the intuition that the distance between

equilibrium beliefs and true parameters increases with V ar
¡
uNt
¢
. The line is truncated at the

value 4.63, because for V ar
¡
uNt
¢
larger than this value a self confirming equilibrium cannot be

found. All the found self-confirming equilibria are stable.

B State space form for model’s estimation

Appendix B gives the details of the state space form representation of the model for the estimation

with the Kalman filter.

The canonical state space form is given by:

yt = AZt +BXt +Ret, (III)

Xt = C +GXt−1 +Qst, (IV)Ã
et

st

!
∼ i.i.d. N(0, I). (V)

In our case, yt = [πt;ut]
0; Zt = [πt−1;πt−2;ut−1;ut−2;Vt−1]0; Xt =

£
uNt ;u

N
t−1;uNt−2

¤0;
A =

"
α1 α2 −θ1 −θ2 0

0 0 ρ1 ρ2 1

#
; B =

"
0 θ1 θ2

1 −ρ1 ρ2

#
; C =

 (1− γ)u∗

0

0

; G =

 γ 0 0

1 0 0

0 1 0

;
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R =

"
σε 0

0 ση

#
; Q =

 στ 0 0

0 0 0

0 0 0

.
The standard Kalman filter recursion formulas can be found in Hamilton (1994). To start the

recursion it is necessary to specify E (X0|Ω0) and V ar (X0|Ω0), where Ω0 represents the information
set available at time 0. Following a common practice, I set E (X0|Ω0) and V ar (X0|Ω0) to the
unconditional values implied by the transition equation. In particular, this results in E (X0|Ω0) =
[6; 6; 6]0, which corresponds approximately to the estimate of the natural rate of unemployment of
Staiger, Stock, and Watson (2001) in 1960 (which is the initial date of our sample).

C The solution method for the forward looking model

Appendix C illustrates in more detail the method used to solve the forward looking model with fully

rational agents. As mentioned in section 5.2, the model is hard to solve because it is a nonlinear

system of rational expectation equations. The source of nonlinearity is the learning behavior of

policymakers. I will rely on numerical methods. The adopted solution method is based on Fackler

and Miranda (2001). A similar method is in Fernandez-Villaverde and Rubio (2002).

Consider the system of rational expectation equations given by (19) and (20). To simplify the

analysis and only for the purposes of this section I will assume that uNt is a deterministic function,

known by the private sector, but, as usual, unknown by policymakers. I will set uNt to be equal

to the smoothed estimate of uNt obtained in the estimation of the forward looking model with

partially rational agents (section 5.1). Thus, let ũt ≡ ut − uNt . Equations (19) and (20), the only

ones involving expectations, can be rearranged and rewritten in the following compact form:

yt = AEt−1yt+1 +BXt−1 + vt, (VI)

where yt ≡ [πt, ũt]0 is the vector of observed endogenous variables; Xt−1 ≡ [πt−1, ũt−1, Vt−1] is the
vector of observed predetermined variables; vt ≡ [εt, ηt]0 is the vector of unobservable shocks; A
and B are matrices of coefficients, omitted for brevity. (VI) is linear, but the complete system,

given by (VI), (9), (10), (11), (12) and (13) is nonlinear. The solution of the model is the unknown

response function Et−1yt+1 = Ψ(Ωt−1), where Ωt represents the information available at time t and
Ψ(·) satisfies

Ψ(Ωt−1) = AEt−1Ψ(Ωt) +BEt−1Xt.

When the model is nonlinear in general there is not a closed form expression for Ψ(·) and it must
be approximated numerically by projection methods. The basic idea of Fackler and Miranda (2001)

is approximating Ψ(Ωt) with a linear combination of basis functions of the state variables. This is

given by Φst, where st is an m× 1 vector of basis functions and Φ is a 2×m matrix of coefficients.

In the numerical procedure, also the expectation operator must be approximated using quadrature

methods. Therefore, the expectation of a generic function f (·) of the model’s source of randomness,
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vt, is approximated by a discrete version of the integral, given by

Ef(vt) ≈
kX

j=1

ωjf
³
vjt

´
.

For a given value of the innovations vjt ,

yjt = AΦst−1 +BXt−1 + vjt

and

yjt+1 = AΦsjt +BXt + vt+1,

where the superscript j for s indicates that the value of s at time t depends on the realization of

the shocks at time t. Now we can compute Et−1yt+1 = Et−1Etyt+1 ≈
kP

j=1
ωj

³
AΦsjt +BXt

´
≡ zt−1.

Let S ≡ [s1,t−1, ..., sn,t−1] be a collection of n ≥ m values of st−1 and Z ≡ [z1,t−1, ..., zn,t−1] the
collection of the corresponding n values of zt−1. The solution consists in the Φ∗ which solves
Φ∗S = Z, or Φ∗SS0 = ZS0 in the case in which n > m. It can be done using standard equation

solvers.

In this application, to approximate the integrals and expectation operators, I use a Gauss-

Hermite quadrature with 3 nodes (see Judd, 1998). As mentioned above, the dimension of the state

vector is high. Thus, the use of tensor product bases or complete polynomial bases is unfeasible for

any polynomial degree bigger or equal to 2. For this reason I chose the following ad hoc collection

of 21 basis functions of the states, which turned out to work well:

st =
h
1;πt; ũt;πt−1; ũt−1;Vt; ĉπ,t; α̂1,t; α̂2,t; θ̂1,t; θ̂2,t; ĉu,t; ρ̂1,t; ρ̂2,t; û

N
t ;

π2t ; ũ
2
t ; α̂1,tπt; α̂2,tπt−1; θ̂1,t

¡
ut − ûNt

¢
; θ̂1,t

¡
ut−1 − ûNt−1

¢i
.

Notice that the choice of st includes all linear terms in the state variables of the problem and some

potentially relevant second order terms. The dimension of st is so large that the choice of S based

on standard grid methods is unfeasible, even specifying only two values for any state variable. To

solve this problem I chose a collection of n = 86 st’s, corresponding to the actual values of st
observed in the data, every 2 quarters, from 1959:IV to 2002:IV. The results are only marginally

affected by a different choice of values for S, like for example the observed data, every 2 quarters,

1960:I to 2002:III.

D The MCMC algorithm for the stochastic volatility model

Appendix D illustrates the details of the MCMC algorithm used in section 6 for the estimation

of the model with stochastic volatility. The parameters of interest are the coefficients Ψ1 ≡
[α1; θ1; θ2; ρ1; ρ2], Ψ2 ≡ [k;φ], Ψ3 ≡

h
σ2νε ;σ

2
νη

i
and the unobservable states uN ≡ ©

uNt
ªT
t=1
,

σε ≡ {σε,t}Tt=1 and ση ≡ {ση,t}Tt=1. The estimation consists of the simulation of the posterior
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of the parameters of interest, conditional on the observed data. MCMC allows to simulate lower

dimensional conditional posteriors instead of the high dimensional unconditional one.

Notice that the model can be rewritten like in (III), (IV) and (V), with the difference that now

the elements of R are time varying and follow the processes (21) and (22). The algorithm works in

5 steps.

D.1 Step 1: drawing uN

Conditional on σε, ση, Ψ1 and Ψ2, the observation equation (III) is linear and has Gaussian

innovations with known variance. Therefore, the vector uN can be drawn using standard simulation

smoothers, like, for instance, Carter and Kohn (1994) or Durbin and Koopman (2002). Details of

this procedure can be also found in Kim and Nelson (1999).

D.2 Step 2: drawing σε and ση

Consider now the system of equations

yt −AZt −BXt = y∗t = Rtet (VII)

where, taking uN , Ψ1 and Ψ2 as given, y∗t is observable. This is a system of nonlinear measurement
equations, but can be easily converted in a linear one, by squaring and taking logarithms of every

element of (VII), which leads to the following approximating state space form:

y∗∗t = 2ht + e∗∗t (VIII)

ht = ht−1 + ωt. (IX)

y∗∗it = log[(y∗it)
2 + c̄]; c̄ is an offset constant (set to 0.001); e∗∗it = log(e2it); ht = log(diag(Rt)).

Observe that the e∗∗’s and the ω’s are not correlated. The system in this form has a linear,

but non-Gaussian state space form, because the innovations in the measurement equations are

distributed as a logχ2(1). In order to further transform the system in a Gaussian one, a mixture

of normals approximation of the log χ2 distribution is used, as described in Kim, Shephard, and

Chib (1998). Observe that the variance covariance matrix of the e’s is the identity matrix. This

implies that the variance covariance matrix of the e∗∗’s is also diagonal, allowing to use the same
(independent) mixture of normals approximation for any element of e∗∗. Kim, Shephard and Chib
(1998) select a mixture of 7 normal densities with component probabilities qi, means mi, and

variances v2i , i = 1, ..., 7. The constants {qi,mi, v
2
i } are chosen to match a number of moments of

the logχ2(1) distribution. The constants {qi,mi, v
2
i } can be found in Kim, Shephard, and Chib

(1998).

For the innovation to the variable yjt, define as sTj = [sj1, ..., sjT ]
0 the vector of indicator

variables selecting at every point in time which member of the mixture of normal approximation

has to be used. Conditional on uN , Ψ and sT (which denotes the collection of sTj ), the system has
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an approximate linear and Gaussian state space form. Again, exactly like in the previous step of

the sampler, this procedure allows to draw every ht using a simulation smoother.

Conditional on the data and the new series of ht’s, it is possible to sample the new sTj vectors,

to be used in the next iteration. This is easily done (separately for every j) by sampling from the

discrete densities defined by

Pr(sjt = i | y∗∗jt , hjt) ∝ qifN(y
∗∗
jt | 2hjt +mi, v

2
i ), i = 1, ..., 7.

Further details can be found in Kim, Shephard, and Chib (1998) or Primiceri (2005).

D.3 Step 3: drawing Ψ1

Conditional onΨ2, σε, ση and uN , the objects Zt, Xt and Rt are observable. Therefore, the elements

of Ψ1 (which correspond to the elements of A and B) can be easily drawn from the posterior of the

coefficients of a regression with known variance. This posterior is normally distributed with mean

equal to the OLS coefficients and variance equal to the variance of the OLS coefficients.

D.4 Step 4: drawing Ψ2

Ψ2 enters the model non-linearly. Therefore, in order to draw from the conditional posterior of

Ψ2, I use a Metropolis step, nested in the Gibbs sampler. The procedure works as follows: I

draw a candidate value Ψ∗2 from a proposal distribution ϕ
¡
Ψ∗2|Ψi−1

2

¢
, where Ψi−1

2 is the previous

draw of the chain. At this point I compute the value of the posterior associated to the draw,

p
³
Ψ∗2|Ψ1, σε, ση, uN , {yt}Tt=1

´
, which, under flat prior, is proportional to the value of the likelihood.

The new draw is accepted with probability

a = min

(
p (Ψ∗2) /ϕ (Ψ∗2)

p
¡
Ψi−1
2

¢
/ϕ
¡
Ψi−1
2

¢ , 1) .
If the proposal value is rejected, the next element of the chain is set to be Ψi−1

2 . In order to satisfy

the constraints φ ≥ 0 and m, 0 ≤ k ≤ 1, I chose the proposal distribution to be normal in f(Ψ∗2),
where f (a, b) =

h
log(a), log

³
b
1−b
´i
. The mean is chosen to be f(Ψi−1

2 ), while I fix the variance to

a diagonal matrix with elements 0.001 and 0.005 on the main diagonal.

D.5 Step 5: drawing Ψ3

Conditional on σε, ση, each element of Ψ3 has an inverse-Gamma posterior distribution, indepen-

dent of the other element. Conditional on σε, ση, it is easy to draw from these inverse-Gamma

posteriors because the innovations are observable.1

1 See Gelman, Carlin, Stern, and Rubin (1995) for a description of the sampling procedure from an inverse-Gamma
or inverse-Wishart distributions.
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Figure 1: Euclidean norm of the distance between the true value of the coefficients and the value

of policymakers beliefs in a self-confirming equilibrium (as a function of the variance of the non-

inflationary rate of unemployment).
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