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Abstract

We calculate the evolution of planets undergoing a strong tidal encounter using smoothed particle hydrodynamics (SPH), for a range o
periastron separations. We find that outside the Roche limit, the evolution of the planet is well-described by the standard model of linear,
non-radial, adiabatic oscillations. If the planet passes within the Roche limit at periastron, however, mass can be stripped from it, but in no
case do we find enough energy transferred to the planet to lead to complete disruption. In light of the three new extrasolar planets discovere
with periods shorter than two days, we argue that the shortest-period cases observed in the period-mass relation may be explained by a mot
whereby planets undergo strong tidal encounters with stars, after either being scattered by dynamical interactions into highly eccentric orbits
or tidally captured from nearly parabolic orbits. Although this scenario does provide a natural explanation for the edge found for planets at
twice the Roche limit, it does not explain how such planets will survive the inevitable expansion that results from energy injection during
tidal circularization.
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1. Introduction 20044a, 2004b; Ogilvie and Lin, 20QMere instead we ex-
aminedynamicalinteractions, in which a giant planet on a
Approximately 17% of extrasolar planets discovered to nearly-parabolic orbit passes very close to the central star.
date can be classified as “hot Jupiters,” gas giant planetsThere are at least two scenarios where such interactions
in very tight orbits (with orbital periods ok 10 days) would occur. The first is the scattering scenario for explain-
around solar-like star§Sasselov, 2003; Mayor et al., 2004; ing the high eccentricities of extrasolar plané&asio and
Bouchy et al., 2004; Konacki et al., 2004pf these 21 Ford, 1996; Weidenschilling and Marzari, 1996; Lin and Ida,
planets, 17 have periods of less than five days. In this 1997; Ford et al., 2001; Marzari and Weidenschilling, 2002;
context, strong tidal interactions between a giant planet Adams and Laughlin, 2003)n this scenario, protoplane-
and its central star have become an important problem.tary systems containing several giant planets of comparable
Many studies have focused on understanding the mecha+masses become dynamically unstable, leading to strong scat-
nisms and consequences of tidasipationin these systems  tering between planets. Planets scattered inward may some-
(Rasio et al., 1996; Lubow et al., 1997; Ford et al., 1999; times undergo strong tidal interactions with the central star,
Gu et al., 2003; Sasselov, 2003; Ivanov and Papaloizou, perhaps even leading to capture onto a much shorter-period
circular orbit. In the second scenario, discussed recently by
— ) o o Gaudi (2003)“free-floating” planets in the dense cluster en-
Corresponding author. Current address: University of lllinois at . .
Urbana-Champaign, Department of Physics, Loomis Laboratory, 1110 W. vironments where mOSt_StarS are formeq \_NOUId be tlda”y
Green St., Urbana, IL 61801, USA. captured by protostars, in a manner reminiscent of the old
E-mail addressjfaber@uiuc.edJ.A. Faber). tidal-capture scenario for forming compact binaries in glob-
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ular clustergFabian et al., 1975; Press and Teukolsky, 1977;
Lee and Ostriker, 1986s far as the close encounter is con-
cerned, the only difference between these two scenarios is |,
whether the nearly-parabolic orbit of the incoming planet is
in fact slightly hyperbolic or elliptic.

In this paper we study the strong tidal interaction between
a giant planet and a solar-like star using 3-D numerical hy-
drodynamic calculations. We focus on encounters with pe- o~ '
riastron separations of a few solar radii, which can lead to ™
significant dissipation of orbital energy and mass loss. Since =
the details of the interaction are insensitive to the sign of the
total energy, our results can be easily applied to the case of |
highly-eccentric elliptic orbits or low-energy hyperbolic or- F
bits. The main questions we address concern the final fate
of the planet following an interaction, and the possibility of
an observational signature of strong tidal interactions. Sur-
prisingly, we find that complete disruption of a Jupiter-like ooty R T
planetoutsidea solar-like star is never possible. If the in- 1 10 100
teraction is close enough for the planet to be stripped of a P(days)
significant fraction of its mass, its orbit alwagainsenough , . - _ _

. s .. ; Fig. 1. Minimum massM p sini versus orbital period for the current ob-
energy to become un,bound _(even if the |n|t|a'1l orbit was served sample of planetary companions. OGLE-TR-56b is one of only six
bound). Even closer interactions would lead instead t0 @ pjanets whose orbital inclination is known, all of which are marked by
physical collision with the star. Observationally, hot Jupiters squares (for these, we show the actual mass). In all six cases, since the
are confined to a region of parameter space that appears tdnclination is determined from eclipses> 80°. Triangles represent the
follow closely a simple definition of the “tidal limit,” shown ~ POssibly lower-mass “hot Neptunes,” GJ436 b and 55 Cnc e, which may
. . . - have a qualitatively different structure than the more massive planets on the
in Fig. 1 Data points mdlcat_ed by squares represe'nt planetsfigure. The Roche limitg g, defined via Eq(3), is shown for a planet with a
whose masses are known, since the mass fundfipsini is radius equal to that of Jupiter, as is the ideal circularization radjgsg, de-
constrained by the observation of transits. In all other cases,fined as an orbit with a separation twice as large as the Roche limit. Data are
the mass shown represents a lower limit. The only planets taken from the extra-solar planets catalodhtip://www.obspm.fr/encycl/
that may fall within this limit, shown as triangles, have a ¢&1-ntml
much smaller mass, close to that of Neptune, and may well
be structurally different from typical gas giants, as we dis-  The Roche lobe radiusg, is defined in terms of the clas-
cuss below. sical stellar two-body problem. For two point masses in a

It is not immediately clear that any common definitions circular orbit, there exists a critical equipotential surface in
of the tidal limit should be relevant here. Indeed, each is the rotating frame around each body, within which all coro-
made under assumptions that are violated for highly eccen-tating fluid is bound to it. This volume can be used to define a
tric planetary orbits, e.g., circular orbits and synchronized characteristic volume-averaged radius; for mass ratios much
spins. We note one crucial fact about all the tidal limits different than unity the Roche lobe around the less massive
discussed below, however. They all have the same physicalbody is roughly spherical, with a cusp at the inner Lagrange
scalings, with different coefficients, since the underlying di- point. In the limit of extremely small mass ratiag « 1),
mensional analysis is the same for each. the Roche lobe radius depends weakly on the compressibil-

The Hill radius,ry, is defined in the context of the re- ity of the less massive object (the primary is always assumed
stricted three-body problem, and is commonly used in de- to be a point mass; séai et al., 1993for an extended dis-
scribing the orbits of a planet’s satellites. Based on simple cussion). In most pioneering works (see, elgans, 1910it
point-mass mechanics, it is found that a satellite can orbit was assumed that the secondary was completely incompress-
stably around a planet of mas#p in a circular orbit of ra- ible (corresponding te = 0, or equivalently]” — o0). For
diusa around a star of mas¥, so long as its own orbit has this case, it was found that
a semimajor axis less than

OGLE-TR-56b

L

22
o

rr = 0.407¢%3a. (2)
MP 13 1/3 L. . . .
rg=a <7> ~ 0.69%"*a, Q) Later,Paczyiski (1971)considered the opposite limit, treat-
3(Mp + M) ing the secondary as a point-mass (corresponding to the in-
where the latter relation holds for small mass ratios, 4.e-, finitely compressiblecase). Based on tabulated results, he

Mp/M, < 1. We note that whaGaudi (2003yefers to as  found that the Roche lobe radius is given by
the “Roche limit” is found by a brief calculation to be the 13
Hill radius instead. rr =0.4627"a, 3)
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and is almost exactly two-thirds the extent of the Hill radius. suggested that these planets may in fact be composed com-
This is the definition of the Roche lobe radius that appears in pletely or in part of rock and ic@Butler et al., 2004and may
Sasselov (2003among many other sources, and will be the be the rocky remnant cores of gas giants which have lost
one used throughout this paper, for reasons we will explain significant amounts of mass to tidal heating or some other

in detail in SectiorB. A related quantity we refer to regularly
is the Roche limitig, defined as the critical separation where
the planet fills its Roche lobe; it can be defined implicitly
through the relatiomg (ag) = Rp.

Remarkably, we find that the present location of the tidal
“edge” observed ifrig. 1would be naturally explained if all
planets, with the possible exception of the “hot Neptunes”
shown as triangles, had been initially on highly eccentric
orbits and later circularizedithout significant mass or or-
bital angular momentum losat a distance approximately
twice that of the Roche limit, which we will refer to as the
“ideal circularization radius.” Indeed, any initial orbit with
extremely high eccentricity has a (specific) total angular mo-
mentum satisfying

j2:2GMr,,, 4)

whereM is the total mass of the system andhe periastron
separation of the initial orbit. The final circular orbit, on the
other hand, satisfies the condition

j?=GMa. (5)

Assuming that tidal circularization occurs through dissipa-
tion of orbital energy but with no net loss of mass or an-

gular momentum, and neglecting spin angular momentum,

we conclude that the orbit will circularize at a separation
a ~ 2r,. We show below why we believe the condition

procesgMcArthur et al., 2004)

The scenario we investigate here differs in its predictions
from those involving the slow inspiral of giant planets all the
way to the tidal limit (as in many popular “migration scenar-
ios”; see, e.g.Trilling et al., 1998; Gu et al., 2003 This
long-term inspiral is expected to produce an “edge” at the
Roche limit, not at a separation twice as large. In addition,
it is unclear what mechanism would halt the orbital inspi-
ral before the onset of Roche lobe overflow and mass loss
from planets experiencing radial expansion from tidal heat-
ing. Various possibilities have been proposed which rely on
the evacuation of the inner protoplanetary dikkichner and
Lecar, 2002)and tidal interactions involving the host star’s
own rotation(Ford et al., 1999)but it is unclear how any
orbital model involving tidal decay would produce the cur-
rently observed “edge” further out.

One major caveat with highly eccentric orbits concerns
the survival of the planet during orbital circularization. Pre-
vious calculations have indicated that as energy is injected
into the planet during circularization, its radius should ex-
pand significantly, eventually leading to Roche lobe over-
flow (Bodenheimer et al., 2001, 2003; Gu et al., 2003, 2004)
Of course, given that these same results were used to argue
for a lack of planets with periodB < 3 days, it is fair to say
that uncertainties still remain as to the evolution of planetary
radii and separations through tidal dissipation and circular-
ization. Of particular importance is determining the rate at

rp > rg determines whether the planet remains in a bound which a planet can dissipate tidal energy, and the effect of the

orbit after the passage.

energy dissipation rate on the planet’s radius. This process

Our limits are placed under the assumption that these “hotis complicated, and may depend sensitively on the rotation

Jupiters” have radii not very different from that of Jupiter,
R; = 7.14 x 10° cm. This is consistent with current mea-

rate of the planet relative to the angular velocity during peri-
astron passagévanov and Papaloizou, 2004bjh any case,

surements for the three innermost planets found with OGLE while we consider an examination of this matter to be an im-

(R =1.23+0.16R, for OGLE-TR-56,R = 1.08=+ 0.07R,

for OGLE-TR-113, andR = 1.15"0%9R; for OGLE-TR-
132;Sasselov, 2003; Torres et al., 2004; Mayor et al., 2004;
Bouchy et al., 2004; Konacki et al., 2004s well as re-

portant step in understanding planetary orbital evolution, it
is beyond the scope of this paper.

Our paper is organized as follows. In Sectgnwe de-
scribe our Lagrangian SPH code, as well as the parameters

cent theoretical calculations of the structure of giant planets used in our calculations. In Secti@nwe detail the results of

with extremely short-period orbitBurrows et al., 2004;
Chabrier et al., 2004)f indeed the radii of some of these

our calculations, looking in turn at the case where the planet
passes outside of the Roche limit, and then the case where it

planets are slightly larger than that of Jupiter, as appears topasses within, since this is found to be crucial in determining

be the case for HD 209458 witR = 1.43 4+ 0.04R,, our

conclusions remain unchanged, since the location of the “cir-

cularization separation” will move slightly to the right on our
plot but maintain the same functional form.

The “hot Neptunes,” GJ 436(Butler et al., 2004and 55
Cnc e(McArthur et al., 2004 are significantly less massive
than the other planets with periods < 3 days, assuming
they do not have improbably small inclination angles. The

radii of these planets, however, are likely to be smaller than

the future evolution of the planet. In Sectidnwe discuss
how these results affect the current picture of the evolution
of giant planets, and discuss further scenarios to which these
results may be applied.

2. Method and approximations

All of our calculations were done with a modified ver-

that of Jupiter, since an extended envelope would be blown sion of theSt ar Cr ash smoothed particle hydrodynamics

away by radiation from the parent M dwarf; it has been

(SPH) code, available &ttp://www.astro.northwestern.edu/
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StarCrash/ Several previous versions of this code have play no role in the calculations described here. In no run
been used to study a wide range of hydrodynamic inter- did any SPH patrticle fall within that boundary. Our imple-
actions between stars (see, elRasio and Shapiro, 1992; mentation of stellar point-masses is similar in many ways to
Faber and Rasio, 2000; Sills et al., 200$PH is a La- previous Newtonian SPH treatments of tidal interactions be-
grangian method which treats the dynamical evolution of tween stars and black holes (e gluzniak and Lee, 1998

a set of finite-sized fluid particles. The density of the fluid but here we can ignore many of the details regarding the ef-
is computed at the position of each particle using an in- fective boundary around the point-mass. Indeed, the matter
terpolation kernel with compact support, extending over a lost by the planet and accreted onto the star during extremely
characteristic “smoothing length.” In our implementation, close passages has a minimal effect on the stellar mass and
the smoothing length around each particle varies in time completely negligible feedback on the evolution of the orbit.
so as to provide overlap with a nearly constant number of  We define our units in terms of the parameters of the
neighboring particles. Hydrodynamic forces are computed planet, settingG = Mp = Rp = 1. In terms of the mass
using SPH summation techniques (for a detailed derivation, and radius of Jupiter; = 1.9 x 10°© g andR; = 7.15 x
seeRasio and Shapiro, 1992whereas gravitational forces  10° cm), this yields characteristic time, velocity, energy, and
are calculated using a grid-based FFT convolution method. angular momentum scales of

Shock heating is treated by evolving the energy equation

with an artificial viscosity prescription froBalsara (1995)  , _ 1698( Mp ) 05( Rp )1‘5 sec=1, )
Computing the full hydrodynamic evolution of both the My Ry

planet and the star would be very challenging but is in fact Mp\®P [/ Rp\ O

unnecessary. Indeed, a simple order-of-magnitude estimatey = 4.21 x 106(—J> (R_1> cm/s=1, (10)

shows that the vast majority of the tidal energy extracted ) 1
. . . . . M R -
from the orbit will be deposited in the planet during the close E —3.37x 1043< P) < P> erg=1. (11)

interaction. FollowingFabian et al. (1975)we expect that ;) \ R,

for the passage of a planet of mags and radiuskp by a Mp\ 5/ Rp\O5
star with mass//, and radiusk, with periastron separation J =5.72x 1046<M—> <R_> ergs=1. (12)
rp, the tidal energy deposited in the planet and in the star are J 4
given respectively by In all our calculations we fix the mass of the star to be
5.5 M, =1000Mp =0.95(Mp/M;)Mg. The planet’s equation
. 2OMRp of state (EOS) is approximated byla= 2 (or equivalently,
AE, >~ fy—F+, (6) ;
rp n = 1) polytrope, i.e., the pressur = kp?, where the en-
GM?2R5 tropy constantk is initially set to a fixed value through-
2 Pt . .
AE, > fi—F%—- (7) out. This EOS has been found to approximate very well the
"p bulk properties of Jupiter-like planets, even though it differs

The dimensionless factorg, and f. depend primarily on  from the ideal gas form at low densiti¢slubbard, 1975;
the ratio of the dynamical (crossing) time to the internal dy- Dintrans and Ouyed, 2001 particular, it provides a mass-
namical time of each object. Therefore they are mainly a radius relation such that radius is independent of mass,
function of the mean density of each object, and should have agreeing well with detailed models (s@errows et al., 2003,
comparable values for the planet and star. As a result, the ra-2004 and references therein). We note that should the ra-
tio of energy dissipated in the planet to that dissipated in the dius of an extrasolar planet be larger, as is predicted for

star is giant planets during early stages of their evolution (see, e.g.,
2 5 Saumon et al., 1996our results would have to be scaled
AE, M, Rp :
~ ~ 10, (8) accordingly.
AE, Mp R,

To model the planet in our calculations, we place SPH
for a Jupiter-like giant planet and a solar-type star. A more particles of varying mass in an equally-spaced hexagonal
detailed analysis based on an expansion over adiabatic non€lose-packed lattice, with particle masses set proportional to
radial oscillation modes (see, e.gge and Ostriker, 1986 the polytropic model's density at the appropriate radius. In
yields exactly the same energy ratio dependence on mass foall calculations shown hergy = 48846 particles are used
two equal-density objects to lowest order, albeit with a more to describe the planet. This number which yields a charac-
complicated functional dependence on the periastron sepateristic smoothing lengtlk/Rp = 0.05, has been found in
ration r,,. Noting these results, we follow the full 3-D hy- previous calculations to yield results which typically con-
drodynamic and thermodynamic evolution of the planet, but serve overall energy terms to within 1% (Faber and Ra-
treat the star as a simple point mass, which interacts with thesio, 2002) The planetary mass distribution is relaxed for
fluid through gravitational forces only. Although our code 30 dynamical times to achieve a stable configuration, and
can handle fluid particles on grazing trajectories, by treating placed into a very high-eccentricity elliptical orbit around
the stellar surface as an absorbing boundary that captures althe “point-mass” star at an initial separatign= 200. This
SPH particles that pass withi®, = 10R,, such techniques s sufficiently distant that the initial tidal perturbation of the
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planet is negligible. All initial orbits have apastron separa-  o.25 - .
tions ofr, = 10%, equivalent to 48 AU for the parameters [ i
of Jupiter. The periastron separation is varied to span a range
of values 15< r, < 50. For all runs, the planet is initially oz L
non-spinning in the inertial frame, with the velocities of all
particles set equal to that of the planet’s center of mass.

0.15 -

3. Calculationsand results &

The evolution of planets on nearly parabolic orbits is 01y
found to be critically dependent on whether or not the or-
bital separation passes within the Roche limit. We note that
although some of the assumptions used to define the Roche o0.05

limit do not apply to the situation we consider here, the use I /
of the term is still appropriate. Specifically, the Roche limit r g;
1

problem assumes that both bodies are point-masses, and that [
they both corotate at an orbital velocity corresponding to a e : — : : —

. . . . . 0 50 100 150 200
circular orbit. Here, the planet is an extended object, it is T
irrotational in the inertial frame, and the angular velocity _ _ . ,
during the encounter corresponds to a highly eIIipticaI or- Fig. 2. The evquno_n of th_e spin angular _momentum over time for all runs

. 4 ) . . shown inTable 1with periastron separations ¥7r, < 27. In all cases,
bit. Still, the crucial functional dependence on the physical e see a spike during the periastron passage, which lasts7frem5-50,
parameters of the system remain exactly the same. We will before a slight decrease toward the final relaxed value. For the periastron
show with our calculations that the critical separation for the separations shown here, there is a monotonic increase in the final value of
planet to undergo mass loss corresponds extremely closely/sp With decreasing;,.
with the classically defined Roche limit, and thus refer to
what is formally the dynamical tidal mass-shedding limit as tively similar pattern of tidal energy and angular momentum
the Roche limit. transfer. The temporal behavior of angular momentum and

As we demonstrate idppendix A the classical Roche energy transfer is demonstratedrigs. 2 and 3for a num-
limit formulae found inPaczyski (1971) and Eggleton ber of passages with varying values-gf and conforms well
(1983) which treat both components in the system as point with the commonly accepted picture of the tidal interaction
masses, underestimate the tidal limit separation (the point atprocess. In all cases, we see that energy is transferred into
which Roche lobe overflow begins) for our extended, coro- the orbit prior to the periastron passage (which occurs for all
tating polytropic planetary models placed on circular orbits, models al" ~ 45), without a noticeable change in the angu-
by no more than 2%. Indeed, whePaczyiski (1971)finds lar momentum of the planet. Immediately after periastron,
the critical separation for Roche lobe overflow to begin at a energy is rapidly transferred via tidal effects into the planet,
separationig = 21.64, we find that it occurs at a separation with the tidal torque causing a sharp drop in the total or-
that falls somewhere in the rangg = 21.8-220. bital energy. After the passage, the planet gradually relaxes
Our dynamical calculations indicate that for highly ellip- toward a new equilibrium spinning configuration.

tical planetary orbits with periastron separations within this It should come as no surprise that for the passages outside
limit, mass will be stripped from the planet, where we note the Roche limit inFig. 3, decreasing the periastron separa-
that here the planet is assumed to be irrotational in the in- tion leads to both a decrease in the final orbital energy and
ertial frame. Funneling out through both the inner and outer an increase in the spin angular momentum, since the tidal
Lagrange points in two streams, this mass loss has a sig-nteraction is much stronger at closer range. These results
nificant impact on the future evolution of the planet as well cannot be generalized to the case of orbits passing within
as the orbit, since it can dramatically affect the overall en- the Roche limit, however, since the final angular momentum
ergy and angular momentum budget of the system. Orbitsand energy distributions are extremely sensitive to the mass
with periastron separations outside the Roche limit still in- loss that occurs in those cases.
duce energy and angular momentum transfer, but no massis As we expect from simple virial arguments, the tidal heat-
exchanged between the planet and the star, as we describe img results in some degree of expansion, and a less bound

detail below. structure for the planet, as shownHig. 4. This relationship
holds for the entire sequence of orbits we calculated, includ-
3.1. Outside the Roche limit ing those which passed within the Roche limit, as we discuss
in more detail below. For passages outside the Roche limit,
For all systems with initial periastron separations> the amount of energy injected into the planet was not at a

22, the passage of the planet by the star resulted in a qualitasufficient level to unbind any mass from it, down to our reso-
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Fig. 3. The evolution of the orbital energy over time for runs with= 16,

20, 25, and 50. In all cases, we see energy is injected into the orbit during the Fig. 4. The final gravitational binding enerdy (solid line), internal ther-
first half of the encounter, followed by a rapid decrease of greater magnitude modynamic energy/ (dash-dotted line), and spin kinetic enetfyp (dot-
during the second half of the encounter, and finally a long period where the t€d line) of the planet, as a function of periastron separation. Also shown
total energy levels off. For the runs witly > 17.5, the net energy changeis IS the virial energyEyir = W + 3U + 2Egp, as a dashed line. We see that

negative, and the final orbit is more bound than the initial onerfes 16, in all cases the final planetary configuration is nearly virialized. As the to-
we see that the energy required to strip mass from the planet leads to thetal energy for all configurations shown here is negative, we conclude that
orbit gaining enough energy to unbind completely. no Jupiter-like planet can be fully disrupted by a non-grazing passage past

a sunlike star.

lution limit (defined by the least massive SPH particles used while the power-law scalings are very similar, the perturba-
near the surface of the planetmin = 1.5 x 1077). As the tjon analysis typically yields a change in the orbital energy
periastron separation decreases toward the Roche limit, theapproximately half the magnitude of what we find from our
energy gained by the planet does increase, causing the planSpH calculations. The relationship breaks down completely
et's radius to increase in corresponding fashion. The variousfor rp < 20, when the deformation of the planet undergo-
energies and angular momenta describing the final planetarying mass loss clearly becomes nonlinear. We note that the
configurations for all the cases we investigated are listed in nearly constant change in orbital energy we find from our
Table 1 For orbits withr,, > 15 our runs are terminated at calculations at periastron separatiops> 30 are a numeri-
T = 200, since in all of those calculations the planet had cal artifact, and represent the smallest change in energy we
reached a relaxed, virialized configuration by that point. For can accurately measure over the full timescale of one of our
models with smaller periastron separations, we double theevolution calculations.
duration of the calculations, letting them run urfti= 400.

Much of the previous work on tidal capture has used 3.2. Within the Roche limit
a linear perturbation formalism, developed WBréss and

Teukolsky, 1977 see alsd.ee and Ostriker, 19§96 which For initial orbits withr, < 21, the planet passes within
treats the fluid response to the tidal interaction as a super-the classical Roche limit (for a mass ratjo= 0.001, the
position of non-radial adiabatic oscillations.Appendix B critical separation for Roche lobe overflowdg = 21.64,

we summarize the equations describing the energy loss toaccording to Eq(3)). In all the cases we looked at in this
tidal perturbations, and give the coefficients in the expan- regime, fluid was stripped from the planet, escaping in ex-
sion for configurations with EOS appropriate for both a gas tremely narrow streams through both the inner (L1) and
giant (" = 2) and, for completeness, a terrestrial planet outer (L2) Lagrange points. We show the evolution of one
(I' = 3) (Boss, 1986)0Outside the Roche limit, we find that  such system, witlr, = 18, in Fig. 6. The axes are defined
the Press—Teukolsky formalism gives the proper scalings for such that the planet orbits counter-clockwise along an or-
the tidal interaction process, but slightly underestimates the bit whose unperturbed pericenter would fall on the negative
overall magnitude of the effect. IRig. 5 we show the fi- x-axis, and the timescale initialized to the initial configura-
nal orbital energy as a function of periastron separation for tion at separatiomg = 200. In the first panel, we show the
all the models we computed, as well as the estimate ob-configuration of the planet &k = 45, shortly before peri-
tained from the linear perturbation analysis. We find that astron, as well as the star, whose physical size is indicated
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Table 1

Run results

rp Am Amip Eorp Jorb rmax Esp Jsp w U Rgs R100
12 58E-1 32E-1 177E-1 62 hyp 4.68E-3 1.26E-1 —0.052 Q014 877 572
125 54E-1 39E-1 6.80E-2 70 hyp 6.66E-3 1.16E-1 -0.077 Q021 768 628
13 49E-1 27E-1 911E-2 81 hyp 9.94E-3 1.45E-1 —0.103 Q027 675 582
135 42E-1 24E-1 163E-1 93 hyp 1.30E-2 1.69E-1 —-0.140 Q038 887 571
14 37E-1 21E-1 122E-1 105 hyp 1.53E2 1.77E-1 —-0.177 Q049 535 563
145 3.0E-1 18E-1 130E-2 117 hyp 1.72E2 1.91E-1 —-0.224 Q063 506 611
15 24E-1 15E-1 125E-1 131 hyp 2.27TE2 1.98E-1 —-0.279 Qo077 358 388
16 15E-1 9.3E-2 9.37E-3 153 hyp 2.36E2 1.90E-1 —0.385 Q111 275 361
17 T2E-2 5.0E-2 —5.68E-2 171 1.63E3 2.30E2 1.74E-1 —0.491 Q147 182 374
18 27E-2 21E-2 —1.15E-1 184 8.42E3 1.97E2 1.46E-1 -0.577 Q177 130 376
19 64E-3 57E-3 —143E-1 193 6.95E3 1.37E2 1.10E-1 —-0.637 Q202 111 384
20 58E—4 5.6E—4 —142E-1 200 7.04E3 7.60E3 7.27E-2 -0.676 Q218 102 382
21 12E-6 35E-7 —128E-1 205 7.82E3 3.45E3 4.53E-2 —0.700 Q229 Q97 339
22 00 0.0 —117E-1 209 8.49E3 1.35E3 2.73E-2 -0.715 Q235 Q94 111
23 00 0.0 —1.10E-1 214 9.06E3 5.19E4 1.65E-2 —-0.726 Q240 Q93 106
24 00 0.0 —1.06E-1 219 9.40E3 1.92E4 9.89E-3 -0.733 Q242 Q92 103
25 00 0.0 —1.04E-1 223 9.60E3 7.71E5 5.90E-3 —0.740 Q246 Q91 103
27 00 0.0 —101E-1 232 9.89E3 1.48E5 2.03E-3 —0.745 Q248 Q90 100
30 00 0.0 —9.97E-2 244 1.00E4 1.85E6 4.44E-4 —-0.747 Q248 Q89 098
40 00 0.0 —9.95E-2 282 1.00E4 <1E-6 <1E-4 —0.749 Q249 Q89 097
50 00 0.0 —9.95E-2 315 1.00E4 <1E-6 <1E-4 —-0.749 Q249 Q89 097

Note Results of our runs. Hers, is the initial periastron separation,n the mass unbound from the plangiyi, the amount of mass lost from the planet
but bound to the sta&q, and Jorp, the final orbital energy and angular momentufax is the new value of the apastron separation after the encounter for
systems which remain bound (*hyp” indicates the planet leaves on a hyperbolic S&pignd Jsp the final spin energy and angular momentum of the planet,
W andU the planet’s gravitational binding and internal heat energies Ryacnd R1qg are the radius of the final bound configuration containing 95% and
all of the bound matter, respectively, with initial values d8®and 100. All energy and angular momenta quantities are overall totals, not specific totals with
the mass dependence divided out. Units are defined suctithat/p = Rp = 1.

by the large circle. The planet is beginning to show signs of Roche limit, but flattens out at smaller values, such that even
tidal deformation (looking roughly ellipsoidal). Note again for orbits on which the planet will graze the edge of the
that the stellar size is merely illustrative, and plays no role star during the passage, it wilbt be completely unbound

in the calculations, since no matter from the planet crossesby the interaction. This is in agreement with previous re-
within the stellar radius during our calculation. In the sec- sults for tidal disruptions of stars around massive black holes
ond panel, af’ = 50, immediately after periastron passage, (Luminetand Carter, 1986; Evans and Kochanek, 1388}

we see the planet starting to distend further, as matter crosse§dicate full disruption only occurs for stars on orbits with
through the Lagrange points while tidal energy is transferred Periastron separations meeting the criteriog 1.0, where
into the planet. A’ = 75, two mass-shedding streams are the interaction strength is defined by the relation
clearly evident. We find that all particles in the inner stream, M 05 rp 15

representing a total mageni, = 0.021 are no longer bound 7= <m> (R_2> )

to the planet, but remain gravitationally bound to the star. . .
By contrast, particles in the outer stream, representing a to—V\/herGMl andM; are the masses of the more massive object
' ' and the body being disrupted, respectively (héfe,= M,

- 3 ;
tal T:;SAImOU,: - 569 X'Illg_e é_aretéagl:r:)d tihle'thetr the ISte':Le and M> = Mp). For systems witly <« 1 and equal-density
nor planet, and wi jec rom system. in components, this condition essentially yields < R.. In

final frame, we find all - 150 thaF f'“i‘?' in both streams. other words, planets would to have to pass within the star
has assumed an essentially ballistic trajectory, freely falling in order to be fully disrupted.

in the star's potential well. Particles from the inner stream |, 2| cases we studied (except the orbit with= 21,
trace out nearly elliptical orbits, retaining enough angular i, \which fewer than 10 SPH particles became unbound),
momentum to pass outside the star's surface, while those inihe amount of matter stripped from the planet along the in-
the outer stream head away from the system on hyperbolicher stream, which remains bound to the star, exceeds the
orbits, leading the path of the planet in an almost cometary gmount of matter unbound from the system through the outer
fashion. stream. This asymmetry in the mass of the two tidal streams
We can make a few general statements with regard to or-is greatest near the Roche limit. Indeed, for orbits with
bits within the mass-shedding regime. First, in all cases we 18 < r,, < 20, we find that over 75% of the mass stripped
investigated, the amount of mass stripped from the planetfrom the planet can be found in the inner stream. For orbits
increased with decreasing periastron separation, as showrwith smaller periastron separations, especially those near-
in Fig. 7. The rise seems to be almost exponential near theing the limit of a grazing collision, the mass ratio in the two

(13)
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Fig. 5. The relative change in the orbital energy from the beginning of our Fig. 6. Evolution of the planet along an orbit with periastron separation
calculations to the end, as a function of the periastron separation (solid r, = 18. In the upper left panel, we see the planet, orbiting counter-clock-
curve). We see that this quantity increases as we sweep inward (becom-wise, nearing periastron &t = 45 past the star, whose physical radius is
ing more negative), indicating more tightly bound orbits, until reaching a indicated by the circle. In the upper-right, At= 50, we see the planet im-
maximum atr,, ~ 19.5. Within this periastron separation, systems become mediately after periastron, with strong tidal effects obvious. In the lower
successively less bound (the orbital energy less negative), unjikatl 6.2 left, we see afl" = 75 that a pair of mass-shedding streams have formed,
we find that the planet becomes unbound from the star and leaves on a hy-both toward the star and away. Eventually, By= 150, we see the inner
perbolic trajectory. The dashed curve shows the predicted behavior from stream has stretched all the way around the star, as the particles follow
a Press—Teukolsky type analysis of non-radial adiabatic oscillations as de-essentially free-fall trajectories in the star’s gravitational well. Note the dif-
scribed inAppendix B This approximation scales well at large separations, ferent size scales for each plot. For clarity, only particles near the orbital
up torp, ~ 30 where the systematic errors in the total energy become larger plane are shown.

than the net change, and breaks downripr< 20 when the linear regime

itself is no longer applicable.

streams nears unity. While at first glance these results may 1 ;' | _
appear to differ slightly from the picture developed for the Am 3
disruption of a star by a massive black holeliacy et al. 01 L Ry —--- Am, ]
(1982) Rees (1988)andEvans and Kochanek (1989e g E
note that their calculations were performed for orbits with s 1
n ~ 1.0, which represents a periastron separation here of 0.01 F 3
rp = 10.0. Summarized, when the tidal energy£ injected i 7
into the smaller body is greater in magnitude than the bind-  0.001 = E
ing energyEp of the object, we expect it to be disrupted. £
The velocities of fluid elements in the smaller object take  0.0001 & -
on a range of values, depending on the depth of the passage g ]
through the potential well, with a roughly flat distribution of 10-5 4
specific energies centered near zero, sindge > Ep (see 3
Fig. 3 in Evans and Kochanek, 1989rhe fluid with neg- ol 1
ative specific energy becomes bound to the larger body in 10 3 E
the system, and that with positive specific energy unbound, C ]
representing nearly equal amounts. For the planet—star inter- 1077 = | | | | | | | | | K

actions we investigate here, we expect to find equal masses 12 13 14 15 186
deposited into the inner and outer streams only in the limit Tp
of grazing collisions, for whiclAE ~ Ep. Such a conclu-

. . . ig. 7. The total mass unbound from the planet during the interaction (solid
sion cannot be generahzed to passages with Iarger values 0fi:ne) and the mass which ends up bound to the star (dashed line), as a func-

rp since the magnitude of the tidal pulge d_oes not approachtion of periastron separation. As a rule, matter in the inner mass shedding
the same scale as the planet’s radius, or in other terms, thestream ends up bound to the star, whereas matter in the less massive outer

tidal energy remains smaller than the overall self-binding stream is completely unbound.

17 18 19 20 21
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energy of the planet. Furthermore, in terms of the interac- - }
tion strengthn, we expect that disruption of a Jupiter-like - Eject.  Mass
planet by a solar-type star should require a tighter passage L Loss | .
than for a solar-type star being disrupted by a massive black L ‘
hole of Mgy ~ 10°M,. Indeed, the characteristic expansion /\
i\

|

i
velocity vexp Of the secondary as it is being disrupted scales 1
like vexp= (M1/M2)Y/®vese Wherevescis the escape veloc-
ity from the its surface. Thus, the characteristic expansion
velocity within a star being disrupted by a massive black
hole (M1/M> = 10P) is more than double that for a planet =
being disrupted by a staM;/ M, = 10°), relative to the re-
spective escape velocities. We conclude that the core of the
planet should remain bound for passages with lower values
of  than for the stellar-massive black hole case.

For close passages, the planet experiences a radial ex
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pansion, due to strong tidal heating throughout. As the pe- i ‘i Capture—— ]
riastron separation decreas®sg, defined as the radius en- 0 T ‘}‘ TR ‘TTT\:T
closing 95% of the planet's bound mass at the end of the 20 30 40
calculation, increases to a value a few times larger than that rp

of the planet prior to the encounter, especially in cases with _ g _ _ _
< 18. For all mass-shedding svstems. the furthest aravita- Fig. 8. The critical valuecaptof the relative velocity at large distancese,
I'p X 1O. gsy ’ g for which a planet can be captured, as a function of the periastron separation

tionally bound particles, at a distan®goo from the planet’s (solid line). Velocities below the curve lead to capture, those above the curve
center of mass, were found to be locatedagg > 30. This to unbound systems. Fey, < 17.5, there is a net gain in orbital energy,
state would almost certainly not be permanent, and mere|yand no bound system can be formed. Also shown are curves of constant
reflects the extremely long dynamical relaxation timescale initial impact parameteb, as well as the typical relative velocities within
found in the low-density outer regions of the planet. Since a globular cluster e, = 10 k/s) and an open clusterd, =2 kmys).

. . ) The dot-dashed line shows the approximate fit, @6), which we use to
the dynamical timescale has a power-law dependence pro-stimate the capture timescale.
portional top~02, the matter furthest from the planet (and
thus with the lowest density) requires considerably more
time than we can feasibly calculate to reach equilibrium. from the planet, leaving only- 40% of the original mass
However, since this represents an extremely small fraction Of the planet gravitationally bound. A great deal of material
of the total mass, we do not expect the long-term relaxation Which once formed the planet becomes bound to the star in-
of the planet's outer regions to affect our results about the stead, causing a stromgcreasein the orbital energy of the
dependence of various energy quantities on the periastronsurviving planet. A similar pattern was seen for all passages
separation. with r, < 16.

Several quantities we tabulate do not show monotonic ~We can use these results to classify the fate of plan-
dependence on the periastron separation of the planet's or£ts passing by stars on either bound or unbound orbits. In
bit. We see inFig. 5that it is only for the range, > 19.5 Fig. 8 we show the critical relative velocity at large separa-
that the final orbital energy becomes more strongly nega- tions leading to captur@capt= +/2(A Eorb)/ 11, as a function
tive as the periastron separation decreases. For these case@f 7,. Hereu ~ Mp is the reduced mass of the system. If
the apastron separation of the post-encounter orbit decreasetie relative velocity of the star and planet at large separa-
with decreasing, (the periastron separation, as one should tions falls below the critical value, the planet can be tidally
expect, remains essentially fixed after the encounter, sincecaptured during the interaction. Note that these results may
the specific orbital angular momentum changes very little underestimate the true capture velocity b¥6%, since we
during the encounter). Indeed, the orbital energy reacheshave ignored tidal dissipation in the star. Of course, since
an extremum and begins to become less negative (the orihe energy loss scal@sr;e, this represents less than a 2%
bit less tightly bound) asg, decreases below the critical ~correction to the maximum capture radius for a given rel-
valuer, = 19.5. For orbits withr, < 17.5, there is a net  ative velocity. We see that in a globular cluster, where the
gainin the orbital energy of the planet. For periastron sepa- typical relative velocity is~ 10 knys, there is a very low
rationsr, < 16.2, the orbital energy becomes positive, and probability of forming bound systems through tidal capture.
the planet leaves the system on an unbound hyperbolic tra-For an open cluster, however, with a typical velocity dis-
jectory. This can also be seen ig. 3, as the run with persion of 2 knfs, close passages satisfying 8, < 30
rp, = 16 demonstrates a characteristically different pattern are likely to meet this criterion. At the high end, our main
than those at larger separations. The tidal interaction leads tosource of uncertainty is a systematic overestimatecgf
a sharp increase in the orbital energy followed immediately since deviations from equilibrium in our initial conditions
by larger decrease. This is followed by significant mass loss act as a small spurious energy source for the orbit. To con-
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firm our estimate of the maximum capture velocity at large
separations, we computed additional runs with periastron
separations of, = 40 andr;, = 50, for orbits with zero total
energy (parabolic), and small positive energies (hyperbolic
with vs, = 0.05=2 km/s and 0L = 4 km/s). As expected,

we find that the total change in the orbital energy is essen-
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which is shown as a dot-dashed lineBig. 8 We integrate
Eq. (15) only up to the maximum possible capture velocity,
and only for ranges of periastron separations: r, < ro,
for the three cases considered Bgudi (2003) a globular
cluster ¢ = 10 kmys, v = 10* pc2), a rich open clus-
ter (0 = 1.5 km/s, v = 10% pc3), and a loose stellar as-

tially unchanged, since the interaction timescale is set by thesociation ¢ = 0.6 km/s, v = 10° pc~3). In all cases, it

orbital velocity at periastron, which depends very strongly

on the periastron separation but extremely weakly on the to-

tal orbital energy.
To calculate cross sections for these collisions, the impor-
tant quantity is the impact parameter of the hyperbolic orbit,

2G M,
rpvgo ’

b=r, |1+ (14)

is the gravitational focusing term which dominates, since
GMy/r, > v@apt for each. We find capture timescales, re-
spectively, of 21 x 10* Gyr (globular cluster), & x 10° Gyr
(open cluster), and.2 x 10* Gyr (loose association). The
systematic error in estimatingtapt for large values of-,,
discussed above, plays essentially no role in our final re-
sults for the globular cluster, and introduces an uncertainty
of approximately 2 and 10% in the rate for open clusters

rather than the periastron distance. To give some sense ofind loose associations, respectivéaudi (2003)overesti-

the size scales involved, for a globular cluster with =

10 knys, the narrow typical range of capturable periastron
separations, 18 < r, < 21, yields a correspondingly nar-
row range of impact parameters, 7#0b < 820. For an
open cluster withvo, = 2.0 km/s, the range of periastron
separations 18& r, < 30 corresponds to a wider range of
impact parameters for capture, 408@ < 5000, or roughly
20AU <b <24 AU.

It is relatively straightforward to expand this analysis to-
ward a more physically realistic picture of tidal capture. Fol-
lowing Gaudi (2003) we will assume that planets and stars
move within some form of cluster (either globular or open)
with the same characteristic velocity dispersinSuch a
condition would theoretically result after planets are liber-
ated from their original parent stars by a series of weak en-

mates the capture rate, due to a numerical error in the capture
timescale formula (Eq(7); the denominator should have a

2, not an 8), and by assuming capture for closer passages in
which mass is lost but the planet remains on a hyperbolic
orbit.

Regardless of whether the planet’s initial orbit is hyper-
bolic or elliptical, we expect that several distinct phenomena
should occur for passages with sufficiently small periastron
separations. For, < 21, we expect that some amount of
mass loss will occur, regardless of whether the system ends
up bound or unbound. For all systems with< 17.5, we ex-
pect that no tidal capture can occur, since there is a net gain
in orbital energy. In addition, we expect significant mass loss
(AM > 0.25M) for systems with, < 15.

The final orbital parameters for our runs are givedan

counters, but before thermal relaxation causes them to gainble 1 Note that mass contained in the inner stream;y,

sufficient velocity to escape the cluster. Furthermore, we will
assume that the number density of stais uniform, to sim-
plify the calculation. Following the logic of Section 8.4.5 of
Binney and Tremaine (198 Aye find that the average colli-
sion timer, required for a planet to pass within a distange
from a star is given by

v/

o0
-1 20731 fe‘”go/%z(vgorlz,+2GMvoorp)dvoo. (15)
0

.=

is treated here as if it will eventually accrete onto the star
when we determine the orbit. While this may not hold in de-
tail for all matter in the stream (since some small fraction of
the matter may be heated or shocked and attain enough en-
ergy to be ejected form the system), its mass as a fraction of
the star’s total mass is virtually negligible. To compute the
orbital energy and angular momentum, we include both the
point-mass star and all particles bound to it when calculat-
ing its center-of-mass, and only those particles bound to the
star when calculating its position. These results are only in-

Note that the latter term in parentheses above, representtended to describe the binary configuration present at the end

ing gravitational focusing, differs from that presented in
Eq. (8-121) ofBinney and Tremaine (19873ince they are
discussing the case of equal-mass stars, for which 2M.,.
Here, for planet—star encountedd,~ M,. As we have seen
in Fig. 8 the condition for tidal capture is more compli-
cated than simply having the periastron fall within a certain

limit, since sufficient energy needs to be dissipated to create

a bound orbit. Instead, for a given valueug§, the periastron
separation must lie within a range of valug$v,,) <7, <
r2(vso). We find thatr; andr, can be determined implicitly,
to more than sufficient accuracy, as roots of the relation

r—17.5

Uoo:5x 163W

km/s, (16)

of the dynamical encounter. Thermal and radiative processes
will certainly affect the structure of the planet, and addi-
tional mass loss may occur, changing the orbital parameters
(Guillot and Showman, 20025uch phenomena cannot be
properly described by an SPH treatment, however.

4. Conclusions

Based on recent observations of three extrasolar planets
with orbital periods of< 2 days but radii comparable to that
of Jupiter, we suggest that these planets may have either been
scattered onto very highly eccentric orbits through dynam-
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ical interactions in their protoplanetary systems or tidally limit. The answer seems not to lie in Roche lobe overflow for
captured from free-floating trajectories. Through a series of this case, since recent observati¢harres et al., 2004and
tidal encounters at periastron, energy can be dissipated untiltheoretical calculationBurrows et al., 2004indicate that
the orbit eventually reaches the ideal circularization radius, OGLE-TR-56b has a radius of2340.16R, which is well
at a distance almost exactly twice that of the Roche limit.  within the Roche lobe. Alternately, as presented here, these
Numerical calculations confirm that the classical Roche planets may undergo tidal encounters with stars after being
limit plays an important role in these interactions, since it kicked into highly eccentric orbits or captured from the field,
sets the boundary that determines whether or not mass willeventually circularizing at a distance equivalent to twice the
be stripped from the planet during periastron passage. InRoche limit, as the current observed population suggests. If
turn, mass loss can play a significant role in the resulting this is true, then some new mechanism must be constructed
energy and angular momentum budgets, with regard to bothto explain how such planets radiate away the dissipated en-
the orbital and spin evolution of the planet. ergy before they are disrupted. At the moment, there is no
For orbits with periastron separations that lie outside of getajled theoretical model which seems to provide the com-
the Roche limit, we find that a Press—Teukolsky expansion plete picture, but work is underway to model the detailed
over linear, non-radial, adiabatic oscillations provides a good g\o|ution of rotating planets undergoing a succession of tidal
estimate of the energy and angular momentum transfer be-jnteractions during periastron passages (see,leagov and
twee_n the orbit ar_wd the planet. For closer passages, howeverPapaloizou, 2004b
the linear formalism breaks down, as mass is stripped off  gjnce the change in orbital energy for the interactions
the planet through both the inner (L1) and outer (L2) La- \ye investigated here is significantly larger than the total en-
grange points. Still, we find that the planet will never be g4y of the systems, we conclude that our results should hold
fully disrupted on any orbit that does not result in a collision equally true for nearly parabolic orbits with slightly positive

W'ti the ?_ta(;. iecaﬁse the_ stripped mass ?]cts as an ir_‘erlg}’otal energy, i.e., tidal captures of planets on weakly hyper-
sink, we find that the maximum negative change in orbital i o hits with small relative velocity,. The parameter

eRnerr?y lf.or.tthi planet”occurs fortgncougtigs JtﬁSt within the space for encounters that lead to capture into a bound orbit
Iogg f(raorlnmtlh.e oor[)ifrg:cfgazzzars?r:ger? Nreat,er f?a(?t?:r:ggf theiS limited, however, primarily because of the mass-stripping
) . o 9 effect. Essentially, if a planet passes too far from the star,
tidal energy is used to unbind mass from the planet. For .. . o

it will not be captured, but if it passes too close, so much

X i < . X
periastron separations, 5, 175, the net change in orbital energy is used to unbind its outer layers that the planet is

energy turns positive, and the planet, with smaller mass af- . . .
o ._boosted to an even higher energy hyperbolic orbit. The para-
ter the encounter, is ejected from the system on a hyperbolic . : : S
meter space of orbits leading to tidal capture is significantly

orbit. . ) Lo .
| ict the f f h_greater for open clusters, with a typical velocity dispersion
Our results can be extended to predict the fate of eart of ~ 2 kmys. than for globular clusters-(10 kmys) but

like planets undergoing strong tidal encounters as well. For he d ically | ial densitv of bl d
the Earth—-Sun system, the Roche limit is reached at a peri-F e dramatically lower spatial density of planets and stars

astron separation of, = 1.38R¢. Strong tidal encounters, IS Iik_er to hinder the capture process. Siill, based on ap-

defined as those with interaction strengtk: 1, only occur ~ Proximate parameters for these systems, although we expect

for passages with, < 0.64R., leading us to conclude that that the capture timescale for planets will be almost 5 times
yZEN . H . . . pe

terrestrial planets would have to pass well within the star in SNOrter in open clusters, the significantly greater number of

order to be tidally disrupted. stars in globular clusters should lead to a higher overall cap-

The biggest problem for models which invoke long term ture rate. _ _
tidal circularization of orbits involves dissipating the energy ~_ Our detailed calculations suggest that the resulGanidi
injected into the planet while the orbit circularizes. Several (2003)may need to be recalculated, since his assumptions
planetary evolution calculations have predicted that planets about the fate of planets after tidal interactions uses an overly
on elliptical orbits with period® < 3 days should expand to simplistic dependence on the periastron separation. In that
the point where they fill their Roche lobe, and begin to trans- Paper, he argues that according to simple analytic approx-
fer mass to the parent star, eventually leading to disruptionimations, a planet with mass/p = 0.001M, must pass
of the plane(Gu et al., 2003, 2004)f this is true, however, ~ Within two stellar radii ¢, < 20Rp for our chosen parame-
it is unclear how one can explain the past orbital evolution ters) in order to be captured. We find that this upper limit
of OGLE-TR-56b and the other systems whose orbital pe- should be placed further out, but with a non-trivial depen-
riods fall within this limit, on what are now circular orbits. ~dence between the initial relative velocity of the planet and
One of two possible explanations seems to be required to ex-star and the critical periastron separation for capture. We also
plain the data we confront today. First, if planets are unable find that a lower limit can be placed on capturable orbits
to survive the expansion resulting from tidal heating during from the condition that the net change in orbital energy must
orbital circularization, we need to determine a mechanism be negative, which only occurs for orbits with 2> 17.5. By
whereby planets migrate inward, perhaps during the evolu- adding these considerations to a proper long-term treatment
tion of the protoplanetary disk, but stoptatice the Roche  of the production and capture of free floating planets in stel-
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lar clusters we may be able to pin down more accurately the
true capture rate and properties of the resultant systems.
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Appendix A. The Rochelimit

Even though the duration of the close passage of a gas_gg¢ i

giant past a star on an elliptical quasiparabolic orbit is
extremely short in comparison to the orbital period, it is
relatively long compared to the internal hydrodynamical
timescale of the planet. Thus, one might possibly guess that
if the planet passes within the classical Roche limit, it should
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lose mass, whereas those that pass outside the Roche limit

will not. As we will demonstrate below, this simple guess is
manifestly correct, even though the situation we consider is
posed somewhat differently than the classic Roche problem.
Our dynamical models violate three assumptions that un-
derlie the Roche lobe calculations. First, planets are ex-
tended objects, whereas the Roche lobe approximation is
solved for the gravitational potential field around a pair of
point masses. Second, the planets in our calculation are ir-
rotational in the inertial frame, rather than synchronized.
Third, the orbital velocity at periastron passage/® times
as large for a nearly parabolic orbit as it is for a circular orbit,
so the angular velocity of the corotating frames are different.
It is relatively easy to test out the effects of the first of

Fig. 9. Gravitational forceFy along the orbital axis (top panels) and grav-
itational potential® (bottom panels) for synchronized quasi-equilibrium
configurations just outside the Roche limit at separatien22.0 (left pan-

els) and just within the Roche limit at separatior- 21.8 (right panels).
For clarity, only particles near the equatorial plane, with< 0.05 are
shown. Our estimate of the Roche limit agrees extremely well with that
from Paczyski (1971)

left hand panels. In the top plot, we show the gravitational
force in the rotating frame in the-direction (the direction

of the orbital separation vector) as a function of position for
all particles near the orbital plane satisfyifg < 0.1. We

see that particles on the innermost edge of the planet ex-

these simplifications using SPH techniques. Since the mateperience almost no net gravitational force, indicating that
rial in a synchronized planet on a circular orbit is stationary they are extremely close to the inner Lagrange point. The
in the corotating frame, we can use relaxation techniques tobottom panel, showing the gravitational potential for these
construct equilibrium configurations for a given orbital sep- same particles, with the centrifugal barrier terms factored
aration. First, to account for the rotating frame, we add to the in, yields the same conclusion. In the right hand panels, we
force equation a centrifugal acceleration teigan = 227, show the same quantities when the orbital separation has
where the angular velocit$ is calculated at every timestep beenreduced to = 21.8, showing clear evidence that the in-
so that the outwardly directed centrifugal force exactly bal- nermost particles making up the planet have crossed through
ances the inward gravitational force on each member of thethe inner Lagrange point and are now bound to the star in-
system. To drive the system toward equilibrium, we also stead.

add a velocity damping ternagamp= —/trelax, Where we Thus, we see that even though the exact conditions used

Settelax = 1. The planet is initially laid down in a spheri-
cal configuration, with an initial orbital separatiap = 25,
slightly outside the Roche limitjz = 21.64, which we find
for ¢ = 0.001 from Paczyiski (1971) The planet is al-
lowed to evolve for 25 dynamical times toward the proper
tidally extended equilibrium state while the orbital sepa-
ration is kept fixed. Next, we slowly decrease the orbital
separation, sufficiently slowly that the planet can remain in

to determine the Roche limit do not apply in detail to ex-
tended polytropic configurations, the simplest approxima-
tion formulae for the Roche lobe radius as a function of the
system mass rati@®aczyski, 1971; Eggleton, 1983ye still
accurate to within approximately 2%. While the assumptions
underlying the classical Roche limit, i.e., synchronized spins
and the angular velocity corresponding to a circular orbit, are
violated by irrotational planets on quasiparabolic orbits, we

quasi-equilibrium during the process. Eventually, the planet find that the critical point at which mass is stripped from the
fills its Roche lobe and matter crosses through the inner La- planet does fall very near this line, and in a small abuse of
grange point toward the star. As shownFkig. 9, we find notation we will refer to the latter as the “Roche limit” as

that this happens at a separatior 22.0, as depicted in the  well. It should be noted, though, that this latter quantity may
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very well have weak but non-trivial dependence on the plan- Table 2
et’s spin and the orbital parameters. Squared oscillation eigenfrequencies and overlap integrals
Mode (@?)=2 (1QntDi=2 (@?)1=3 (1QntDi=3
. . . . . I n=10,I1=20
Appendix B. Linear, non-radial, adiabatic oscillations f 1.505 5558E-1 2884 5845E-1
1 11.98 2689E-2 1579 4053E-2
So long as the periastron separation of the orbit is suffi- p, 29.32 2610E-3 3561 4294E-3
ciently large, the perturbations to the planetary structure will ?3 5268 3128E-4 6156 5352E-4
remain squarely in the linear regime. Tidal capture through P4 8185 4007E-5 9338 111365
1167 4.699E-6 1309 9.319E-6
energy losses to adiabatic, non-radial oscillations was stud-"®
ied in detail byPress and Teukolsky (197&ho expanded 7#=0511=30
- . : f 1.097 6236E-1 2230 7093E-1
greatly on the analytical treatment devised Bagbian et
L (1975) Thi K ded b d Ostrik P1 1850 6613E-3 2414 1178E-2
al. ( ) This work was exten_ ed bliee and Ostri er 4736 5895E_4 5764 5504E_4
(1986) who determined approximate power-law relations ,, 86.33 3780E_4 1013 3138E-4
which govern the energy transfer scaling at large separations,ps 1352 3072E-4 1550 2669E-4
1939 2569E-4 2185 2254E-4

and corrected an error in the original Press—Teukolsky pa- 75

per. Their work focused on = 3/2, 2, and 3 polytropes,
all of which had adiabatic indexdg =dInP/dInp =5/3,

Note Dimensionless squared oscillation eigenfrequen@i%and overlap
integrals| Q,;;| for thel = 2 and! = 3 modes of polytropic models, defined

appropriate for general polytropic stellar models. These re- in Egs. (2.3)~(2.7) otee and Ostriker (1986)Units are such that; =

sults have been used to study a variety of phenomena related’? =

to tidal capture, including the tidal damping of oscillations
through mode—mode coupling and luminosity variations for
radio pulsars in eccentric orbits (see, ekgimar et al., 1995;
Kumar and Goodman, 1996

Here, we extend this method to cases appropriate for the
planetary models we calculate. For gas giants, we assume an

EOS withn = 1, I'y = 2, and for an earthlike planet, we take
n=0.5,I"1=30.Asn =1/(I1 — 1) for these models, we
know that we can ignore g-mode oscillations, and are Ieft
only with the f-mode and p-mode cases.

To determine the oscillation mode frequencies and over-
lap integrals, corresponding to Tables 1A and 1Re¢ and
Ostriker (1986) we used a code which solves four linked,
linearized, first-order equations of adiabatic motion (see,
e.g.,Ledoux and Walraven, 1958; Dziembowski, 197h-
tegrating inward from the surface and outward from the
center, and matching the solutions at the midpoint through
relaxation techniques. Ihable 2 we list the squared oscil-
lation eigenfrequencie@,zl and overlap integral$Q,;| for
the f-mode and p-modes up j&;, for both/ =2 andl =
modes, using the same conventions found.é and Os-
triker (1986) which agree with those found here as well.

The tidal energy dissipation during an encounter can be
expressed in the parameterized form given by Eqg. (2.1) of
Lee and Ostriker (1986noting that in their first term, the
superscript “2” was incorrectly transposed outside the paren-
theses,

) Rp 2142

AE,=(GM_/R — Ti(n),

»=(GM;/ p);< . ) 1(n)
where the dimensionless separation parametisrdefined
by Eg. (13). Full details, including the derivation of the
energy loss formula, can be found Rress and Teukolsky
(1977)andLee and Ostriker (1986)n Fig. 10, we show the
dependence of;(n) on n, for I = 2 and/ = 3 using both
of the polytropic EOS discussed above. We note in passing

(B.1)

Rp =1, as used throughout.

oo

0.1 E

0.001 E

0.0001 L

n

Fig. 10. Tidal energy transfer parametdts(n) and T3(n), as functions
of the interaction strength, defined by Eq(13), for polytropic models
with n = 1.0, I = 2.0 (solid lines) and: = 0.5, I'; = 3.0 (dashed lines),
computed from Eq. (2.1) dfee and Ostriker (1986Note that inLee and
Ostriker (1986) the labels in Fig. 1a are reversed for the 2 and/ =
modes.

that these curves are qualitatively similar to the 3/2 case
shown in Fig. 1a of.ee and Ostriker (1986Wwho reversed

the labels for thé = 2 andl = 3 mode on their figure; in gen-
eral,l = 2 modes are almost always stronger for almost any
physical system of interest. Since there are no low-frequency
g-modes for these models, we see the expected exponential
drop-off at larger separations. The largest contribution to all
the cases shown here comes from the f-mode, which has the
lowest frequency and is thus most coherently driven by the
relatively long period interaction.
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