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Tidal interactions and disruptions of giant planets
on highly eccentric orbits
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Abstract

We calculate the evolution of planets undergoing a strong tidal encounter using smoothed particle hydrodynamics (SPH), for
periastron separations. We find that outside the Roche limit, the evolution of the planet is well-described by the standard mode
non-radial, adiabatic oscillations. If the planet passes within the Roche limit at periastron, however, mass can be stripped from it
case do we find enough energy transferred to the planet to lead to complete disruption. In light of the three new extrasolar planets
with periods shorter than two days, we argue that the shortest-period cases observed in the period-mass relation may be explained
whereby planets undergo strong tidal encounters with stars, after either being scattered by dynamical interactions into highly eccen
or tidally captured from nearly parabolic orbits. Although this scenario does provide a natural explanation for the edge found for p
twice the Roche limit, it does not explain how such planets will survive the inevitable expansion that results from energy injectio
tidal circularization.
 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Approximately 17% of extrasolar planets discovered
date can be classified as “hot Jupiters,” gas giant pla
in very tight orbits (with orbital periods of< 10 days)
around solar-like stars(Sasselov, 2003; Mayor et al., 200
Bouchy et al., 2004; Konacki et al., 2004). Of these 21
planets, 17 have periods of less than five days. In
context, strong tidal interactions between a giant pla
and its central star have become an important prob
Many studies have focused on understanding the me
nisms and consequences of tidaldissipationin these system
(Rasio et al., 1996; Lubow et al., 1997; Ford et al., 19
Gu et al., 2003; Sasselov, 2003; Ivanov and Papaloi
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2004a, 2004b; Ogilvie and Lin, 2004). Here instead we ex
aminedynamicalinteractions, in which a giant planet on
nearly-parabolic orbit passes very close to the central
There are at least two scenarios where such interac
would occur. The first is the scattering scenario for expla
ing the high eccentricities of extrasolar planets(Rasio and
Ford, 1996; Weidenschilling and Marzari, 1996; Lin and I
1997; Ford et al., 2001; Marzari and Weidenschilling, 20
Adams and Laughlin, 2003). In this scenario, protoplane
tary systems containing several giant planets of compar
masses become dynamically unstable, leading to strong
tering between planets. Planets scattered inward may s
times undergo strong tidal interactions with the central s
perhaps even leading to capture onto a much shorter-p
circular orbit. In the second scenario, discussed recentl
Gaudi (2003), “free-floating” planets in the dense cluster e

vironments where most stars are formed would be tidally
captured by protostars, in a manner reminiscent of the old
tidal-capture scenario for forming compact binaries in glob-
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ular clusters(Fabian et al., 1975; Press and Teukolsky, 19
Lee and Ostriker, 1986). As far as the close encounter is co
cerned, the only difference between these two scenari
whether the nearly-parabolic orbit of the incoming plane
in fact slightly hyperbolic or elliptic.

In this paper we study the strong tidal interaction betw
a giant planet and a solar-like star using 3-D numerical
drodynamic calculations. We focus on encounters with
riastron separations of a few solar radii, which can lead
significant dissipation of orbital energy and mass loss. S
the details of the interaction are insensitive to the sign of
total energy, our results can be easily applied to the cas
highly-eccentric elliptic orbits or low-energy hyperbolic o
bits. The main questions we address concern the final
of the planet following an interaction, and the possibility
an observational signature of strong tidal interactions. S
prisingly, we find that complete disruption of a Jupiter-li
planetoutsidea solar-like star is never possible. If the i
teraction is close enough for the planet to be stripped
significant fraction of its mass, its orbit alwaysgainsenough
energy to become unbound (even if the initial orbit w
bound). Even closer interactions would lead instead t
physical collision with the star. Observationally, hot Jupit
are confined to a region of parameter space that appea
follow closely a simple definition of the “tidal limit,” shown
in Fig. 1. Data points indicated by squares represent pla
whose masses are known, since the mass functionMp sini is
constrained by the observation of transits. In all other ca
the mass shown represents a lower limit. The only pla
that may fall within this limit, shown as triangles, have
much smaller mass, close to that of Neptune, and may
be structurally different from typical gas giants, as we d
cuss below.

It is not immediately clear that any common definitio
of the tidal limit should be relevant here. Indeed, each
made under assumptions that are violated for highly ec
tric planetary orbits, e.g., circular orbits and synchroni
spins. We note one crucial fact about all the tidal lim
discussed below, however. They all have the same phy
scalings, with different coefficients, since the underlying
mensional analysis is the same for each.

The Hill radius,rH , is defined in the context of the re
stricted three-body problem, and is commonly used in
scribing the orbits of a planet’s satellites. Based on sim
point-mass mechanics, it is found that a satellite can o
stably around a planet of massMP in a circular orbit of ra-
diusa around a star of massM∗ so long as its own orbit ha
a semimajor axis less than

(1)rH = a

(
MP

3(MP + M∗)

)1/3

≈ 0.69q1/3a,

where the latter relation holds for small mass ratios, i.e.,q =

MP /M∗ � 1. We note that whatGaudi (2003)refers to as
the “Roche limit” is found by a brief calculation to be the
Hill radius instead.
lanets on eccentric orbits 249
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Fig. 1. Minimum massMP sini versus orbital period for the current ob
served sample of planetary companions. OGLE-TR-56b is one of onl
planets whose orbital inclination is known, all of which are marked
squares (for these, we show the actual mass). In all six cases, sinc
inclination is determined from eclipses,i � 80◦. Triangles represent th
possibly lower-mass “hot Neptunes,” GJ436 b and 55 Cnc e, which
have a qualitatively different structure than the more massive planets o
figure. The Roche limit,aR , defined via Eq.(3), is shown for a planet with a
radius equal to that of Jupiter, as is the ideal circularization radius,acirc, de-
fined as an orbit with a separation twice as large as the Roche limit. Da
taken from the extra-solar planets catalog athttp://www.obspm.fr/encycl/
cat1.html.

The Roche lobe radius,rR , is defined in terms of the clas
sical stellar two-body problem. For two point masses i
circular orbit, there exists a critical equipotential surface
the rotating frame around each body, within which all co
tating fluid is bound to it. This volume can be used to defin
characteristic volume-averaged radius; for mass ratios m
different than unity the Roche lobe around the less mas
body is roughly spherical, with a cusp at the inner Lagra
point. In the limit of extremely small mass ratios (q � 1),
the Roche lobe radius depends weakly on the compres
ity of the less massive object (the primary is always assu
to be a point mass; seeLai et al., 1993, for an extended dis
cussion). In most pioneering works (see, e.g.,Jeans, 1919), it
was assumed that the secondary was completely incomp
ible (corresponding ton = 0, or equivalently,Γ → ∞). For
this case, it was found that

(2)rR = 0.407q1/3a.

Later,Paczýnski (1971)considered the opposite limit, trea
ing the secondary as a point-mass (corresponding to th
finitely compressiblecase). Based on tabulated results,

found that the Roche lobe radius is given by

(3)rR = 0.462q1/3a,

http://www.obspm.fr/encycl/cat1.html
http://www.obspm.fr/encycl/cat1.html
http://www.obspm.fr/encycl/cat1.html
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and is almost exactly two-thirds the extent of the Hill radi
This is the definition of the Roche lobe radius that appea
Sasselov (2003), among many other sources, and will be
one used throughout this paper, for reasons we will exp
in detail in Section3. A related quantity we refer to regular
is the Roche limitaR , defined as the critical separation whe
the planet fills its Roche lobe; it can be defined implici
through the relationrR(aR) ≡ RP .

Remarkably, we find that the present location of the t
“edge” observed inFig. 1would be naturally explained if a
planets, with the possible exception of the “hot Neptun
shown as triangles, had been initially on highly eccen
orbits and later circularizedwithout significant mass or or
bital angular momentum lossat a distance approximate
twice that of the Roche limit, which we will refer to as th
“ideal circularization radius.” Indeed, any initial orbit wit
extremely high eccentricity has a (specific) total angular m
mentum satisfying

(4)j2 � 2GMrp,

whereM is the total mass of the system andrp the periastron
separation of the initial orbit. The final circular orbit, on t
other hand, satisfies the condition

(5)j2 = GMa.

Assuming that tidal circularization occurs through dissi
tion of orbital energy but with no net loss of mass or a
gular momentum, and neglecting spin angular moment
we conclude that the orbit will circularize at a separat
a � 2rp. We show below why we believe the conditio
rp > rR determines whether the planet remains in a bo
orbit after the passage.

Our limits are placed under the assumption that these
Jupiters” have radii not very different from that of Jupit
RJ = 7.14× 109 cm. This is consistent with current me
surements for the three innermost planets found with OG
(R = 1.23± 0.16RJ for OGLE-TR-56,R = 1.08± 0.07RJ

for OGLE-TR-113, andR = 1.15+0.80
−0.13RJ for OGLE-TR-

132;Sasselov, 2003; Torres et al., 2004; Mayor et al., 20
Bouchy et al., 2004; Konacki et al., 2004), as well as re-
cent theoretical calculations of the structure of giant plan
with extremely short-period orbits(Burrows et al., 2004
Chabrier et al., 2004). If indeed the radii of some of thes
planets are slightly larger than that of Jupiter, as appea
be the case for HD 209458 withR = 1.43± 0.04RJ , our
conclusions remain unchanged, since the location of the
cularization separation” will move slightly to the right on o
plot but maintain the same functional form.

The “hot Neptunes,” GJ 436 b(Butler et al., 2004)and 55
Cnc e(McArthur et al., 2004)are significantly less massiv
than the other planets with periodsP < 3 days, assuming
they do not have improbably small inclination angles. T

radii of these planets, however, are likely to be smaller than
that of Jupiter, since an extended envelope would be blown
away by radiation from the parent M dwarf; it has been
175 (2005) 248–262

suggested that these planets may in fact be composed
pletely or in part of rock and ice(Butler et al., 2004)and may
be the rocky remnant cores of gas giants which have
significant amounts of mass to tidal heating or some o
process(McArthur et al., 2004).

The scenario we investigate here differs in its predicti
from those involving the slow inspiral of giant planets all t
way to the tidal limit (as in many popular “migration scen
ios”; see, e.g.,Trilling et al., 1998; Gu et al., 2003). This
long-term inspiral is expected to produce an “edge” at
Roche limit, not at a separation twice as large. In addit
it is unclear what mechanism would halt the orbital ins
ral before the onset of Roche lobe overflow and mass
from planets experiencing radial expansion from tidal he
ing. Various possibilities have been proposed which rely
the evacuation of the inner protoplanetary disk(Kuchner and
Lecar, 2002)and tidal interactions involving the host sta
own rotation(Ford et al., 1999), but it is unclear how any
orbital model involving tidal decay would produce the c
rently observed “edge” further out.

One major caveat with highly eccentric orbits conce
the survival of the planet during orbital circularization. P
vious calculations have indicated that as energy is inje
into the planet during circularization, its radius should
pand significantly, eventually leading to Roche lobe ov
flow (Bodenheimer et al., 2001, 2003; Gu et al., 2003, 20.
Of course, given that these same results were used to a
for a lack of planets with periodsP � 3 days, it is fair to say
that uncertainties still remain as to the evolution of plane
radii and separations through tidal dissipation and circu
ization. Of particular importance is determining the rate
which a planet can dissipate tidal energy, and the effect o
energy dissipation rate on the planet’s radius. This pro
is complicated, and may depend sensitively on the rota
rate of the planet relative to the angular velocity during p
astron passage(Ivanov and Papaloizou, 2004b). In any case
while we consider an examination of this matter to be an
portant step in understanding planetary orbital evolution
is beyond the scope of this paper.

Our paper is organized as follows. In Section2, we de-
scribe our Lagrangian SPH code, as well as the param
used in our calculations. In Section3, we detail the results o
our calculations, looking in turn at the case where the pla
passes outside of the Roche limit, and then the case wh
passes within, since this is found to be crucial in determin
the future evolution of the planet. In Section4, we discuss
how these results affect the current picture of the evolu
of giant planets, and discuss further scenarios to which t
results may be applied.

2. Method and approximations
All of our calculations were done with a modified ver-
sion of theStarCrash smoothed particle hydrodynamics
(SPH) code, available athttp://www.astro.northwestern.edu/

http://www.astro.northwestern.edu/StarCrash/
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StarCrash/. Several previous versions of this code ha
been used to study a wide range of hydrodynamic in
actions between stars (see, e.g.,Rasio and Shapiro, 1992
Faber and Rasio, 2000; Sills et al., 2001). SPH is a La-
grangian method which treats the dynamical evolution
a set of finite-sized fluid particles. The density of the flu
is computed at the position of each particle using an
terpolation kernel with compact support, extending ove
characteristic “smoothing length.” In our implementatio
the smoothing length around each particle varies in t
so as to provide overlap with a nearly constant numbe
neighboring particles. Hydrodynamic forces are compu
using SPH summation techniques (for a detailed derivat
seeRasio and Shapiro, 1992), whereas gravitational force
are calculated using a grid-based FFT convolution meth
Shock heating is treated by evolving the energy equa
with an artificial viscosity prescription fromBalsara (1995).

Computing the full hydrodynamic evolution of both th
planet and the star would be very challenging but is in
unnecessary. Indeed, a simple order-of-magnitude esti
shows that the vast majority of the tidal energy extrac
from the orbit will be deposited in the planet during the clo
interaction. FollowingFabian et al. (1975), we expect tha
for the passage of a planet of massMP and radiusRP by a
star with massM∗ and radiusR∗ with periastron separatio
rp, the tidal energy deposited in the planet and in the sta
given respectively by

(6)�Ep � f 2
p

GM2∗R5
P

r6
p

,

(7)�E∗ � f 2∗
GM2

P R5∗
r6
p

.

The dimensionless factorsfp andf∗ depend primarily on
the ratio of the dynamical (crossing) time to the internal
namical time of each object. Therefore they are mainl
function of the mean density of each object, and should h
comparable values for the planet and star. As a result, th
tio of energy dissipated in the planet to that dissipated in
star is

(8)
�Ep

�E∗
�

(
M∗
MP

)2(
RP

R∗

)5

∼ 10,

for a Jupiter-like giant planet and a solar-type star. A m
detailed analysis based on an expansion over adiabatic
radial oscillation modes (see, e.g.,Lee and Ostriker, 1986)
yields exactly the same energy ratio dependence on mas
two equal-density objects to lowest order, albeit with a m
complicated functional dependence on the periastron s
ration rp. Noting these results, we follow the full 3-D hy
drodynamic and thermodynamic evolution of the planet,
treat the star as a simple point mass, which interacts with
fluid through gravitational forces only. Although our co

can handle fluid particles on grazing trajectories, by treating
the stellar surface as an absorbing boundary that captures a
SPH particles that pass withinR∗ = 10Rp, such techniques
lanets on eccentric orbits 251
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play no role in the calculations described here. In no
did any SPH particle fall within that boundary. Our impl
mentation of stellar point-masses is similar in many way
previous Newtonian SPH treatments of tidal interactions
tween stars and black holes (e.g.,Kluzniak and Lee, 1998),
but here we can ignore many of the details regarding the
fective boundary around the point-mass. Indeed, the m
lost by the planet and accreted onto the star during extrem
close passages has a minimal effect on the stellar mas
completely negligible feedback on the evolution of the or

We define our units in terms of the parameters of
planet, settingG = MP = RP = 1. In terms of the mas
and radius of Jupiter (MJ = 1.9 × 1030 g andRJ = 7.15×
109 cm), this yields characteristic time, velocity, energy, a
angular momentum scales of

(9)t = 1698

(
MP

MJ

)−0.5(
RP

RJ

)1.5

sec= 1,

(10)v = 4.21× 106
(

MP

MJ

)0.5(
RP

RJ

)−0.5

cm/s= 1,

(11)E = 3.37× 1043
(

MP

MJ

)2(
RP

RJ

)−1

erg= 1,

(12)J = 5.72× 1046
(

MP

MJ

)1.5(
RP

RJ

)0.5

ergs= 1.

In all our calculations we fix the mass of the star to
M∗ = 1000MP = 0.95(MP /MJ )M
. The planet’s equation
of state (EOS) is approximated by aΓ = 2 (or equivalently,
n = 1) polytrope, i.e., the pressureP = kρ2, where the en-
tropy constantk is initially set to a fixed value through
out. This EOS has been found to approximate very well
bulk properties of Jupiter-like planets, even though it diff
from the ideal gas form at low densities(Hubbard, 1975;
Dintrans and Ouyed, 2001). In particular, it provides a mass
radius relation such that radius is independent of m
agreeing well with detailed models (seeBurrows et al., 2003
2004, and references therein). We note that should the
dius of an extrasolar planet be larger, as is predicted
giant planets during early stages of their evolution (see,
Saumon et al., 1996), our results would have to be scal
accordingly.

To model the planet in our calculations, we place S
particles of varying mass in an equally-spaced hexag
close-packed lattice, with particle masses set proportion
the polytropic model’s density at the appropriate radius
all calculations shown here,N = 48846 particles are use
to describe the planet. This number which yields a cha
teristic smoothing lengthh/RP = 0.05, has been found i
previous calculations to yield results which typically co
serve overall energy terms to within∼ 1% (Faber and Ra
sio, 2002). The planetary mass distribution is relaxed
30 dynamical times to achieve a stable configuration,
ll
placed into a very high-eccentricity elliptical orbit around
the “point-mass” star at an initial separationa0 = 200. This
is sufficiently distant that the initial tidal perturbation of the

http://www.astro.northwestern.edu/StarCrash/
http://www.astro.northwestern.edu/StarCrash/
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planet is negligible. All initial orbits have apastron sepa
tions of ra = 104, equivalent to 4.78 AU for the parameter
of Jupiter. The periastron separation is varied to span a r
of values 15� rp � 50. For all runs, the planet is initiall
non-spinning in the inertial frame, with the velocities of
particles set equal to that of the planet’s center of mass.

3. Calculations and results

The evolution of planets on nearly parabolic orbits
found to be critically dependent on whether or not the
bital separation passes within the Roche limit. We note
although some of the assumptions used to define the R
limit do not apply to the situation we consider here, the
of the term is still appropriate. Specifically, the Roche lim
problem assumes that both bodies are point-masses, an
they both corotate at an orbital velocity corresponding t
circular orbit. Here, the planet is an extended object,
irrotational in the inertial frame, and the angular veloc
during the encounter corresponds to a highly elliptical
bit. Still, the crucial functional dependence on the phys
parameters of the system remain exactly the same. We
show with our calculations that the critical separation for
planet to undergo mass loss corresponds extremely clo
with the classically defined Roche limit, and thus refer
what is formally the dynamical tidal mass-shedding limit
the Roche limit.

As we demonstrate inAppendix A, the classical Roch
limit formulae found in Paczýnski (1971) and Eggleton
(1983), which treat both components in the system as p
masses, underestimate the tidal limit separation (the poi
which Roche lobe overflow begins) for our extended, co
tating polytropic planetary models placed on circular orb
by no more than 2%. Indeed, wherePaczýnski (1971)finds
the critical separation for Roche lobe overflow to begin a
separationaR = 21.64, we find that it occurs at a separati
that falls somewhere in the rangeaR = 21.8–22.0.

Our dynamical calculations indicate that for highly elli
tical planetary orbits with periastron separations within t
limit, mass will be stripped from the planet, where we n
that here the planet is assumed to be irrotational in the
ertial frame. Funneling out through both the inner and o
Lagrange points in two streams, this mass loss has a
nificant impact on the future evolution of the planet as w
as the orbit, since it can dramatically affect the overall
ergy and angular momentum budget of the system. O
with periastron separations outside the Roche limit still
duce energy and angular momentum transfer, but no ma
exchanged between the planet and the star, as we descr
detail below.

3.1. Outside the Roche limit
For all systems with initial periastron separationsrp �
22, the passage of the planet by the star resulted in a qualita
175 (2005) 248–262
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Fig. 2. The evolution of the spin angular momentum over time for all r
shown inTable 1with periastron separations 17� rp � 27. In all cases,
we see a spike during the periastron passage, which lasts fromT = 45–50,
before a slight decrease toward the final relaxed value. For the peria
separations shown here, there is a monotonic increase in the final va
Jsp with decreasingrp .

tively similar pattern of tidal energy and angular moment
transfer. The temporal behavior of angular momentum
energy transfer is demonstrated inFigs. 2 and 3, for a num-
ber of passages with varying values ofrp , and conforms wel
with the commonly accepted picture of the tidal interact
process. In all cases, we see that energy is transferred
the orbit prior to the periastron passage (which occurs fo
models atT � 45), without a noticeable change in the ang
lar momentum of the planet. Immediately after periastr
energy is rapidly transferred via tidal effects into the plan
with the tidal torque causing a sharp drop in the total
bital energy. After the passage, the planet gradually rel
toward a new equilibrium spinning configuration.

It should come as no surprise that for the passages ou
the Roche limit inFig. 3, decreasing the periastron sepa
tion leads to both a decrease in the final orbital energy
an increase in the spin angular momentum, since the
interaction is much stronger at closer range. These re
cannot be generalized to the case of orbits passing w
the Roche limit, however, since the final angular momen
and energy distributions are extremely sensitive to the m
loss that occurs in those cases.

As we expect from simple virial arguments, the tidal he
ing results in some degree of expansion, and a less b
structure for the planet, as shown inFig. 4. This relationship
holds for the entire sequence of orbits we calculated, inc
ing those which passed within the Roche limit, as we disc
-

in more detail below. For passages outside the Roche limit,
the amount of energy injected into the planet was not at a
sufficient level to unbind any mass from it, down to our reso-
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Fig. 3. The evolution of the orbital energy over time for runs withrp = 16,
20, 25, and 50. In all cases, we see energy is injected into the orbit durin
first half of the encounter, followed by a rapid decrease of greater magn
during the second half of the encounter, and finally a long period wher
total energy levels off. For the runs withrp � 17.5, the net energy change
negative, and the final orbit is more bound than the initial one. Forrp = 16,
we see that the energy required to strip mass from the planet leads
orbit gaining enough energy to unbind completely.

lution limit (defined by the least massive SPH particles u
near the surface of the planet,mmin = 1.5 × 10−7). As the
periastron separation decreases toward the Roche limi
energy gained by the planet does increase, causing the
et’s radius to increase in corresponding fashion. The var
energies and angular momenta describing the final plane
configurations for all the cases we investigated are liste
Table 1. For orbits withrp � 15 our runs are terminated
T = 200, since in all of those calculations the planet h
reached a relaxed, virialized configuration by that point.
models with smaller periastron separations, we double
duration of the calculations, letting them run untilT = 400.

Much of the previous work on tidal capture has us
a linear perturbation formalism, developed by (Press and
Teukolsky, 1977; see alsoLee and Ostriker, 1986), which
treats the fluid response to the tidal interaction as a su
position of non-radial adiabatic oscillations. InAppendix B,
we summarize the equations describing the energy los
tidal perturbations, and give the coefficients in the exp
sion for configurations with EOS appropriate for both a
giant (Γ = 2) and, for completeness, a terrestrial pla
(Γ = 3) (Boss, 1986). Outside the Roche limit, we find tha
the Press–Teukolsky formalism gives the proper scaling
the tidal interaction process, but slightly underestimates
overall magnitude of the effect. InFig. 5, we show the fi-

nal orbital energy as a function of periastron separation for
all the models we computed, as well as the estimate ob-
tained from the linear perturbation analysis. We find that
lanets on eccentric orbits 253
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Fig. 4. The final gravitational binding energyW (solid line), internal ther-
modynamic energyU (dash-dotted line), and spin kinetic energyEsp (dot-
ted line) of the planet, as a function of periastron separation. Also sh
is the virial energyEvir = W + 3U + 2Esp, as a dashed line. We see th
in all cases the final planetary configuration is nearly virialized. As the
tal energy for all configurations shown here is negative, we conclude
no Jupiter-like planet can be fully disrupted by a non-grazing passage
a sunlike star.

while the power-law scalings are very similar, the pertur
tion analysis typically yields a change in the orbital ene
approximately half the magnitude of what we find from o
SPH calculations. The relationship breaks down comple
for rp < 20, when the deformation of the planet underg
ing mass loss clearly becomes nonlinear. We note tha
nearly constant change in orbital energy we find from
calculations at periastron separationsrp � 30 are a numeri
cal artifact, and represent the smallest change in energ
can accurately measure over the full timescale of one of
evolution calculations.

3.2. Within the Roche limit

For initial orbits with rp � 21, the planet passes with
the classical Roche limit (for a mass ratioq = 0.001, the
critical separation for Roche lobe overflow isaR = 21.64,
according to Eq.(3)). In all the cases we looked at in th
regime, fluid was stripped from the planet, escaping in
tremely narrow streams through both the inner (L1) a
outer (L2) Lagrange points. We show the evolution of o
such system, withrp = 18, in Fig. 6. The axes are define
such that the planet orbits counter-clockwise along an
bit whose unperturbed pericenter would fall on the nega
x-axis, and the timescale initialized to the initial configu

tion at separationa0 = 200. In the first panel, we show the
configuration of the planet atT = 45, shortly before peri-
astron, as well as the star, whose physical size is indicated
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Table 1
Run results

rp �m �min Eorb Jorb rmax Esp Jsp W U R95 R100

12 5.8E−1 3.2E−1 1.77E−1 62 hyp 4.68E−3 1.26E−1 −0.052 0.014 8.77 57.2
12.5 5.4E−1 3.9E−1 6.80E−2 70 hyp 6.66E−3 1.16E−1 −0.077 0.021 7.68 62.8
13 4.9E−1 2.7E−1 9.11E−2 81 hyp 9.94E−3 1.45E−1 −0.103 0.027 6.75 58.2
13.5 4.2E−1 2.4E−1 1.63E−1 93 hyp 1.30E−2 1.69E−1 −0.140 0.038 5.87 57.1
14 3.7E−1 2.1E−1 1.22E−1 105 hyp 1.53E−2 1.77E−1 −0.177 0.049 5.35 56.3
14.5 3.0E−1 1.8E−1 1.30E−2 117 hyp 1.72E−2 1.91E−1 −0.224 0.063 5.06 61.1
15 2.4E−1 1.5E−1 1.25E−1 131 hyp 2.27E−2 1.98E−1 −0.279 0.077 3.58 38.8
16 1.5E−1 9.3E−2 9.37E−3 153 hyp 2.36E−2 1.90E−1 −0.385 0.111 2.75 36.1
17 7.2E−2 5.0E−2 −5.68E−2 171 1.63E3 2.30E−2 1.74E−1 −0.491 0.147 1.82 37.4
18 2.7E−2 2.1E−2 −1.15E−1 184 8.42E3 1.97E−2 1.46E−1 −0.577 0.177 1.30 37.6
19 6.4E−3 5.7E−3 −1.43E−1 193 6.95E3 1.37E−2 1.10E−1 −0.637 0.202 1.11 38.4
20 5.8E−4 5.6E−4 −1.42E−1 200 7.04E3 7.60E−3 7.27E−2 −0.676 0.218 1.02 38.2
21 1.2E−6 3.5E−7 −1.28E−1 205 7.82E3 3.45E−3 4.53E−2 −0.700 0.229 0.97 33.9
22 0.0 0.0 −1.17E−1 209 8.49E3 1.35E−3 2.73E−2 −0.715 0.235 0.94 1.11
23 0.0 0.0 −1.10E−1 214 9.06E3 5.19E−4 1.65E−2 −0.726 0.240 0.93 1.06
24 0.0 0.0 −1.06E−1 219 9.40E3 1.92E−4 9.89E−3 −0.733 0.242 0.92 1.03
25 0.0 0.0 −1.04E−1 223 9.60E3 7.71E−5 5.90E−3 −0.740 0.246 0.91 1.03
27 0.0 0.0 −1.01E−1 232 9.89E3 1.48E−5 2.03E−3 −0.745 0.248 0.90 1.00
30 0.0 0.0 −9.97E−2 244 1.00E4 1.85E−6 4.44E−4 −0.747 0.248 0.89 0.98
40 0.0 0.0 −9.95E−2 282 1.00E4 < 1E−6 < 1E−4 −0.749 0.249 0.89 0.97
50 0.0 0.0 −9.95E−2 315 1.00E4 < 1E−6 < 1E−4 −0.749 0.249 0.89 0.97

Note. Results of our runs. Hererp is the initial periastron separation,�m the mass unbound from the planet,�min the amount of mass lost from the plan
but bound to the star,Eorb andJorb the final orbital energy and angular momentum,rmax is the new value of the apastron separation after the encounte
systems which remain bound (“hyp” indicates the planet leaves on a hyperbolic orbit),Esp andJsp the final spin energy and angular momentum of the pla

W andU the planet’s gravitational binding and internal heat energies, andR95 andR100 are the radius of the final bound configuration containing 95% and
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all of the bound matter, respectively, with initial values of 0.89 and 1.00. All
the mass dependence divided out. Units are defined such thatG = MP = RP

by the large circle. The planet is beginning to show sign
tidal deformation (looking roughly ellipsoidal). Note aga
that the stellar size is merely illustrative, and plays no r
in the calculations, since no matter from the planet cro
within the stellar radius during our calculation. In the s
ond panel, atT = 50, immediately after periastron passa
we see the planet starting to distend further, as matter cro
through the Lagrange points while tidal energy is transfe
into the planet. AtT = 75, two mass-shedding streams a
clearly evident. We find that all particles in the inner strea
representing a total mass�min = 0.021 are no longer boun
to the planet, but remain gravitationally bound to the s
By contrast, particles in the outer stream, representing
tal mass�mout = 5.9 × 10−3, are bound to neither the st
nor the planet, and will be ejected from the system. In
final frame, we find atT = 150 that fluid in both stream
has assumed an essentially ballistic trajectory, freely fal
in the star’s potential well. Particles from the inner stre
trace out nearly elliptical orbits, retaining enough angu
momentum to pass outside the star’s surface, while tho
the outer stream head away from the system on hyperb
orbits, leading the path of the planet in an almost come
fashion.

We can make a few general statements with regard to
bits within the mass-shedding regime. First, in all cases

investigated, the amount of mass stripped from the planet
increased with decreasing periastron separation, as show
in Fig. 7. The rise seems to be almost exponential near the
gy and angular momenta quantities are overall totals, not specific total

s

Roche limit, but flattens out at smaller values, such that e
for orbits on which the planet will graze the edge of t
star during the passage, it willnot be completely unboun
by the interaction. This is in agreement with previous
sults for tidal disruptions of stars around massive black h
(Luminet and Carter, 1986; Evans and Kochanek, 1989), that
indicate full disruption only occurs for stars on orbits w
periastron separations meeting the criterionη � 1.0, where
the interaction strengthη is defined by the relation

(13)η ≡
(

M2

M1 + M2

)0.5( rp

R2

)1.5

,

whereM1 andM2 are the masses of the more massive ob
and the body being disrupted, respectively (here,M1 ≡ M∗
andM2 ≡ MP ). For systems withq � 1 and equal-densit
components, this condition essentially yieldsrp < R∗. In
other words, planets would to have to pass within the
in order to be fully disrupted.

In all cases we studied (except the orbit withrp = 21,
in which fewer than 10 SPH particles became unbou
the amount of matter stripped from the planet along the
ner stream, which remains bound to the star, exceeds
amount of matter unbound from the system through the o
stream. This asymmetry in the mass of the two tidal stre
is greatest near the Roche limit. Indeed, for orbits w
18� rp � 20, we find that over 75% of the mass stripp
n
from the planet can be found in the inner stream. For orbits
with smaller periastron separations, especially those near-
ing the limit of a grazing collision, the mass ratio in the two
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Fig. 5. The relative change in the orbital energy from the beginning of
calculations to the end, as a function of the periastron separation (
curve). We see that this quantity increases as we sweep inward (be
ing more negative), indicating more tightly bound orbits, until reachin
maximum atrp ≈ 19.5. Within this periastron separation, systems beco
successively less bound (the orbital energy less negative), until atrp ≈ 16.2
we find that the planet becomes unbound from the star and leaves on
perbolic trajectory. The dashed curve shows the predicted behavior
a Press–Teukolsky type analysis of non-radial adiabatic oscillations a
scribed inAppendix B. This approximation scales well at large separatio
up torp ∼ 30 where the systematic errors in the total energy become la
than the net change, and breaks down forrp < 20 when the linear regime
itself is no longer applicable.

streams nears unity. While at first glance these results
appear to differ slightly from the picture developed for t
disruption of a star by a massive black hole inLacy et al.
(1982), Rees (1988), andEvans and Kochanek (1989), we
note that their calculations were performed for orbits w
η ∼ 1.0, which represents a periastron separation her
rp = 10.0. Summarized, when the tidal energy�E injected
into the smaller body is greater in magnitude than the b
ing energyEB of the object, we expect it to be disrupte
The velocities of fluid elements in the smaller object ta
on a range of values, depending on the depth of the pas
through the potential well, with a roughly flat distribution
specific energies centered near zero, since�E � EB (see
Fig. 3 in Evans and Kochanek, 1989). The fluid with neg-
ative specific energy becomes bound to the larger bod
the system, and that with positive specific energy unbou
representing nearly equal amounts. For the planet–star i
actions we investigate here, we expect to find equal ma
deposited into the inner and outer streams only in the l
of grazing collisions, for which�E ∼ EB . Such a conclu-
sion cannot be generalized to passages with larger valu

rp since the magnitude of the tidal bulge does not approach
the same scale as the planet’s radius, or in other terms, the
tidal energy remains smaller than the overall self-binding
lanets on eccentric orbits 255
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Fig. 6. Evolution of the planet along an orbit with periastron separation
rp = 18. In the upper left panel, we see the planet, orbiting counter-clock-
wise, nearing periastron atT = 45 past the star, whose physical radius is
indicated by the circle. In the upper-right, atT = 50, we see the planet im-
mediately after periastron, with strong tidal effects obvious. In the lower
left, we see atT = 75 that a pair of mass-shedding streams have formed,
both toward the star and away. Eventually, byT = 150, we see the inner
stream has stretched all the way around the star, as the particles follow
essentially free-fall trajectories in the star’s gravitational well. Note the dif-
ferent size scales for each plot. For clarity, only particles near the orbital
plane are shown.

Fig. 7. The total mass unbound from the planet during the interaction (solid
line) and the mass which ends up bound to the star (dashed line), as a func-

tion of periastron separation. As a rule, matter in the inner mass shedding
stream ends up bound to the star, whereas matter in the less massive outer
stream is completely unbound.
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energy of the planet. Furthermore, in terms of the inte
tion strengthη, we expect that disruption of a Jupiter-lik
planet by a solar-type star should require a tighter pas
than for a solar-type star being disrupted by a massive b
hole ofMBH ≈ 106M
. Indeed, the characteristic expansi
velocity vexp of the secondary as it is being disrupted sca
like vexp= (M1/M2)

1/6vesc, wherevesc is the escape veloc
ity from the its surface. Thus, the characteristic expans
velocity within a star being disrupted by a massive bla
hole (M1/M2 = 106) is more than double that for a plan
being disrupted by a star (M1/M2 = 103), relative to the re-
spective escape velocities. We conclude that the core o
planet should remain bound for passages with lower va
of η than for the stellar-massive black hole case.

For close passages, the planet experiences a radia
pansion, due to strong tidal heating throughout. As the
riastron separation decreases,R95, defined as the radius en
closing 95% of the planet’s bound mass at the end of
calculation, increases to a value a few times larger than
of the planet prior to the encounter, especially in cases
rp � 18. For all mass-shedding systems, the furthest gra
tionally bound particles, at a distanceR100 from the planet’s
center of mass, were found to be located atR100 > 30. This
state would almost certainly not be permanent, and me
reflects the extremely long dynamical relaxation timesc
found in the low-density outer regions of the planet. Si
the dynamical timescale has a power-law dependence
portional toρ−0.5, the matter furthest from the planet (a
thus with the lowest density) requires considerably m
time than we can feasibly calculate to reach equilibriu
However, since this represents an extremely small frac
of the total mass, we do not expect the long-term relaxa
of the planet’s outer regions to affect our results about
dependence of various energy quantities on the perias
separation.

Several quantities we tabulate do not show monoto
dependence on the periastron separation of the planet
bit. We see inFig. 5 that it is only for the rangerp � 19.5
that the final orbital energy becomes more strongly ne
tive as the periastron separation decreases. For these
the apastron separation of the post-encounter orbit decre
with decreasingrp (the periastron separation, as one sho
expect, remains essentially fixed after the encounter, s
the specific orbital angular momentum changes very l
during the encounter). Indeed, the orbital energy reac
an extremum and begins to become less negative (th
bit less tightly bound) asrp decreases below the critic
value rp = 19.5. For orbits withrp < 17.5, there is a ne
gain in the orbital energy of the planet. For periastron se
rationsrp � 16.2, the orbital energy becomes positive, a
the planet leaves the system on an unbound hyperbolic
jectory. This can also be seen inFig. 3, as the run with
rp = 16 demonstrates a characteristically different pat

than those at larger separations. The tidal interaction leads to
a sharp increase in the orbital energy followed immediately
by larger decrease. This is followed by significant mass loss
175 (2005) 248–262

-

-

-

s,
s

-

-

Fig. 8. The critical valuevcaptof the relative velocity at large distances,v∞,
for which a planet can be captured, as a function of the periastron sepa
(solid line). Velocities below the curve lead to capture, those above the c
to unbound systems. Forrp � 17.5, there is a net gain in orbital energ
and no bound system can be formed. Also shown are curves of con
initial impact parameterb, as well as the typical relative velocities with
a globular cluster (v∞ = 10 km/s) and an open cluster (v∞ = 2 km/s).
The dot-dashed line shows the approximate fit, Eq.(16), which we use to
estimate the capture timescale.

from the planet, leaving only∼ 40% of the original mas
of the planet gravitationally bound. A great deal of mate
which once formed the planet becomes bound to the sta
stead, causing a strongincreasein the orbital energy of the
surviving planet. A similar pattern was seen for all passa
with rp � 16.

We can use these results to classify the fate of p
ets passing by stars on either bound or unbound orbit
Fig. 8, we show the critical relative velocity at large sepa
tions leading to capture,vcapt≡ √

2(�Eorb)/µ, as a function
of rp. Hereµ ≈ MP is the reduced mass of the system
the relative velocity of the star and planet at large sep
tions falls below the critical value, the planet can be tida
captured during the interaction. Note that these results
underestimate the true capture velocity by∼ 5%, since we
have ignored tidal dissipation in the star. Of course, si
the energy loss scales∝ r−6

p , this represents less than a 2
correction to the maximum capture radius for a given
ative velocity. We see that in a globular cluster, where
typical relative velocity is∼ 10 km/s, there is a very low
probability of forming bound systems through tidal captu
For an open cluster, however, with a typical velocity d
persion of 2 km/s, close passages satisfying 18� rp � 30
are likely to meet this criterion. At the high end, our ma

source of uncertainty is a systematic overestimate ofvcapt,
since deviations from equilibrium in our initial conditions
act as a small spurious energy source for the orbit. To con-



ant p

rge
tron
l
olic
,
en-
the

gly
to-

por-
bit,

se o

ron
r-

n
of

to-
ol-
rs
n)

er-
en-
gain
will

of
i-

sent
in

li-
ain
eate

,

ity,

-

ce
re-

e

re-
inty
ers

pture
a
es in
olic

er-
ena
tron
of
ends

gain
oss

tar
e-
of

h en-
n of

the
the
lat-
the
in-
end

sses
di-
ters

be

nets
Tidal interactions of gi

firm our estimate of the maximum capture velocity at la
separations, we computed additional runs with perias
separations ofrp = 40 andrp = 50, for orbits with zero tota
energy (parabolic), and small positive energies (hyperb
with v∞ = 0.05= 2 km/s and 0.1 = 4 km/s). As expected
we find that the total change in the orbital energy is ess
tially unchanged, since the interaction timescale is set by
orbital velocity at periastron, which depends very stron
on the periastron separation but extremely weakly on the
tal orbital energy.

To calculate cross sections for these collisions, the im
tant quantity is the impact parameter of the hyperbolic or

(14)b = rp

√
1+ 2GM∗

rpv2∞
,

rather than the periastron distance. To give some sen
the size scales involved, for a globular cluster withv∞ =
10 km/s, the narrow typical range of capturable periast
separations, 18.5 < rp < 21, yields a correspondingly na
row range of impact parameters, 770< b < 820. For an
open cluster withv∞ = 2.0 km/s, the range of periastro
separations 18< rp < 30 corresponds to a wider range
impact parameters for capture, 4000< b < 5000, or roughly
2.0 AU < b < 2.4 AU.

It is relatively straightforward to expand this analysis
ward a more physically realistic picture of tidal capture. F
lowing Gaudi (2003), we will assume that planets and sta
move within some form of cluster (either globular or ope
with the same characteristic velocity dispersionσ . Such a
condition would theoretically result after planets are lib
ated from their original parent stars by a series of weak
counters, but before thermal relaxation causes them to
sufficient velocity to escape the cluster. Furthermore, we
assume that the number density of starsν is uniform, to sim-
plify the calculation. Following the logic of Section 8.4.5
Binney and Tremaine (1987), we find that the average coll
sion timetc required for a planet to pass within a distancerp
from a star is given by

(15)t−1
c = ν

√
π

2σ 3

∞∫
0

e−v2∞/4σ2(
v3∞r2

p + 2GMv∞rp
)
dv∞.

Note that the latter term in parentheses above, repre
ing gravitational focusing, differs from that presented
Eq. (8-121) ofBinney and Tremaine (1987), since they are
discussing the case of equal-mass stars, for whichM = 2M∗.
Here, for planet–star encounters,M � M∗. As we have seen
in Fig. 8, the condition for tidal capture is more comp
cated than simply having the periastron fall within a cert
limit, since sufficient energy needs to be dissipated to cr
a bound orbit. Instead, for a given value ofv∞, the periastron
separation must lie within a range of valuesr1(v∞) � rp �
r2(v∞). We find thatr1 andr2 can be determined implicitly
to more than sufficient accuracy, as roots of the relation
(16)v∞ = 5× 103 r − 17.5

(r/10.0)10
km/s,
lanets on eccentric orbits 257
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which is shown as a dot-dashed line onFig. 8. We integrate
Eq. (15) only up to the maximum possible capture veloc
and only for ranges of periastron separationsr1 < rp < r2,
for the three cases considered byGaudi (2003): a globular
cluster (σ = 10 km/s, ν = 104 pc−3), a rich open clus-
ter (σ = 1.5 km/s, ν = 103 pc−3), and a loose stellar as
sociation (σ = 0.6 km/s, ν = 102 pc−3). In all cases, it
is the gravitational focusing term which dominates, sin
GM∗/rp � v2

capt for each. We find capture timescales,

spectively, of 2.1×104 Gyr (globular cluster), 4.5×103 Gyr
(open cluster), and 1.3 × 104 Gyr (loose association). Th
systematic error in estimatingvcapt for large values ofrp,
discussed above, plays essentially no role in our final
sults for the globular cluster, and introduces an uncerta
of approximately 2 and 10% in the rate for open clust
and loose associations, respectively.Gaudi (2003)overesti-
mates the capture rate, due to a numerical error in the ca
timescale formula (Eq.(7); the denominator should have
2, not an 8), and by assuming capture for closer passag
which mass is lost but the planet remains on a hyperb
orbit.

Regardless of whether the planet’s initial orbit is hyp
bolic or elliptical, we expect that several distinct phenom
should occur for passages with sufficiently small perias
separations. Forrp � 21, we expect that some amount
mass loss will occur, regardless of whether the system
up bound or unbound. For all systems withrp � 17.5, we ex-
pect that no tidal capture can occur, since there is a net
in orbital energy. In addition, we expect significant mass l
(�M > 0.25M) for systems withrp � 15.

The final orbital parameters for our runs are given inTa-
ble 1. Note that mass contained in the inner stream,�min,
is treated here as if it will eventually accrete onto the s
when we determine the orbit. While this may not hold in d
tail for all matter in the stream (since some small fraction
the matter may be heated or shocked and attain enoug
ergy to be ejected form the system), its mass as a fractio
the star’s total mass is virtually negligible. To compute
orbital energy and angular momentum, we include both
point-mass star and all particles bound to it when calcu
ing its center-of-mass, and only those particles bound to
star when calculating its position. These results are only
tended to describe the binary configuration present at the
of the dynamical encounter. Thermal and radiative proce
will certainly affect the structure of the planet, and ad
tional mass loss may occur, changing the orbital parame
(Guillot and Showman, 2002). Such phenomena cannot
properly described by an SPH treatment, however.

4. Conclusions

Based on recent observations of three extrasolar pla

with orbital periods of< 2 days but radii comparable to that
of Jupiter, we suggest that these planets may have either been
scattered onto very highly eccentric orbits through dynam-
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ical interactions in their protoplanetary systems or tida
captured from free-floating trajectories. Through a serie
tidal encounters at periastron, energy can be dissipated
the orbit eventually reaches the ideal circularization rad
at a distance almost exactly twice that of the Roche limit

Numerical calculations confirm that the classical Ro
limit plays an important role in these interactions, sinc
sets the boundary that determines whether or not mass
be stripped from the planet during periastron passage
turn, mass loss can play a significant role in the resul
energy and angular momentum budgets, with regard to
the orbital and spin evolution of the planet.

For orbits with periastron separations that lie outside
the Roche limit, we find that a Press–Teukolsky expan
over linear, non-radial, adiabatic oscillations provides a g
estimate of the energy and angular momentum transfe
tween the orbit and the planet. For closer passages, how
the linear formalism breaks down, as mass is stripped
the planet through both the inner (L1) and outer (L2) L
grange points. Still, we find that the planet will never
fully disrupted on any orbit that does not result in a collis
with the star. Because the stripped mass acts as an e
sink, we find that the maximum negative change in orb
energy for the planet occurs for encounters just within
Roche limit. For smaller separations,rp � 19, the energy
loss from the orbit decreases, since a greater fraction o
tidal energy is used to unbind mass from the planet.
periastron separationsrp � 17.5, the net change in orbita
energy turns positive, and the planet, with smaller mass
ter the encounter, is ejected from the system on a hyper
orbit.

Our results can be extended to predict the fate of ea
like planets undergoing strong tidal encounters as well.
the Earth–Sun system, the Roche limit is reached at a
astron separation ofrp = 1.38R
. Strong tidal encounters
defined as those with interaction strengthη = 1, only occur
for passages withrp � 0.64R
, leading us to conclude tha
terrestrial planets would have to pass well within the sta
order to be tidally disrupted.

The biggest problem for models which invoke long te
tidal circularization of orbits involves dissipating the ener
injected into the planet while the orbit circularizes. Seve
planetary evolution calculations have predicted that pla
on elliptical orbits with periodsP � 3 days should expand t
the point where they fill their Roche lobe, and begin to tra
fer mass to the parent star, eventually leading to disrup
of the planet(Gu et al., 2003, 2004). If this is true, however
it is unclear how one can explain the past orbital evolut
of OGLE-TR-56b and the other systems whose orbital
riods fall within this limit, on what are now circular orbit
One of two possible explanations seems to be required to
plain the data we confront today. First, if planets are una
to survive the expansion resulting from tidal heating dur

orbital circularization, we need to determine a mechanism
whereby planets migrate inward, perhaps during the evolu-
tion of the protoplanetary disk, but stop attwice the Roche
175 (2005) 248–262
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limit. The answer seems not to lie in Roche lobe overflow
this case, since recent observations(Torres et al., 2004)and
theoretical calculations(Burrows et al., 2004)indicate that
OGLE-TR-56b has a radius of 1.23±0.16R
, which is well
within the Roche lobe. Alternately, as presented here, t
planets may undergo tidal encounters with stars after b
kicked into highly eccentric orbits or captured from the fie
eventually circularizing at a distance equivalent to twice
Roche limit, as the current observed population sugges
this is true, then some new mechanism must be constru
to explain how such planets radiate away the dissipated
ergy before they are disrupted. At the moment, there is
detailed theoretical model which seems to provide the c
plete picture, but work is underway to model the deta
evolution of rotating planets undergoing a succession of t
interactions during periastron passages (see, e.g.,Ivanov and
Papaloizou, 2004b).

Since the change in orbital energy for the interacti
we investigated here is significantly larger than the total
ergy of the systems, we conclude that our results should
equally true for nearly parabolic orbits with slightly positi
total energy, i.e., tidal captures of planets on weakly hyp
bolic orbits with small relative velocityv∞. The paramete
space for encounters that lead to capture into a bound
is limited, however, primarily because of the mass-stripp
effect. Essentially, if a planet passes too far from the s
it will not be captured, but if it passes too close, so mu
energy is used to unbind its outer layers that the plane
boosted to an even higher energy hyperbolic orbit. The p
meter space of orbits leading to tidal capture is significa
greater for open clusters, with a typical velocity dispers
of ∼ 2 km/s, than for globular clusters (∼ 10 km/s) but
the dramatically lower spatial density of planets and s
is likely to hinder the capture process. Still, based on
proximate parameters for these systems, although we e
that the capture timescale for planets will be almost 5 tim
shorter in open clusters, the significantly greater numbe
stars in globular clusters should lead to a higher overall c
ture rate.

Our detailed calculations suggest that the results ofGaudi
(2003)may need to be recalculated, since his assumpt
about the fate of planets after tidal interactions uses an ov
simplistic dependence on the periastron separation. In
paper, he argues that according to simple analytic app
imations, a planet with massMP = 0.001M∗ must pass
within two stellar radii (rp � 20RP for our chosen parame
ters) in order to be captured. We find that this upper li
should be placed further out, but with a non-trivial dep
dence between the initial relative velocity of the planet a
star and the critical periastron separation for capture. We
find that a lower limit can be placed on capturable orb
from the condition that the net change in orbital energy m

be negative, which only occurs for orbits withrp � 17.5. By
adding these considerations to a proper long-term treatment
of the production and capture of free floating planets in stel-
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lar clusters we may be able to pin down more accurately
true capture rate and properties of the resultant systems
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Appendix A. The Roche limit

Even though the duration of the close passage of a
giant past a star on an elliptical quasiparabolic orbit
extremely short in comparison to the orbital period, it
relatively long compared to the internal hydrodynami
timescale of the planet. Thus, one might possibly guess
if the planet passes within the classical Roche limit, it sho
lose mass, whereas those that pass outside the Roche
will not. As we will demonstrate below, this simple guess
manifestly correct, even though the situation we conside
posed somewhat differently than the classic Roche prob

Our dynamical models violate three assumptions that
derlie the Roche lobe calculations. First, planets are
tended objects, whereas the Roche lobe approximatio
solved for the gravitational potential field around a pair
point masses. Second, the planets in our calculation ar
rotational in the inertial frame, rather than synchroniz
Third, the orbital velocity at periastron passage is

√
2 times

as large for a nearly parabolic orbit as it is for a circular or
so the angular velocity of the corotating frames are differ

It is relatively easy to test out the effects of the first
these simplifications using SPH techniques. Since the m
rial in a synchronized planet on a circular orbit is station
in the corotating frame, we can use relaxation technique
construct equilibrium configurations for a given orbital se
aration. First, to account for the rotating frame, we add to
force equation a centrifugal acceleration term�acent= Ω2�r ,
where the angular velocityΩ is calculated at every timeste
so that the outwardly directed centrifugal force exactly b
ances the inward gravitational force on each member o
system. To drive the system toward equilibrium, we a
add a velocity damping term,�adamp= −�v/trelax, where we
set trelax = 1. The planet is initially laid down in a spher
cal configuration, with an initial orbital separationa0 = 25,
slightly outside the Roche limit,aR = 21.64, which we find
for q = 0.001 from Paczýnski (1971). The planet is al-
lowed to evolve for 25 dynamical times toward the pro
tidally extended equilibrium state while the orbital sep
ration is kept fixed. Next, we slowly decrease the orb
separation, sufficiently slowly that the planet can remain
quasi-equilibrium during the process. Eventually, the pla

fills its Roche lobe and matter crosses through the inner La-
grange point toward the star. As shown inFig. 9, we find
that this happens at a separationa ≈ 22.0, as depicted in the
lanets on eccentric orbits 259
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Fig. 9. Gravitational forceFx along the orbital axis (top panels) and gra
itational potential	 (bottom panels) for synchronized quasi-equilibriu
configurations just outside the Roche limit at separationa = 22.0 (left pan-
els) and just within the Roche limit at separationa = 21.8 (right panels).
For clarity, only particles near the equatorial plane, with|z| < 0.05 are
shown. Our estimate of the Roche limit agrees extremely well with
from Paczýnski (1971).

left hand panels. In the top plot, we show the gravitatio
force in the rotating frame in thex-direction (the direction
of the orbital separation vector) as a function of position
all particles near the orbital plane satisfying|z| < 0.1. We
see that particles on the innermost edge of the plane
perience almost no net gravitational force, indicating t
they are extremely close to the inner Lagrange point.
bottom panel, showing the gravitational potential for th
same particles, with the centrifugal barrier terms facto
in, yields the same conclusion. In the right hand panels
show the same quantities when the orbital separation
been reduced toa = 21.8, showing clear evidence that the i
nermost particles making up the planet have crossed thr
the inner Lagrange point and are now bound to the sta
stead.

Thus, we see that even though the exact conditions
to determine the Roche limit do not apply in detail to e
tended polytropic configurations, the simplest approxim
tion formulae for the Roche lobe radius as a function of
system mass ratio(Paczýnski, 1971; Eggleton, 1983)are still
accurate to within approximately 2%. While the assumpti
underlying the classical Roche limit, i.e., synchronized sp
and the angular velocity corresponding to a circular orbit,
violated by irrotational planets on quasiparabolic orbits,
find that the critical point at which mass is stripped from

planet does fall very near this line, and in a small abuse of
notation we will refer to the latter as the “Roche limit” as
well. It should be noted, though, that this latter quantity may
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very well have weak but non-trivial dependence on the p
et’s spin and the orbital parameters.

Appendix B. Linear, non-radial, adiabatic oscillations

So long as the periastron separation of the orbit is s
ciently large, the perturbations to the planetary structure
remain squarely in the linear regime. Tidal capture thro
energy losses to adiabatic, non-radial oscillations was s
ied in detail byPress and Teukolsky (1977), who expanded
greatly on the analytical treatment devised byFabian et
al. (1975). This work was extended byLee and Ostriker
(1986), who determined approximate power-law relatio
which govern the energy transfer scaling at large separat
and corrected an error in the original Press–Teukolsky
per. Their work focused onn = 3/2, 2, and 3 polytropes
all of which had adiabatic indexesΓ1 ≡ d lnP/d lnρ = 5/3,
appropriate for general polytropic stellar models. These
sults have been used to study a variety of phenomena re
to tidal capture, including the tidal damping of oscillatio
through mode–mode coupling and luminosity variations
radio pulsars in eccentric orbits (see, e.g.,Kumar et al., 1995
Kumar and Goodman, 1996).

Here, we extend this method to cases appropriate fo
planetary models we calculate. For gas giants, we assum
EOS withn = 1,Γ1 = 2, and for an earthlike planet, we ta
n = 0.5, Γ1 = 3.0. Asn = 1/(Γ1 − 1) for these models, we
know that we can ignore g-mode oscillations, and are
only with the f-mode and p-mode cases.

To determine the oscillation mode frequencies and o
lap integrals, corresponding to Tables 1A and 1B ofLee and
Ostriker (1986), we used a code which solves four linke
linearized, first-order equations of adiabatic motion (s
e.g.,Ledoux and Walraven, 1958; Dziembowski, 1971), in-
tegrating inward from the surface and outward from
center, and matching the solutions at the midpoint thro
relaxation techniques. InTable 2, we list the squared osci
lation eigenfrequenciesω2

n and overlap integrals|Qnl | for
the f-mode and p-modes up top5, for both l = 2 andl = 3
modes, using the same conventions found inLee and Os-
triker (1986), which agree with those found here as well.

The tidal energy dissipation during an encounter can
expressed in the parameterized form given by Eq. (2.1
Lee and Ostriker (1986), noting that in their first term, th
superscript “2” was incorrectly transposed outside the pa
theses,

(B.1)�Ep = (
GM2∗/RP

)∑
l

(
RP

rp

)2l+2

Tl(η),

where the dimensionless separation parameterη is defined
by Eq. (13). Full details, including the derivation of th
energy loss formula, can be found inPress and Teukolsk

(1977)andLee and Ostriker (1986). In Fig. 10, we show the
dependence ofTl(η) on η, for l = 2 and l = 3 using both
of the polytropic EOS discussed above. We note in passing
175 (2005) 248–262

,

d

n

Table 2
Squared oscillation eigenfrequencies and overlap integrals

Mode (ω2)l=2 (|Qnl |)l=2 (ω2)l=3 (|Qnl |)l=3

n = 1.0, Γ1 = 2.0
f 1.505 5.558E−1 2.884 5.845E−1
p1 11.98 2.689E−2 15.79 4.053E−2
p2 29.32 2.610E−3 35.61 4.294E−3
p3 52.68 3.128E−4 61.56 5.352E−4
p4 81.85 4.007E−5 93.38 7.113E−5
p5 116.7 4.699E−6 130.9 9.319E−6

n = 0.5,Γ1 = 3.0
f 1.097 6.236E−1 2.230 7.093E−1
p1 18.50 6.613E−3 24.14 1.178E−2
p2 47.36 5.895E−4 57.64 5.594E−4
p3 86.33 3.780E−4 101.3 3.138E−4
p4 135.2 3.072E−4 155.0 2.669E−4
p5 193.9 2.569E−4 218.5 2.254E−4

Note. Dimensionless squared oscillation eigenfrequenciesω2 and overlap
integrals|Qnl | for the l = 2 andl = 3 modes of polytropic models, define
in Eqs. (2.3)–(2.7) ofLee and Ostriker (1986). Units are such thatG =
MP = RP = 1, as used throughout.

Fig. 10. Tidal energy transfer parametersT2(η) and T3(η), as functions
of the interaction strengthη, defined by Eq.(13), for polytropic models
with n = 1.0, Γ = 2.0 (solid lines) andn = 0.5, Γ1 = 3.0 (dashed lines)
computed from Eq. (2.1) ofLee and Ostriker (1986). Note that inLee and
Ostriker (1986), the labels in Fig. 1a are reversed for thel = 2 andl = 3
modes.

that these curves are qualitatively similar to then = 3/2 case
shown in Fig. 1a ofLee and Ostriker (1986), who reversed
the labels for thel = 2 andl = 3 mode on their figure; in gen
eral,l = 2 modes are almost always stronger for almost
physical system of interest. Since there are no low-freque
g-modes for these models, we see the expected expon
drop-off at larger separations. The largest contribution to

the cases shown here comes from the f-mode, which has the
lowest frequency and is thus most coherently driven by the
relatively long period interaction.
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