Module 3A: Mixed Models Basics

* For the next few slides, we will review a chapter introducing
mixed models from the following text:

— Shravan Vasishth and Michael Broe. (2010) The
Foundations of Statistics: A Simulation-based Approach.

— Chapter 7: Available at:

e http://link.springer.com/content/pdf/
10.1007%2F978-3-642-16313-5 7.pdf

 Read Vasishth & Broe excerpt to top of p.152.
— Code in this chapter is provided at

— http://www.ling.uni-potsdam.de/~vasishth/Misc/
VasishthBroebook.R

— NOTE. To draw some of their awesome graphs, you need
to have installed the lattice package. If you did not do

that, you can’t run chunk 247, 248; that’s ok, it just
produces the graphs you see in the book.
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Re-run code on p. 151. (execute chunk 239 before executing
249, 250; this loads in the dataset mathachieve.txt—
available from http://www.ling.uni-potsdam.de/~vasishth/
book.html).

Question 12. Calculate the difference between each
individual school’s slope for SES and the slope of the simple
linear model (ImO, defined on p. 146 [see chunk 240]). Run
a t-test to test the null hypothesis that these differences

are equal to 0.

— Note: to subtract some number a from every element of
a vector x, use the code x - a.

How does this t-test show that the simple linear regression
of achievement scores on SES fails to characterize ?
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e Discuss up through the top of p. 156.

e Question 13. Recall the lexical decision dataset lexdec.

e 13a. Explain what the terms in equation 7.1 (p. 146)
correspond to in a regression model predicting RT from

frequency.
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13b. Consider a new regression model that allows
individual subjects to have different overall differences in

reaction times and be differentially affected by frequency.
This model would be defined by an equation like 7.4 (p.
152) [although note that frequency isn’t centered].

Explain what the terms in 7.4 would correspond to in such
a model.
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13c. Let us augment the model in (2b) to allow native
English speakers and non-native speakers (‘other’ language
speakers) to have overall RT differences and allow the
effect of frequency to vary across native and non-native
speakers. This would correspond to equation 7.13 (p. 155).

Explain what the terms in 7.13 would correspond to in such
a model.
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Read up through 158.

— NOTE. The Imer code on p. 156 does not match the model
description preceding it. It's missing an interaction of SES and
Sector. It should be

— Imel.fm <- Imer(MathAch ~ SES * Sector + (1 + SES | School),
MathScores)

Note: we’ll explain the statistical test performed by the anova()
command on p. 158 in just a bit.

Question 14a. Use Ime4 to construct a model of the lexical
decision data including an interaction between Native Language

and Frequency.

Question 14b. Is the fit of this model better than one in which
the effect of frequency does not vary across subjects? Note: this
will be the single difference between the models. Provide
quantitative measures to support your claim.
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e Just as with glm, you can perform logistic regression by
adding the argument family=“binomial” to the Imer
command.

* The output will report Wald z statistics (just as with glm).
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In Ime output (and code—more later), there is a distinction
between fixed and random effects.

Our simple linear models have a random, normally
distributed error term

For a random effect, we assume that the different levels of
an effect are also normally distributed

— With a mean of 0 and a variance estimated from the
data.

Makes sense when our effect is a random sample from a
much larger population

— Population of potential subjects
— Set of possible words
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* Fixed effects are not assumed to be drawn from a distribution.

— Each level is fit independently and is not constrained to be
in some relationship with other levels.

— More precisely, in dummy coding, each level is assigned a
separate coefficient—and each coefficient is not
constrained to be in a particular relationship with other

coefficients.
* Makes sense when our levels are not random samples

— They completely define the space of possibilities (e.g.,
native English vs. not native English)

— They are not a random sample, so we can’t generalize to
unseen observations (e.g., learning about labial
consonants won’t necessarily tell us how alveolars and
velars should behave—they are produced with different
articulators).
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In the Imed4 command, random effects are specified using
the pipe operator |.

(1|factor-X) specifies a random intercept for different levels
of factor X

(O+factor-A|factor-X) specifies a random slope for factor A
for different levels of factor X which is uncorrelated from the
random intercept for factor X.

(1+factor-A|factor-X) specifies a random slope for factor A
for different levels of factor X which is correlated with the
random intercept for factor X.
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Note! Just as you have multiple fixed effects, you can have
multiple random effects! (like subjects AND items)

This is a BIG deal. This is not something that other multiple
regressions or ANOVAs can do.

These random effects can be “crossed” as well as “nested”
— Nested: each subject sees all items in all conditions
— Crossed: subjects seem all items, but not in all conditions
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 Example output from book, p. 157:

Randon effects:

Groups  Name Variance Std.Dev. Corr
ochool (Intercept) 3.96385 1.99094

SES 0.43431 0.65902 0.530
Residual 36.80088 6.06637

Nusber of obs: 7185, groups: School, 160

* The intercepts for schools are drawn from a population with
mean 0 and an estimated variance of 3.96.

* The school-specific SES slopes are drawn from a population
with mean 0 and an estimated variance of 0.43.

e These are correlated at 0.55
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* |nthe Ime command, the fixed effects are all of the factors
that occur outside of the (| X) part of the model statement.

 E.g., Bolded factors are fixed effects
* Imer(MathAch~SES+Sector+(1+SES|School),MathScores)
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* For continuous variables like RT, the output of Ime4 provides
effects estimates, standard errors and t values but no p
values. Why?

— It’s not clear how to estimate the degrees of freedom.

* Remember that the t distribution approaches the z
distribution as degrees of freedom increases.

— For t-tests for simple regressions, the degrees of freedom
is on the order of the number of observations.

— Good rule of thumb: If you have more than 50
observations, t = z; |t| > 1.96 means two-tailed p < .05.

— Some researchers make this assumption, and report p-
values assuming t = z.
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* However:
— Basis for this assumption is not entirely clear.

— For logistic regressions, Wald z statistics are known to be
biased, particularly for small sample sizes

* Better: Utilize model comparison.
— Shown in book using anova() command (p. 158)

e How does this work?
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* Model comparison: Comparison of relative fit of nested
models to the data.
— For each predictor, compare the fit of the “full model” to
one that lacks that predictor
* These models are nested—the full model “contains”
the simpler model lacking a single predictor.
— If the full model has a better fit to the data, that means

that adding the predictor improves the model’s fit to the
data; the predictor makes a significant contribution to

the model
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* Likelihood is one way of measuring fit of a model to the
data
— Likelihood: the probability that a model assigns to some
data (given the model, what’s the probability of the
data?)
— This is what p-values provide; they are the likelihood of
the data given the null hypothesis

* In the case of model comparison, given that the data was
observed, we’d like to choose the model that assigns the
data the highest likelihood—that is the model that has the

best fit.
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* However, more complex models will tend, by chance, to
have a better fit to the data

— More free parameters = less constrained model = allows
a better fit to the data

— How do we tell when a more complex model is doing
sufficient work to justify the extra complexity?
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* The likelihood ratio test is one means of testing this.

 This test examines the ratio of the likelihood of the data

under the simple model to the likelihood under the more
complex model.

* If this ratio is small enough, then we conclude that the
more complex model is justified.

— The precise test statistic is a function of the deviance
* deviance =-2 log likelihood

* Difference in deviances = -2 log likelihood ratio
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Under certain (reasonable) assumptions, the null hypothesis
that there’s no difference in likelihood (beyond that predicted
by an increase in the number of parameters) predicts that the
difference in deviances should be distributed as 2

With degrees of freedom equal to the difference in the
number of parameters across each model.

Here—since we are comparing a full model to one lacking a
single parameter—the degrees of freedom should be 1

Take home point: The likelihood ratio test is a means of
determining whether there’s a significant improvement in
model fit when a given parameter is included.

If p < .05 for this test, then the more complex model is
justified—this parameter significantly improves model fit.
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* If you use model comparison (and you should!) you need to
keep two things in mind.

— Add the argument REML=F to your Imer command

* The Imer algorithm uses restricted maximum
likelihood to fit the parameters of your regression
model.

* This is not appropriate when using the likelihood ratio
test.

— You need to re-code all of your alphanumeric predictors
into numerical codes within the dataframe that specifies
your data.

 We’ll review how to do this after a brief example.
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Basic procedure: Subtract fixed effects, leaving random
effects (more below) constant

— full.Imer = Imer(RT~Frequency+(1+Frequency|
Subject),data=lexdec, REML=F)

— frequencyEffectTest.Imer =Imer(RT~Frequency -
Frequency + (1+Frequency|Subject),data=lexdec,
REML=F)

— anova(full.Imer,frequencyEffectTest.Imer)
Why use this cumbersome procedure?

— Makes clear in model specification what effects you are
eliminating; easier to keep track of what effect you're
testing.

Note: When subtracting interactions, make sure to use the :
notation to eliminate the interactions alone.
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* Issue: what do you with multi-level factors?
— e.g., place of articulation (bilabial, alveolar, velar)
— We encode these three levels using two factors
* Treatment: each level vs. baseline

e Orthogonal contrasts (e.g., lingual vs. biabial; alveolar
vs. velar)

* The simple subtraction syntax won’t work here
— If you subtract place, you eliminate both
* [ssue: contrast coding

— If a factor isn’t treatment coded, Ime4 estimates random
slopes for each level of the factor (along with their
correlation).

— That is not the intent of treatment coding!
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Solution: Add columns to your dataframe that numerically
represent contrast, and add them to your model.

— You have to do the “translation” of alphanumeric codes
into the numbers that represent each contrast

Basic idea
— Contrasts specify a vector.
 E.g.,-0.5,0,+0.5 is a list of 3 numbers

— Look up values in this vector based on the number of the
level of the factor.

 If the factors are alveolar, bilabial, velar, for bilabial
you should look up the 2" humber

After you have columns, add them independently to the
model.
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lllustration: VOT place of articulation data.

Execute code chunk 19. This reads in the data set and
contrast codes place of articulation (just like we did in
Module 2).

Execute code chunk 20. This performs the “translation” of
contrast codes into numeric codes and adds these columns
to our dataframe.

Execute code chunk 21. This builds an Imer using our
numerically coded columns, and prints out the summary

Execute code chunk 22. This builds an Imer using our
alphanumeric column. Notice it’s identical to the output of
code chunk 22—showing our translation was successful!
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Because each contrast has been added independently, you
can now separately subtract them from the model.

— You also only get one random slope for each contrast
(not one for each level of each contrast)

Code chunks 23 and 24 perform this analysis for the bilabial
vs. lingual and alveolar vs. velar contrast (respectively).

— The anova() comparisons reveal that there is a significant
contribution from each contrast, controlling for random
variation across participants (variation in terms of overall
VOT and effect of contrasts) and words (variation in
terms of overall VOT).
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BONUS! Now that your categorical variables are coded as

numbers, you can examine their intercorrelations—a critical
part of building robust regression models (remember
Module 1!).

As shown in code chunk 25, the correlation between these
two orthogonal contrast is very low (by design!)

You can also examine the residuals of the model. This is
shown in code chunk 26.

— Pretty good, but not perfect.

— Inspection of VOT (code chunk 27) shows that this is
probably because the VOT distribution is slightly skewed.

— | would not be overly concerned by this deviation.



INTERIM SUMMARY

 Mixed effects models: Extend multiple regressions by
controlling for idiosyncratic contributions of random effects
—factors in your data that are drawn from larger
populations (participants, items).

* Significance can be assessed just as we did with multiple
regressions (t-tests, wald z), but | recommend using model
comparison (more conservative).

 Don’t forget modules 1+2! LMERSs can break just as easily as
regular multiple regressions.



