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ABSTRACT

We present a comprehensive description of the population synthesis code StarTrack. The original
code has been significantly modified and updated. Special emphasis is placed here on processes leading
to the formation and further evolution of compact objects (white dwarfs, neutron stars, and black holes).
Both single and binary star populations are considered. The code now incorporates detailed calculations
of all mass-transfer phases, a full implementation of orbital evolution due to tides, as well as the most
recent estimates of magnetic braking. This updated version of StarTrack can be used for a wide
variety of problems, with relevance to many current and planned observatories, e.g., studies of X-ray
binaries (Chandra, XMM-Newton), gravitational radiation sources (LIGO, LISA), and gamma-ray burst
progenitors (HETE-II, Swift). The code has already been used in studies of Galactic and extra-galactic
X-ray binary populations, black holes in young star clusters, Type Ia supernova progenitors, and double
compact object populations. Here we describe in detail the input physics, we present the code calibration
and tests, and we outline our current studies in the context of X-ray binary populations.

Subject headings: binaries: close — stars: evolution — stars: white dwarfs, neutron — black hole physics
— X-rays: binaries

1. INTRODUCTION

The StarTrack population synthesis code was initially
developed for the study of double compact object merg-
ers in the context of gamma-ray burst (GRB) progeni-
tors (Belczynski, Bulik & Rudak 2002b) and gravitational
radiation inspiral sources (Belczynski, Kalogera & Bulik
2002c, hereafter BKB02). StarTrack has undergone ma-
jor updates and revisions in the last few years. With this
code we are able to evolve isolated (not dynamically in-
teracting) single stars and binaries for a wide range of ini-
tial conditions. The input physics incorporates our latest
knowledge of processes governing stellar evolution, while
the most uncertain aspects are parameterized to allow for
systematic error analysis. During the code development,
special emphasis was placed on the compact object pop-
ulations: white dwarfs (WDs), neutron stars (NSs), and
black holes (BHs). The input physics currently includes all
major processes important for the formation and evolution
of compact objects. Among other things we have devel-
oped fast procedures to treat and diagnose various types of
mass transfer episodes (including phases unstable on the
thermal time scale and dynamically unstable mass trans-
fer leading to common envelopes). We also compute tidal
effects on orbital evolution, angular momentum losses due
to magnetic braking and gravitational radiation, as well
as mass loss from stellar winds and during mass trans-
fer phases. Rejuvenation of binary components is taken
into account. The full orbital evolution of binaries is also

computed, including angular momentum and mass loss.
Supernovae (SNe) and compact object formation are also
treated in detail.

The new version of StarTrack presented here has al-
ready been tested and used in many applications. Belczyn-
ski & Taam (2004a) studied the formation of ultrashort pe-
riod X-ray binaries and they also demonstrated that the
faint X-ray Galactic Center population can neither be ex-
plained by quiescent NS/BH transients nor by hard/faint
wind-fed sources (Belczynski & Taam 2004b). Belczynski,
Sadowski & Rasio (2004b) and Belczynski et al. (2005c)
developed a comprehensive description of young BH pop-
ulations, which can also provide realistic initial conditions
for the dynamical modeling of BHs in star clusters. Bel-
czynski et al. (2004a) derived for the first time a synthetic
X-ray luminosity function which agrees with Chandra ob-
servations of NGC 1659, and Sepinsky, Kalogera, & Bel-
czynski (2005) explored the numbers and spatial distri-
bution of X-ray binaries formed in young star clusters.
Belczynski, Bulik & Ruiter (2005b) tested different mod-
els of Type Ia SN progenitors, arriving at the conclusion
that the double degenerate scenario most easily repro-
duces the observed delay times between star formation and
Type Ia SNe. Belczynski et al. (2005a) used StarTrack to
study the gravitational radiation signal from the Galac-
tic population of double WDs. Nutzman et al. (2004),
O’Shaughnessy et al. (2005a,b,c), and Ihm, Kalogera, &
Belczynski (2005) studied binary compact object popu-
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lations and derived merger rates and detection rates by
ground-based interferometers; they also examined BH spin
magnitudes and studied the eccentricities of double neu-
tron stars. StarTrack was also incorporated into a simple
stellar dynamics code, allowing the study of the effects of
dynamical interactions on binary populations in dense star
clusters. In that form it has been used for the study of bi-
nary fractions in globular clusters (Ivanova et al. 2005) and
an investigation of intermediate-mass BHs in clusters and
their connection to ultra-luminous X-ray sources (Blecha
et al. 2005).

Among other things StarTrack has been adapted for
the study of accretion powered X-ray binaries (XRBs). In
forthcoming papers we will present the synthetic popula-
tions of XRBs formed in different stellar environments. We
will start with young starburst galaxies, and move on to
spiral and, eventually, old elliptical galaxies. In the next
stage it will be possible to compare the models with rapidly
improving observations of various X-ray point source pop-
ulations. This will offer a new perspective to the study
of several uncertain aspects of binary evolution leading to
the formation of XRBs. It may also result in an indepen-
dent diagnostic of star formation rates for nearby galax-
ies, since both the numbers and properties of XRBs are
directly connected to the star formation history (see e.g.,
Grimm, Gilfanov & Sunyaev 2003; Gilfanov 2004; Kim &
Fabbiano 2004; Belczynski et al. 2006, in preparation).

In this paper we provide a detailed description of the
current version of StarTrack, and we present the results
of a number of tests. We describe the implementations of
single star evolution in § 2, binary orbit evolution in § 3,
stellar wind mass loss/accretion in § 4, Roche lobe overflow
calculations in § 5, spatial velocities in § 6, and the assumed
distributions of initial parameters in § 7. In § 8 we discuss
the validity of various input physics assumptions, and we
compare StarTrack calculations with detailed evolution-
ary models and with various observations. Section § 9 is
dedicated to the discussion of X-ray binary modeling. In
§ 10 we conclude with a short summary.

2. SINGLE STELLAR EVOLUTION

In all subsequent sections we use units of M⊙ for mass,
R⊙ for orbital separations and stellar radii, Myr for time,
L⊙ for bolometric luminosity, unless specified otherwise.
We use R and M to denote stellar radius and mass, while
a, e represent the binary orbital parameters: semi-major
axis and eccentricity, respectively. Index i = 1, 2 is used
to mark the binary components (or single stars for con-
sistency), or to denote an accretor and a donor in mass
transfer calculations: i = acc, don. Roche lobe parameters
are indexed with “lob”. The initially more massive (at
Zero Age Main Sequence) binary component is referred to
as primary, while its companion as secondary.

2.1. Overview

The evolution of single stars and non-interacting binary
components have remained mostly unchanged since the
last published description of the code (BKB02) and there-
fore we only give a brief outline here. However, we do point
out the new additions and reiterate the modifications to
the original formulae which were used as the base for the
implementation of single star evolution in StarTrack.

To evolve single stars from the Zero Age Main Sequence
(ZAMS) until remnant formation (WD, NS, BH, or a
remnant-less supernova) we employ the analytic formu-
lae of Hurley, Pols & Tout (2000). Each star is followed
along an evolutionary track specific for its initial mass
and metallicity. Various wind mass loss rates that vary
with the stellar evolutionary stage are incorporated into
the code and their effect on stellar evolution is taken into
account. Once the remnant is formed, we terminate the
calculations but keep track of the numbers, properties and
formation times of a given type of remnant.

2.2. Stellar types

We follow Hurley et al. (2000) to denote different stages
of stellar evolution with an integer Ki = 1..n, where
0 – Main Sequence (MS) M ≤ 0.7 M⊙

1 – MS M > 0.7 M⊙

2 – Hertzsprung Gap (HG)
3 – Red Giant Branch (RG)
4 – Core Helium Burning (CHeB)
5 – Early Asymptotic Giant Branch (EAGB)
6 – Thermally Pulsing AGB (TPAGB)
7 – Helium Main Sequence (HeMS)
8 – Helium Hertzsprung Gap (HeHG)
9 – Helium Giant Branch (HeGB)
10 – Helium White Dwarf (He WD)
11 – Carbon/Oxygen White Dwarf (CO WD)
12 – Oxygen/Neon White Dwarf (ONe WD)
13 – Neutron Star (NS)
14 – Black Hole (BH)
15 – massless remnant (after SN Ia explosion)
16 – Hydrogen White Dwarf (H WD)
17 – Hybrid White Dwarf (Hyb WD)
In addition to the star types introduced and coded by
the numbers Ki = 1...15 in the original Hurley et al.
(2000) formulae, we have introduced two new stellar types
Ki = 16, 17. Ki = 16 denotes a H-rich white dwarf. Only
main sequence stars less massive than about 0.7 M⊙ can
produce such a H-rich remnant through mass loss in a
close binary system. These low-mass stars do not process
a significant amount of hydrogen into helium in their cores
(even in a Hubble time) and once their mass is stripped
below the hydrogen burning limit (close to ∼ 0.08 M⊙)
they become degenerate H-rich white dwarfs. These stars,
although not frequently encountered in population synthe-
sis, may become donors in the shortest-period interacting
binaries. Ki = 17 denotes a hybrid white dwarf, with a
carbon-oxygen-helium mixture in the core and a helium
envelope. These objects are the remnants of Helium-rich
main sequence stars (Ki = 7) which are stripped of mass
below 0.35 M⊙ during Roche lobe overflow (RLOF). At
that point, thermonuclear reactions stop and the star be-
comes degenerate (eg., Savonije, de Kool & van den Heuvel
1986).

2.3. Modifications

Several major changes to the original Hurley et
al. (2000) formulae have been implemented within
StarTrack.

2.3.1. Compact object masses

The remnant masses of neutron stars and black holes are
also calculated in a different way than originally suggested
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by Hurley et al. (2000). We determine the mass of a rem-
nant using the information on the final CO and FeNi core
masses, combined with the knowledge of the initial mass
of the star. The effects of material fallback (ejected ini-
tially in the SN explosion) during the star’s final collapse
are included. For the most massive stars we also allow
for the possibility of a silent collapse (no supernova ex-
plosion) and direct BH formation. The resulting remnant
mass spectrum covers a wide range of masses. In partic-
ular, it was found that single stars may form BHs up to
∼ 12 M⊙ for solar metallicity (Z = 0.02) and ∼ 30 M⊙ for
lower metallicities (Z = 0.001−0.0001), which is in agree-
ment with the current observations of most massive BHs in
X-ray transients. The details of the remnant mass calcu-
lations were presented and discussed in BKB02 (see their
§ 2.1.3) and the dependence of remnant mass on metallicity
was presented in Belczynski et al. (2004b).

2.3.2. Wind mass loss

The compilation of stellar winds mass loss rates pre-
sented in Hurley et al. (2000) has been expanded to include
mass loss from low- and intermediate-mass main sequence
stars. We have adopted the formulae of Nieuwenhuijzen &
de Jager (1990) to calculate the mass loss rates for main
sequence stars below ∼ 8 M⊙. Although the mass loss
from these stars is not large enough to significantly alter
the evolution of a mass–losing star, it may play an impor-
tant role in the formation and evolution of wind-accreting
close binaries. Even with small mass transfer rates charac-
teristic for the low- and intermediate-mass main sequence
stars, the X-ray luminosities for accreting BHs and NSs are
high enough to be detected in deep Chandra exposures. A
number of faint point X-ray sources were discovered in the
Galactic center with deep exposures (Wang, Gotthelf &
Lang 2002; Muno et al. 2003), some of which may be
explained in terms of wind-fed close binaries (Pfahl, Rap-
paport & Podsiadlowski 2002a; Bleach 2002; Willems &
Kolb 2003; Belczynski & Taam 2004b).

2.3.3. Rotational velocities

A compilation of updated observational data on rota-
tional velocities is used to initiate the stellar spins on the
ZAMS. The spin evolution is followed as detailed here for
single stars and in § 3 for binary components. In order to
obtain a functional form of the relation of the equatorial
rotational velocity and stellar mass, we used the compila-
tion of rotational velocities of Stauffer & Hartmann (1986)
for stars in open clusters. The difference between cluster
and field stars is quite small for massive stars (with a max-
imum difference of ∼ 10% for intermediate B-type stars),
but can be as high as 40% for stars later than F-type, with
field stars having systematically lower rotational velocities.

The mean rotational velocity vrot was determined from
the projected velocity (vrot sin i) assuming a random dis-
tribution of angles with sin i = π/4. We fitted vrot as a
function of stellar mass, and we obtained the following
empirical functional form

vrot =











10.0 M
−α1
i

c+M
−β1
i

if Mi > Mo

13.32 M
−α2
i

c+M
−β1
i

if Mi ≤ Mo

(1)

where, α1 = −0.035+0.06
−0.31, α2 = 0.12+0.09

−0.04, β1 = 7.95+0.33
−0.31

and Mo = 6.35+6.5
−2.1 (errors are at the 1 σ level). We stress

that this is only an empirical functional form of the equa-
torial rotational velocity as a function of stellar mass. In
Fig 1 we present the observational data from Stauffer &
Hartmann (1986), together with the best fit function. In
the bottom panel of this figure we also show the ratio of
the Stauffer & Hartmann (1986) data and the model.

The spin angular momentum of a star may be expressed
as

Ji,spin = Iiωi = kiMiR
2
i ωi (2)

where, ωi = vrot/Ri is the angular rotational velocity and
the coefficient ki varies as the star evolves and its inter-
nal structure changes (e.g., it is 2/5 for a solid sphere and
2/3 for a spherical shell). Following Hurley et al. (2000)
we consider two structural components for each star: a
core and an envelope. The spins of these two components
may decouple in the course of evolution, although we keep
them coupled in our standard model calculations. The
spin angular momentum of a star is then

Ji,spin = [ki,env(Mi − Mi,c)R
2
i + ki,coreMi,cR

2
i,c]ωi (3)

We use different values than Hurley at al. (2000)
for the internal structure coefficient ki. For
stars with no clear core-envelope structure (Ki =
0, 1, 7, 10, 11, 12, 13, 14, 16, 17) we use simple polytropic
models (e.g., Lai, Rasio & Shapiro 1993) with n = 1.5 and
n = 3 for low-mass and high-mass objects, respectively,
giving

ki,env =

{

0.205 Mi < 1 M⊙

0.075 Mi ≥ 1 M⊙

ki,core = 0 (4)

For giants with a clear separation between core and enve-
lope (Ki = 2, 3, 4, 5, 6, 8, 9) we use detailed models of giant
envelopes (Hurley et al. 2000) and for the core we apply a
polytropic model with n = 1.5 to obtain

ki,env = 0.1, ki,core = 0.205 (5)

Conservation of the spin angular momentum of a star is
used then to determine its rotational velocity. Additional
momentum losses from magnetic braking (see § 3.2) are
also taken into account.

2.3.4. Convective/Radiative envelopes

Stars with convective and radiative envelopes respond
differently to various physical processes (e.g., magnetic
braking, tidal interactions or mass loss). Stars that
have a significant convective envelope are: low-mass H-
rich MS stars (Ki = 0, 1) within the mass range of
0.35 M⊙−Mms,conv, where Mms,conv is the maximum mass
for a MS star to develop a convective envelope; giant-like
stars (Ki = 2, 3, 5, 6, 8, 9) independent of their mass; low-
and intermediate-mass core helium burning stars (Ki = 4
with Mi < 7 M⊙); and evolved low-mass Helium stars
(Ki = 9) below Mhe,conv = 3.0 M⊙. MS stars with masses
below ∼ 0.35 are fully convective. The value of Mms,conv)
depends strongly on metallicity

Mms,conv =







1.25 Z ≥ 0.02
−1532Z2 + 55.73Z + 0.747 0.001 < Z < 0.02
0.8 Z ≤ 0.001

(6)
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Values of Mms,conv in metallicity range Z = 0.001 − 0.02
are obtained from a fit to the detailed evolutionary cal-
culations (Ivanova 2006). All other stars are assumed to
have radiative envelopes.

2.3.5. Helium star evolution

We assume that low-mass evolved Helium stars (Ki = 9)
below Mhe,conv = 3.0 M⊙ (as opposed to 2.2 M⊙ in Hurley
et al. 2000) expand and form deep convective envelopes in
the late stages of evolution (e.g., Ivanova et al. 2003; Dewi
& Pols 2003). Helium stars with convective envelopes are
subject to strong tidal interactions (convective tides as op-
posed to radiative damping, see § 3.3), and if found in an
interacting binary, they may alter significantly the fate
of a given system. All helium stars (Ki = 7, 8, 9) may be
subject to stable RLOF. However, in dynamically unstable
cases we assume a binary component merger in the case
of a HeMS donor (Ki = 7) or we follow a given system
through a CE phase for evolved He star donors (Ki = 8, 9
and test whether the system survives or merges. The ex-
amination of RLOF stability and development of dynam-
ical instability are described in detail in § 5).

The treatment of helium stars is important, among other
things, in later stages of evolution leading to double neu-
tron star formation. The immediate consequences, leading
to the formation of a new class of close double neutron
stars, were discussed in Belczynski & Kalogera (2001),
Belczynski, Bulik & Kalogera (2002a) and Ivanova et al.
(2003). Due to significant updates of the code and new
observational results on short GRBs with double neutron
stars suggested as their progenitors (e.g., Fox et al. 2005)
new StarTrack calculations relevant to the double neutron
star formation are underway.

3. BINARY ORBITAL EVOLUTION

Throughout the course of binary evolution we track the
changes in orbital properties. A number of physical pro-
cesses may be responsible for these changes. In the general
case of eccentric orbits we numerically integrate a set of
four differential equations describing the evolution of or-
bital separation, eccentricity and component spins, which
depend on tidal interactions as well as angular momentum
losses associated with magnetic braking, gravitational ra-
diation and stellar wind mass losses. For circular orbits
with synchronized components, we can obtain an exact
solution for the change of orbital separation using conser-
vation of angular momentum. Losses of angular momen-
tum and/or mass associated with RLOF events, magnetic
braking and gravitational radiation are taken into account.
We assume that any system entering RLOF becomes cir-
cularized and synchronized (if it had not already reached
this equilibrium state before RLOF). For systems which
have not been circularized and synchronized before enter-
ing RLOF there might be substantial mass loss (e.g., Hut
& Paczynski 1984), and this is not taken into account in
our calculations. Violent processes like SN explosions or
common envelope phases are taken into account in binary
orbital evolution. Also nuclear evolution of components
(expansion/contraction affecting stellar spins) is consid-
ered. In what follows we describe the elements used to
calculate the orbital evolution.

The orbital angular momentum of the binary and its
mean angular velocity are expressed as

Jorb =
M1M2

√

aG(M1 + M2)

M1 + M2

√

1 − e2 (7)

wworb =
√

G(M1 + M2)a
−1.5 (8)

where G is the gravitational constant.

3.1. Gravitational radiation

Binary angular momentum loss due to gravitational ra-
diation is estimated for any type of binary following Peters
(1964)

dJgr/ dt = −32

5

G
7
2 M1

2M2
2√M1 + M2

c5a
7
2 (1 − e2)2

(1 +
7

8
e2) (9)

where, c is the speed of light.

3.2. Magnetic Braking

Three different prescriptions for magnetic braking are
incorporated within the StarTrack code and may be used
interchangingly for parameter studies. In what follows we
provide a detailed description of the specific braking laws
adopted.

Magnetic braking is applied for stars with a significant
convective envelope, i.e., for low-mass H-rich MS stars, H-
rich giant-like stars and low- and intermediate-mass CHeB
stars (see § 2.3.4 for details) with the exception of low-
mass evolved Helium stars for which there is not much
known about magnetic fields. For fully convective MS
stars (Ki = 0, M < 0.35 M⊙) magnetic braking may
also operate, although it has been hypothesized that the
braking is suppressed (Rappaport, Verbunt & Joss 1983;
Zangrilli, Tout & Bianchini 1997) in order to provide an
explanation of the observed period gap for cataclysmic
variables. Therefore we assume that magnetic braking
is not operative for fully convective stars, independent of
the prescription used. Since massive core helium burning
stars, more massive H-rich MS stars, and He-rich MS stars
have radiative envelopes, we assume that magnetic brak-
ing does not operate in these stars. The prescription for
the loss of angular momentum associated with magnetic
braking dJi,mb/ dt takes several forms. Historically, most
studies have adopted the form suggested by Rappaport et
al. (1983) where

dJi,mb/ dt = −5.8 × 10−22MiRi
γωi

3 (10)

with parameter γ = 2 in our model calculations. However,
studies based on the observations of rapidly rotating stars
show that the Skumanich relation (J̇ ∝ ω3) is inadequate
in this regime and point to a weakening of magnetic brak-
ing due to saturation of the dynamo (Andronov, Pinson-
neault & Sills 2003). In this case, the angular momentum
loss rate takes the form

dJi,mb/ dt = −8.88×10−22
√

Ri/Mi

{

ωi
3 ωi ≤ ωcrit

ωiω
2
crit ωi > ωcrit

(11)
where, i denotes the component for which magnetic brak-
ing is operating, ωi [ Myr−1] is angular velocity, and ωcrit
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stands for a critical value of angular velocity above which
the angular momentum loss rate enters the saturated
regime. If the latter law is used, the saturation is applied
only for MS stars and ωcrit is interpolated from Table 1 of
Andronov et al. (2003).

In addition, we also include the form of magnetic brak-
ing from the results of a study by Ivanova & Taam (2003).
In this latter study, an intermediate form of the angular
momentum loss rate was derived (J̇ ∝ ω1.3) based on a two
component coronal model as applied to the observational
data relating stellar activity to stellar rotation. Specifi-
cally, we adopt

dJi,mb/ dt = −619.2Ri
4

{

(ωi/9.45× 107)3 ωi ≤ ωx

101.7(ωi/9.45× 107)1.3 ωi > ωx

(12)
with wx = 9.45 × 108 Myr−1. This law is used for the
StarTrack standard model calculations.

3.3. Tidal Evolution

The evolution of the orbital parameters (a, e) as well
as component spins (ωi, i = 1, 2) driven by tidal inter-
actions of binary components is computed in the stan-
dard equilibrium-tide, weak- friction approximation (Zahn
1977, 1989), following the formalism of Hut (1981)1. This
formalism allows us to treat binaries with arbitrarily large
eccentricities. We assume that the only sources of dissi-
pation are eddy viscosity in convective envelopes and ra-
diative damping in radiative envelopes. Specifically, we
integrate numerically the following differential equations
in parallel with the stellar evolution

(

da

dt

)

tid

= −6Ftid

(

k
T

)

i
qi(1 + qi)

(

Ri

a

)8 a
(1−e2)15/2

×
(

f1(e
2) − (1 − e2)3/2f2(e

2) ωi

ωorb

)

(13)

(

de

dt

)

tid

= −27Ftid

(

k
T

)

i
qi(1 + qi)

(

Ri

a

)8 e
(1−e2)13/2

×
(

f3(e
2) − 11

18 (1 − e2)3/2f4(e
2) ωi

ωorb

)

(14)

(

dωi

dt

)

tid

= 3Ftid

(

k
T

)

i

q2
i

r2
i,gyr

(

Ri

a

)6 ωorb

(1−e2)6

×
(

f2(e
2) − (1 − e2)3/2f5(e

2) ωi

ωorb

)

(15)

where
f1(e

2) = 1 + 31
2 e2 + 255

8 e4 + 185
16 e6 + 25

64e8

f2(e
2) = 1 + 15

2 e2 + 45
8 e4 + 5

16e6

f3(e
2) = 1 + 15

4 e2 + 15
8 e4 + 5

64e6

f4(e
2) = 1 + 3

2e2 + 1
8e4

f5(e
2) = 1 + 3e2 + 3

8e4

and ri,gyr is the gyration radius and is defined by Ii ≡
Mi(ri,gyrRi)

2, with Ii denoting the moment of inertia of a
given binary component. Here the mass ratio is defined as
follows,

qi =

{

M2/M1 i = 1
M1/M2 i = 2

(16)

The quantity (k/T )i is the ratio of the apsidal motion
constant k (which depends on the interior structure of the
star) over the timescale T of tidal dissipation. Following
Hurley, Tout & Pols (2002), we calculate that constant
for either the equilibrium tide with convective damping
((k/T )i = (k/T )i,con) or the dynamical tide with radiative
damping ((k/T )i = (k/T )i,rad). Radiative damping is ap-
plied to stars with radiative envelopes: MS stars with mass
over Mms,conv, CHeB stars with mass over 7 M⊙, massive
evolved He stars and all He MS stars. For all other stars,
convective damping is applied (see § 2.3.4 for details on
convective/radiative envelopes). We do not calculate tides
on stellar remnants, e.g., on WDs (Ki ≥ 10).

The constant for convective damping is obtained from

(

k

T

)

i,con

=
2

21

fi,conv

τi,conv

Mi,env

Mi
yr−1 (17)

where Mi,env is the mass contained in the convective en-
velope of component i. The eddy turnover time τi,conv is
calculated as

τi,conv = 0.431

[

Mi,envRi,env(Ri − 1
2Ri,env)

3Li

]1/3

yr (18)

with Ri,env denoting the depth of the convective envelope
and Li the bolometric luminosity of a given component
(Rasio et al. 1996).

The numerical factor fi,conv is defined as

fi,conv = min

[

1,

(

Pi,tid

2τi,conv

)2
]

(19)

with the tidal pumping timescale Pi,tid defined as

1

Pi,tid
=

∣

∣

∣

∣

1

Porb
− 1

Pi,spin

∣

∣

∣

∣

(20)

where Porb and Pi,spin are the binary orbital period and
the spin period of component i, respectively. This factor
represents the reduction in the effectiveness of eddy vis-
cosity when the forcing period is less than the turnover
period of the largest eddies (Goldreich & Keeley 1977)

The constant for radiative damping is calculated from

(

k

T

)

i,rad

= 1.9782× 104 MiRi

a
(1 + q2)

5/6E2 yr−1 (21)

where a second-order tidal coefficient E2 = 1.592 ×
10−9M2.84

i was fitted (Hurley et al. 2002) to values given
by Zahn (1975).

Finally, we have introduced an additional scaling factor
Ftid in the evolution equations (eq. 13, 14, 15) which we
normally set to: Ftid = 10. This factor makes tidal forces
(both in case of convective and radiative damping) more
effective than predicted by the standard Zahn theory. The
choice of this specific value of Ftid is a result of our calibra-
tion against the cutoff period for circularization of binaries

1Note that upon entering RLOF any binary system is instantly synchronized and circularized.
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in M67 and from the orbital decay of the high mass X-ray
binary LMC X-4 (for details see § 8.2).

The orbital angular momentum change associated with
tides is calculated from

dJi,tid/ dt = 3FtidIi

(

k
T

)

i

q2
i

r2
i,gyr

(

Ri

a

)6 ωorb

(1−e2)6

×
(

f2(e
2) − (1 − e2)3/2f5(e

2) ωi

ωorb

)

(22)

and the orbit shrinks when dJ1,tid/ dt + dJ2,tid/ dt is neg-
ative and expands otherwise.

Pre–main sequence tidal synchronization and circular-
ization. We also allow for pre-MS tidal interactions. Since
we do not follow pre-MS evolution, all binaries with or-
bital periods shorter than 4.3 d (Mathieu et al. 1992) are
simply assumed to have circularized and all binary com-
ponents to have synchronized by the time they reach the
ZAMS. For binaries with longer orbital periods we apply
our assumed distribution of initial eccentricities (see § 7)
and initial rotational velocities for binary components (see
§ 2.3.3).

Darwin instability. One important consequence of tidal
interactions in massive binaries is the possible occurrence
of the Darwin instability (e.g., Lai et al. 1993). When
the more massive component is spinning slowly compared
to the orbital rate of its companion, tidal forces will tend
to spin it up, leading to loss of orbital angular momen-
tum (orbital decay). Usually this orbital decay will stop
when synchronization is established. However, if, in the
synchronized state, more than a third of the total binary
angular momentum would be in the component spins, then
synchronization can never be reached and the components
will continue to spiral in. We follow this process until
one of the binary components overflows its Roche lobe.
The ensuing mass transfer may stabilize the orbital decay,
and the system is then followed through this stable RLOF
phase. In cases where the RLOF is found to be dynam-
ically unstable (§ 5.1 and § 5.2) the system goes through
a CE phase leading either to a merger, or further orbital
decay with envelope ejection (§ 5.4).

3.4. Mass and Angular Momentum Loss from Binaries

Mass lost from the binary components in stellar winds
carries angular momentum, in turn affecting the orbit
through tidal coupling. Similarly, during RLOF, some of
the transferred material and its associated angular mo-
mentum may be lost from the system. In this section we
consider the amount of angular momentum loss associated
both with stellar winds and RLOF phases. However, for
RLOF we only consider here dynamically stable phases,
while the change of the orbit following unstable RLOF
(common envelope events) is described in § 5.4.

For stellar winds we assume spherically symmetric mass
loss, which carries away the specific angular momentum of
the mass–losing component. The corresponding change of
the orbit (Jeans-mode mass loss) is calculated from

a(M1 + M2) = const. (23)

The above approach holds for circular orbits, however the
change in binary separation a is similar for eccentric orbits
(Vanbeveren, Van Rensbergen & De Loore 1998).

In case of stable RLOF with compact accretors (WD,
NS, BH; Kacc = 10, 11, 12, 13, 14, 16, 17) we limit (al-
though that assumption may be relaxed) accretion to the
Eddington critical rate

Ṁedd = 2.088 × 10−3 Racc

ǫ(1 + X)
M⊙ yr−1 (24)

and the corresponding critical Eddington luminosity may
be expressed as

Ledd = ǫ
GMaccṀedd

Racc
(25)

where Racc denotes the radius at which the accretion onto
compact object takes place (a NS or a WD radius, and
three Schwarzschild radii for a BH), X denotes the compo-
sition of accreted material (0.7 for the H-rich material, and
0.0 for all other compositions), and ǫ gives the conversion
efficiency of gravitational binding energy to radiation as-
sociated with accretion onto a WD/NS (surface accretion
ǫ = 1.0) and onto a BH (disk accretion ǫ = 0.5). We also
note that above some critical (very high) accretion rate,
nuclear burning will start on the WD surface. This will
be much more radiatively efficient than the gravitational
energy release and the above relations break down. If the
mass transfer rate is higher than Ṁedd the excess material
leaves the system from the vicinity of the accreting object
and thus carries away the specific angular momentum of
the accretor. The angular momentum loss associated with
a given systemic mass loss in a RLOF phase is obtained
from

dJRLOF/ dt = −R2
comworb(1 − fa)Ṁdon (26)

where Rcom = aMdon/(Mdon + Macc) is the distance be-

tween the accretor and binary center of mass, and Ṁdon

is the mass transfer rate (donor RLOF rate, see eq. 44).
The fa fraction of material transferred from the donor
is accreted on the compact object. If mass transfer is
sub-Eddington then fa = 1 (conservative), otherwise it

is fa = Ṁedd/Ṁdon (non-conservative evolution). Here
we assume that the radiative efficiency is not a function
of the mass transfer rate. Some work has suggested that
at high transfer rates, flows onto black holes may become
radiatively inefficient as photons are trapped in the flow
and advected into the black hole (see e.g., Abramowicz
et al. 1988), or that substantially super-Eddington accre-
tion may be possible in non-spherical accretion flows (e.g.,
Begelman 2002). In the current version of the code, we do
not consider these possibilities.

For all other, non-degenerate donors (Kacc =
0, 1, 2, 3, 4, 5, 6, 7, 8, 9) we assume a non-conservative evo-
lution through stable RLOF, with part of the mass lost by
the donor accreted onto the companion (fa), and the rest
(1−fa) leaving the system with a specific angular momen-
tum expressed in the units of binary angular momentum
(2πja2/Porb; see Podsiadlowski, Joss & Hsu 1992). The
angular momentum loss is then estimated from

dJRLOF/ dt = −jloss
Jorb

Mdon + Macc
(1 − fa)Ṁdon (27)

where jloss = 1 which corresponds to mass loss through the
L1 point. For our standard model calculation we adopt
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fa = 0.5 (half of the transferred mass lost from system,
e.g. Meurs & van den Heuvel 1989) and j = 1 (mass lost
with the specific angular momentum of the binary, e.g.
Podsiadlowski et al. 1992).

4. WIND MASS LOSS/ACCRETION IMPLEMENTATION

We adopt the compilation of mass loss rates from Hur-
ley at al. (2000). We have further extended the original
formulae to include winds from low- and intermediate-
mass MS stars. The structure of the star (and its sub-
sequent evolution) in response to stellar wind mass loss
is self-consistently taken into account with the Hurley et
al. (2000) evolutionary formulae. The most important
changes include possible removal of the H-rich envelope
of a massive star or a more gradual nuclear evolution with
decreasing mass. The effects of wind mass loss from binary
components on the orbital parameters are also accounted
for (see § 3.4).

The effects of mass increase of binary components due
to accretion from the companion winds are neglected. Ei-
ther the wind accretion rates are very low or the high
wind accretion phases do not last for long, which does
not translate into significant mass increase of a compan-
ion star. However, we estimate the wind accretion rates
onto NSs and BHs since it may give rise to bright X-ray
emission (see § 9).

The wind accretion rate is calculated in the general case
of eccentric orbits, i.e. we obtain accretion rate (and accre-
tion luminosity) for a specified position on the orbit, or we
integrate over a specific part of the orbit (e.g., correspond-
ing to the exposure time of given observations). This may
be of importance for eccentric wind-fed binaries, e.g., high
mass X-ray binaries (see § 9.2). We have also implemented
an orbital-averaged solutions. The two solutions may be
alternated as required for a given project or analysis.

4.1. General Eccentric Orbit Case

We follow the Bondi & Hoyle (1944) accretion model
to calculate the accretion from stellar wind. As an ap-
proximation we may express (Boffin & Jorissen 1988) the
accretion rate as

Ṁacc,wind = αwind
2π(GMacc)

2

(V 2
rel + c2

wind)3/2
ρ (28)

where αwind = 1.5 is the accretion efficiency in the Bondi–
Hoyle model, although it may be as low as 0.05 in some
specific cases (e.g., see hydrodynamical simulations of The-
uns, Boffin & Jorissen 1996 for Barium star formation),
cwind is the wind sound speed, and Vrel is the relative
velocity of the wind with respect to the accreting star.
The local (undisturbed) density of the wind matter ρ in
the vicinity of the accreting object may be calculated in a
steady spherically symmetric case from

Ṁdon,wind = −4πr2ρVwind (29)

where Ṁdon,wind is the wind mass loss rate form the donor,
r is the instantaneous distance between the two stars, and
Vwind is the wind velocity. We assume that the wind flow
is supersonic (Vrel ≫ cwind) so that c2

wind may be dropped
from eq. 28. We introduce ρ (expressed through eq. 29)

into eq. 28 to obtain

Ṁacc,wind = −αwind
(GMacc)

2

2V 3
relVwindr2

Ṁdon,wind (30)

The accretion rate calculated with eq. 30 varies as the ac-
creting object moves in its orbit around mass–losing star.
The relative distance r of the two stars is obtained through
the Kepler equation for a given orbit. Obviously r is a
function of orbital position. The vector of the relative ve-

locity ~Vrel is defined as

~Vrel = ~Vacc,orb + ~Vwind (31)

where ~Vacc,orb denotes the instantaneous velocity of the
accretor on the orbit relative to the mass loosing star, and
is readily obtained for a given position through the Ke-
pler equation. The direction of the wind velocity vector
~Vwind follows the vector pointing toward the accretor on
its relative orbit around the mass–losing star. We set the
wind velocity proportional to the escape velocity from the
surface of the mass–losing star

V 2
wind = 2βwind

GMdon

Rdon
, (32)

and vary βwind with the spectral type of the mass–losing
star (Hurley et al. 2002). For extended (Rdon > 900 R⊙)
H-rich giants (Kdon = 2, 3, 4, 5, 6) slow winds are assumed
βwind = 0.125. For the most massive MS stars (> 120 M⊙)
βwind = 7, for low mass MS stars (< 1.4 M⊙) βwind = 0.5
and the value of βwind is interpolated in-between. For He-
rich stars (Kdon = 7, 8, 9); βwind = 7 for Mdon > 120 M⊙,
βwind = 0.125 for Mdon < 10 M⊙, and is interpolated in-
between.

4.2. Orbit-averaged Case

We use eq. 30 to obtain the orbit-averaged accretion
rate. The wind velocity vector is assumed to be perpen-
dicular to the orbital speed vector (as on a circular orbit),
i.e., V 2

rel = V 2
acc,orb + V 2

wind. The wind velocity is taken
from eq. 32. The orbital velocity of the accretor is taken
to be constant and is obtained from the circular orbit ap-
proximation V 2

acc,orb = G(Macc +Mdon)/a. Finally, 1/r2 is
substituted in eq. 30 with its mean value over one orbital
revolution, i.e., 1/(a2

√
1 − e2) to obtain

Ṁacc,wind = − Fwind√
1 − e2

(

GMacc

V 2
wind

)2
αwind

2a2

Ṁdon,wind

(1 + V 2)3/2

(33)
where Fwind is a parameter (see below) and V 2 =
V 2

acc,orb/V 2
wind.

For highly eccentric orbits, the averaged (over one orbit)
accretion rate calculated with the eq. 33 may exceed the
companion mass loss rate. This is a direct result of the or-
bital averaging used above. To avoid this we follow Hurley
et al. (2002; § 2.1) and adopt Fwind such that Ṁacc,wind

never exceeds 0.8Ṁdon,wind.

5. ROCHE LOBE OVERFLOW CALCULATIONS

Different physical processes may be responsible for driv-
ing RLOF. In the following we describe the treatment of
mass loss and mass accretion in our model.
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5.1. Mass Transfer/Accretion Rate

For any binary system during RLOF phases with a non-
degenerate donor (Kdon < 10) we calculate the radius mass
exponents for the donor and its Roche lobe

ζdon =
∂ lnRdon

∂ lnMdon
(34)

ζlob =
∂ lnRdon,lob

∂ lnMdon
(35)

and we estimate the change of donor radius with time due
to its nuclear evolution as

ζevl =
∂ lnRdon

∂t
(36)

RLOF may be driven by different physical processes;
angular momentum losses connected to magnetic braking
and gravitational radiation or expansion due to nuclear
evolution. The timescales for magnetic braking, tides, and
gravitational radiation are calculated from

τmb = − Jorb

dJdon,mb/ dt + dJacc,mb/ dt
(37)

τtid = − Jorb

dJdon,tid/ dt + dJacc,tid/ dt
(38)

τgr = − Jorb

dJgr/ dt
(39)

where expressions for dJgr/ dt, dJi,mb/ dt, dJi,tid/ dt are
given in § 3.1, § 3.2 and § 3.3, respectively.

If RLOF is driven by the combination of angular mo-
mentum losses changing the orbit and nuclear evolution of
the donor we then calculate the mass transfer rate from

Ṁeq = −
ζevl +

2
τmb

+ 2
τtid

+ 2
τgr

ζdon − ζlob
Mdon (40)

and the corresponding mass transfer timescale

τeq = −Mdon

Ṁeq

(41)

Additionally we estimate the thermal timescale for the
donor following Kalogera & Webbink (1996) from

τth =
30 × Mdon

2

RdonLdon
(42)

and the mass transfer rate on the thermal timescale

Ṁth = −Mdon

τth
(43)

In the case of stable RLOF, τeq > τth, we use eq. 40 to
calculate the mass transfer rate. Otherwise, for τeq ≤ τth,
RLOF becomes unstable on the thermal timescale and we
evolve a given system calculating the mass transfer rate
from eq. 43). However, in some cases the RLOF is so
rapid that it may eventually lead to a dynamical insta-
bility. Once the Ṁeq changes sign and becomes positive,
we get the indication that the RLOF evolves on very fast

timescale, the donor loses its equilibrium, and the system
evolves either on the thermal or dynamical timescale. In
this case a special diagnostic diagram is used (see below)
to decide which of the two timescales is relevant. We also
allow for the development of a delayed dynamical instabil-
ity, which may occur for stars with radiative envelope, but
with a deep convective layer. Dynamical instability dur-
ing RLOF leads to spiral-in of binary components and a
common envelope evolution (CE). We follow the CE phase
to determine whether the binary survives (ejection of the
envelope at the expense of orbital energy) or if a merger
of the binary components (single star formation) occurs.

The following summarizes the calculation of the RLOF
mass transfer rates

Ṁdon =















CE/merger Mdon > qddi × Macc

Ṁeq Ṁeq < 0 and τeq > τth

Ṁth Ṁeq < 0 and τeq <= τth

Ṁth/CE/merger diagnostic diagram
(44)

where we additionally assume that above some critical
mass ratio (qddi ≡ Mdon/Macc) the binary system will
evolve toward delayed dynamical instability (Hjellming &
Webbink 1987), leading to rapid inspiral and CE evolution.
For H-rich stars Hjellming (1989) gives a range qddi = 2−4
depending on the evolutionary state of a donor, while
Ivanova & Taam (2004) obtain qddi = 2.9 − 3.1. In our
standard model calculations we adopt qddi = 3 for H-rich
stars (Ki = 0, 1, 2, 3, 4, 5, 6). For He-rich stars we adopt
critical mass ratios from Ivanova et al. (2003); qddi = 1.7
for HeMS stars (Ki = 7), while qddi = 3.5 for evolved
He stars (Ki = 8, 9). Also, dynamical instability may be
encountered if the trapping radius of the accretion flow
exceeds the Roche lobe radius of the accretor (§ 5.4). Ad-
ditionally, we consider the case of spiral–in in the case
of Darwin instability, where the components spin angular
momentum is comparable to the orbital angular momen-
tum (§ 3.3).

For the donor stars without a well defined core-envelope
structure (Kdon = 0, 1, 7, 10, 11, 12, 16, 17) we assume that
the dynamical instability during RLOF always leads to
a merger. The same is assumed for the donor in the
Hertzsprung gap (Kdon = 2) as there is no clear entropy
jump at the core-envelope transition (Ivanova & Taam
2004; Belczynski & Taam 2004a). In the case of a merger
a single stellar object is formed. However, we do not fol-
low its evolution here. This may lead to an underesti-
mate of our synthetic supernovae rate, since potentially
some merger products are massive enough to evolve and
explode as Type II or Ib/c SNe. For H-rich and He-rich
giant-like donors (Kdon = 3, 4, 5, 6, 8, 9) we follow CE evo-
lution, and assuming ejection of the entire donor envelope,
we calculate the most probable outcome with conservation
of energy (see § 5.4). If RLOF is encountered for a system
with an evolved Helium star donor (Ki = 8, 9), then it is
found that for low donor masses (∼< 4 − 5 M⊙) RLOF is

stable (although it may proceed at very high rates) while
for higher donor masses it leads to a CE phase (e.g., see
Ivanova et al. 2003). The survival of the binary then
depends on the donor properties (e.g., envelope binding
energy, its mass, binary separation).
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The mass accretion rate in a dynamically stable RLOF
is calculated from

Ṁacc = f
a
Ṁdon (45)

where Ṁdon is the donor RLOF mass transfer rate (see
eq. 44). The parameter f

a
denotes the fraction of the

transferred mass which is accreted, while the rest (1− f
a
)

is ejected from the system (see § 3.4). Mass accretion in dy-
namically unstable cases (CE events) is calculated only for
NS and BH accretors, since only then significant accretor
mass gain may be expected despite very short timescales
(for details see BKB02).

5.2. Diagnostic Diagram for Rapid Mass Transfer

The aforementioned diagnostic diagram is shown in
Fig 2. Once RLOF becomes unstable we do not have
proper stellar models to use and calculate the donor prop-
erties (e.g., RLOF rate). Therefore, we use an approxi-
mate method and calibrate it based on the results from
detailed stellar evolutionary and mass transfer calcula-
tions, which are not limited to stars in thermal equilib-
rium. When the donor loses its equilibrium, we use the
stellar and binary properties to predict whether the sys-
tem will evolve through the phase of thermal mass transfer
and the donor will regain its equilibrium, or the RLOF will
become dynamically unstable and will eventually lead to
CE evolution. We plot the donor Roche lobe radius versus
decreasing donor mass under the assumption that mass
transfer is non-conservative and proceeds on a thermal
timescale (see eqs. 42 and 43). For NS/BH accretors the
accretion rate is limited by the Eddington rate, while for
all other accretors, a fraction fa of transferred material is
accreted. The associated specific angular momentum loss
is described in § 3.4. As the mass of the donor decreases
with mass transfer the Roche lobe first shrinks and then
at some critical mass ratio (qlow), it starts to expand again
(see the solid line on the top panel, Fig. 2). If the mass
ratio at the moment the star loses its equilibrium qint is
not greatly different than qlow we expect that the donor
may regain the equilibrium when the system is expanding.
The dashed line arrow in Figure 2 shows the expected be-
havior of the donor when it loses its equilibrium. If the
system does not evolve into a CE phase then we expect the
donor to regain its equilibrium at the position indicated by
the arrow. Of course this is just an approximation, since,
as the donor evolves, the radius-mass exponent changes.
We use a number of published (Tauris & Savonije 1999;
Wellstein & Langer 1999; Wellstein, Langer & Braun 2001;
Dewi & Pols 2003) and unpublished (N. Ivanova 2004, pri-
vate communication) detailed calculations to calibrate the
diagnostic diagram. Based on these studies we find that a
CE phase ensues if

CE

{

qint ≥ 1.2 qlow Kdon = 2, 3, 4, 5, 6
qint ≥ 2.0 qlow Kdon = 0, 1, 7, 8, 9

(46)

Otherwise the system is evolved through RLOF on a ther-
mal timescale.

5.3. Thermal Timescale Mass Transfer

Once a binary is identified as a thermal timescale RLOF
system, we assume that the mass transfer rate remains

constant throughout the entire episode. We calculate the
rate using eq. 43 where we use properties corresponding
to the time the donor loses its thermal equilibrium. This
may be justified by the following: (i) thermal mass trans-
fer rates have been shown to be rather constant within
a factor of ∼ 2 − 3 (Paczynski 1971), (ii) since the rates
are calculated at the time the star loses equilibrium, it is a
good approximation (and the best possible with only equi-
librium stellar models being available) for the short lived
phase of thermal mass transfer that follows.

In the bottom panel of Figure 2 we show an example
calculation through a thermal RLOF phase, followed with
a slower (driven by nuclear evolution) RLOF period af-
ter the donor has regained its thermal equilibrium. The
specific system was chosen to match the RLOF calcula-
tion of Wellstein et al. (2001) for a 16 M⊙ and 15 M⊙

binary with an initial period of 8 days. The RLOF
starts when the primary evolves off the main sequence
and crosses the Hertzsprung Gap. Mass transfer ini-
tially proceeds on a thermal timescale at a very high
rate (∼ 2.8 × 10−3 M⊙ yr−1), then the star regains its
equilibrium and the RLOF rate decreases with time by
more than order of magnitude (∼ 10−4 M⊙ yr−1). Our
calculation can be directly compared to Wellstein et al.
(2001): see their Figure 4, left panel. Their detailed stel-
lar evolution calculation shows a thermal RLOF rate of
∼ 10−3 M⊙ yr−1, followed by a slower RLOF phase char-
acterized by rates of ∼ 10−4 M⊙ yr−1, very similar to
what we find with our simplified prescription. Our RLOF
phase lasts about twice as long as that of Wellstein et
al. (2001), who in contrast to our calculation assumed
conservative evolution and did not include effects of tidal
spin-orbit interactions. We choose not to modify our stan-
dard model assumptions (e.g., neglect tidal interactions)
for comparisons, and therefore emphasize some differences
with previous calculations. More comparisons of RLOF
sequences are presented in § 8.1.

5.4. Dynamical Instability and Common Envelopes

Dynamically unstable mass transfer may be encountered
in a number of ways. Most often it is a direct consequence
of stellar expansion during nuclear evolution. However,
loss of orbital angular momentum (e.g., via magnetic brak-
ing, gravitational radiation, or tides) may also lead to dy-
namical instability.

Additionally, we allow a system to evolve into a CE
phase if the trapping radius of the accretion flow exceeds
the Roche lobe radius of the accretor. The trapping radius
is defined as (Begelman 1979)

Rtrap =
Ṁdon

Ṁedd

Racc

2
. (47)

Following King & Begelman (1999) and Ivanova et al.
(2003) we check whether the mass transfer rate exceeds
a critical value above which the system is engulfed in a
CE

Ṁtrap = 2 × Ṁedd
Racc,lob

Racc
(48)

where Racc,lob is the accretor Roche lobe radius, and Ṁedd

is the Eddington critical accretion rate (see eq. 24).
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Below we present two different implementations of the
orbital contraction calculation during CE that are incor-
porated in StarTrack.

Standard Energy Balance Prescription If dynamical in-
stability is encountered a binary may enter a CE phase.
We use the standard energy equations (Webbink 1984) to
calculate the outcome of the CE phase

αce

(

GMdon,finMacc

2Afin
− GMdon,intMacc

2Aint

)

=
GMdon,intMdon,env

λRdon,lob

(49)
where, Mdon,env is the mass of the donor envelope ejected
from the binary, Rdon,lob is the Roche lobe radius of the
donor at the onset of RLOF, and the indices int, fin de-
note the initial and final values, respectively. The param-
eter λ describes the central concentration of the donor (de
Kool 1990; Dewi & Tauris 2000). The right hand side of
equation 49 expresses the binding energy of the donor’s
envelope, the left hand side represents the difference be-
tween the final and initial orbital energy, and αce is the
CE efficiency with which orbital energy is used to unbind
the stellar envelope. If the calculated final binary orbit is
too small to accommodate the two post-CE binary compo-
nents then a merger occurs. In our calculations, we com-
bine αce and λ into one CE parameter, and for our stan-
dard model, we assume that αce × λ = 1.0. If a compact
object spirals in the common envelope it may accrete sig-
nificant amounts of material because of hyper-critical ac-
cretion (Blondin 1986; Chevalier 1989, 1993; Brown 1995).
We have incorporated the numerical scheme to include the
effects of hyper-critical accretion on NSs and BHs in our
standard CE prescription (for details see BKB02).

Alternative Angular Momentum Prescription In addi-
tion to the standard prescription for common envelope
evolution based on comparing the binding and orbital en-
ergies (see above), we investigate the alternative approach
proposed by Nelemans & Tout (2005), based on the non-
conservative mass transfer analysis by Paczynski & Zi-
olkowski (1967), with the assumption that the mass loss
reduces the angular momentum in a linear way. This leads
to reduction of the orbital separation

Afin

Aint
=

(

1 − γ
Mdon,env

Mtot,int

)

Mtot,fin

Mtot,int

(

Mdon,intMacc,int

Mdon,finMacc,fin

)2

(50)
where Mdon,env is the mass of the donor envelope lost by
the system, Mtot,int, Mtot,fin are the total masses of the
system before and after CE, and γ is a scaling factor. Fol-
lowing Nelemans & Tout (2005) we use γ = 1.5 and note
that hyper-critical accretion is not included in this pre-
scription.

The two above prescriptions are extended (e.g., BKB02)
to the case in which both stars lose their envelopes,
which happens if the stars have giant-like structure (Ki =
2, 3, 4, 5, 6, 8, 9) at the onset of CE phases.

5.5. Mass Transfer from Degenerate Donors

Degenerate donors, WDs (Kdon = 10, 11, 12, 16, 17), are
also considered. The RLOF is assumed to be driven by
gravitational radiation only

Ṁdon = MdonD
−1 dJgr/ dt

Jorb
(51)

with

D =
5

6
+

1

2
ζdon−

1 − fa

3(1 + q)
− (1 − fa)(1 + q)βmt + fa

q
(52)

where the mass ratio is defined as q = Macc/Mdon, fa de-
notes the fraction of transferred material that is accreted
by the companion (defined and evaluated in § 3.4), and
βmt = MaccMdon

2/(Mdon + Macc)
2.

5.6. Effects of Mass Transfer on Stellar Evolution

Rates of mass loss/gain change the subsequent evolu-
tion of stars. We implement RLOF mass loss by adding
an extra term in the original Hurley et al. (2000) stellar
evolution formulae. We appropriately increase the wind
mass loss rate to match the combined effects of wind and
RLOF mass loss. In this way we ensure that the sub-
sequent evolution of the donor is correctly followed. To
treat mass gain, and accretor rejuvenation, we simply re-
verse the wind mass loss formulae to add material onto
the accreting star. This is carefully calculated: using an
appropriate change of variables in the original Hurley et
al. (2000) formulae ensures that the accretor is placed on
the right evolutionary track (Hurley 2003, private commu-
nication).

For simplicity, we assume that the composition of ac-
creted material matches that of the accretor, although this
may not always be the case. Only in the case of accretion
onto white dwarfs we take into account the composition of
accreted material (see § 5.7).

5.7. Mass Accumulation onto White Dwarfs

A number of important phenomena, like novae and Type
Ia SN explosions or accretion-induced collapses are associ-
ated with mass accretion onto WDs. In contrast to previ-
ous population synthesis studies, we incorporate the most
recent results to estimate the accumulation efficiencies on
WDs. In particular we consider accretion of matter of
various compositions onto different WD types. We also
include the possibility that NS formation can occur via
accretion induced collapse (AIC) of a massive ONe white
dwarf (e.g., Bailyn & Grindlay 1990; Belczynski & Taam
2004a).

In this section we discuss accumulation of material and
growth of WD mass in binary systems. Only during dy-
namically stable RLOF phases the mass accretion onto
WDs may be sustained for a prolonged period of time and
hence affect the evolution of accreting WDs. During dy-
namically unstable cases (i.e., CE evolution) we assume
that WDs do not accrete any material. If dynamical in-
stability is encountered for a binary with two white dwarfs
we assume that a merger occurs. If the total mass of the
two merging WDs is higher than 1.4M⊙ we assume a SN Ia
explosion, independent of what type of WDs are merging.

During a phase of sustained mass accumulation the mas-
sive ONe WD (K = 12) may eventually collapse to a
NS. We include AIC in our standard model calculations
since it naturally follows from the adopted accumulation
physics (see below). Since little is known about potential
asymmetries of the collapse, we either apply no natal kick
(standard model) or a full natal kick (parameter studies)
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obtained from Arzoumanian, Chernoff, & Cordes (2002)
or Hobbs et al. (2005, see also § 6.2). However, we also
allow for the possibility of SN Ia explosion instead of AIC
in parameter studies. It is also worth noting the difference
between accretion and accumulation. The calculation of
accretion rate during stable RLOF was described in § 5.1,
and this rate could be used to calculate, for example, the
accretion luminosity of the system (mostly in the UV part
of spectrum for WD accretors). However, it is believed
that in many cases (see below) not all of the accreted ma-
terial remains on the surface of the accreting WD. Mass is
lost either in shell flashes (nova-like explosions) or through
optically thick winds blowing from the surface of accreting
WDs. To calculate the actual WD mass growth through
the RLOF phase we need to know the accumulation effi-
ciency, ηacu, which is defined as

Ṁacu = ηacuṀacc (53)

where, Ṁacu is the mass accumulation rate on the sur-
face of WD and the mass accretion rate (Ṁacc) is given
by eq. 45. In what follows we discuss the accumulation
efficiency in various evolutionary scenarios.

Accretion onto Helium and Hybrid white dwarfs. It is
widely accepted that if the mass accretion rate Ṁacc from
the H-rich donor (Kdon = 0, 1, 2, 3, 4, 5, 6, 16) is smaller

than some critical value Ṁcrit1, there are strong nova
explosions on the surface of the accreting WD, and no
material is accumulated. The accumulation efficiency is
ηacu = 0.0, i.e. the entire accreted material is lost from
the binary. If Ṁacc > Ṁcrit1 then the material piles up
on the WD leading to RLOF and eventual inspiral. For
giant-like donors we evolve the system through CE to ex-
amine if the system survives; for all other donors we call it
a merger and halt binary evolution. The critical accretion
rate is calculated as

Ṁcrit1 = l0M
λ
acc(X ∗ Q)−1 M⊙ yr−1 (54)

where, Q = 6 × 1018 erg g−1 is an energy yield of Hy-
drogen burning, X is the Hydrogen content of accreted
material. For Population I stars (metallicity Z > 0.01) we
use X = 0.7, l0 = 1995262.3, λ = 8, while for Population
II stars (Z ≤ 0.01) we use X = 0.8, l0 = 31622.8, λ = 5
(Ritter 1999, see his eq. 10,12 and Table 2).

If the mass accretion rate from the He-rich donor
(Kdon = 7, 8, 9, 10, 17) is higher than Ṁcrit2 = 2 ×
10−8 M⊙ yr−1 all the material is accumulated (ηacu = 1.0)
until the accreted layer of material ignites in a helium shell
flash. At this point degeneracy is lifted, a main sequence
helium star (Kacc = 7) is formed and further accretion
on the helium star is then taken into account. Following
the calculations of Saio & Nomoto (1998) we estimate the
maximum mass of the accreted shell at which the flash
occurs

∆M =

{

−7.8 × 104Ṁacc + 0.13 Ṁacc < 1.64 × 10−6

0(instantaneous flash) Ṁacc ≥ 1.64 × 10−6

(55)

where Ṁacc is expressed in M⊙ yr−1.
The newly formed helium star may overfill its Roche

lobe, in which case either a single helium star is formed
(He or Hyb WD companion, Kdon = 10, 17), a helium

contact binary is formed (HeMS companion, Kdon = 7)
or the system goes through CE evolution (evolved helium
star companion, Kdon = 8, 9).

For accretion rates lower than Ṁcrit2, accumulation is
also fully efficient (ηacu = 1.0). However, the SN Ia occurs
at a sub-Chandrasekhar mass

MSNIa = −400Ṁacc + 1.34 M⊙, (56)

where Ṁacc is expressed in M⊙ yr−1. For mass accretion

rates close to Ṁcrit2, the above extrapolations from the
results of Hashimoto et al. (1986) yield masses smaller
than the current mass of the accretor, and we assume an
instantaneous SN Ia explosion. We do not consider the ac-
cumulation of heavier elements since they could only orig-
inate from more massive WDs (e.g., CO or ONe WDs),
which would have smaller radii and could not be donors
to lighter He or Hyb WDs.

Accretion onto Carbon/Oxygen white dwarfs. In this
case we adopt the prescription from Ivanova & Taam
(2004). For H-rich donors and mass accretion rates lower
than 10−11 M⊙ yr−1 there are strong nova explosions and
no material is accumulated (ηacu = 0.0). In the range

10−11 < Ṁacc < 10−6 M⊙ yr−1 we interpolate for ηacu

from Prialnik & Kovetz (1995, see their Table 1). For rates
higher than 10−6 M⊙ yr−1 all accreted material burns into
helium (ηacu = 1.0). Additionally we account for the ef-
fects of strong optically thick winds (Hachisu, Kato &
Nomoto 1999), which blow away any material accreted
over the critical rate

Ṁcrit3 = 0.7510−6(Macc − 0.4) M⊙ yr−1. (57)

This corresponds to ηacu = Ṁcrit3/Ṁacc for Ṁacc ≥ Ṁcrit3.
The accretor is allowed to increase in mass up to 1.4 M⊙,
and then explodes as a Chandrasekhar mass SN Ia. In the
case of He-rich donors, if the mass accretion rate is higher
than Ṁcrit4 helium burning is stable and contributes to
the accretor mass (ηacu = 1.0). For rates in the range

Ṁcrit4 ÷ Ṁcrit5 accumulation is calculated from

η0.8
acu = −0.35(log Ṁacc + 6.1)2 + 1.02 [−6.5 ÷−6.34]

η0.9
acu = −0.35(log Ṁacc + 5.6)2 + 1.07 [−6.88 ÷−6.05]

η1.0
acu = −0.35(log Ṁacc + 5.6)2 + 1.01 [−6.92 ÷−5.93]

η1.1−1.2
acu =

{

0.54 log Ṁacc + 4.16 [−7.06 ÷−5.95]

−0.54(log Ṁacc + 5.6)2 + 1.01 [−5.95 ÷−5.76]

η1.3
acu = −0.175(log Ṁacc + 5.35)2 + 1.03 [−7.35 ÷−5.83]

η1.35
acu = −0.115(log Ṁacc+5.7)2+1.01 [−7.4÷−6.05] (58)

and represents the amount of material that is left on the
surface of the accreting WD of a specific mass (denoted
by a superscript on ηacu in M⊙) after the helium shell
flash cycle (Kato & Hachisu 1999, 2004). Logarithms of
critical mass accretion rates for a given specific WD mass
are given in square brackets: [log(Ṁcrit5/ M⊙ yr−1) ÷
log(Ṁcrit4/ M⊙ yr−1)]. To obtain the accumulation rate
for CO WD within the mass range 0.7 − 1.4 M⊙ we in-
corporate results of the closest (by mass) model from the
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set of eqs. 58. If the WD mass drops below 0.7 M⊙ we

use ηacu = 1.0 and we set log Ṁcrit4 = log Ṁcrit5 = −7.6
(see Kato & Hachisu 2004). The mass of the CO WD
accretor is allowed to increase up to 1.4 M⊙, and then a
Chandrasekhar mass SN Ia takes place in the two above
He-rich accretion regimes. If mass accretion rates drop
below Ṁcrit5, the helium accumulates (ηacu = 1.0) on top
of the CO WD and once the accumulated mass reaches
0.1 M⊙ (Kato & Hachisu 1999), a detonation follows and
ignites the CO core leading to the disruption of the ac-
cretor in a sub-Chandrasekhar mass SN Ia (e.g., Taam
1980; Garcia-Senz, Bravo & Woosley 1999). If the mass of
the accreting WD has reached 1.4 M⊙ before the accretion
layer has reached 0.1 M⊙ then the accretor explodes in a
Chandrasekhar mass SN Ia. Carbon/Oxygen accumula-
tion takes place without mass loss (ηacu = 1.0) and leads
to SN Ia if Chandrasekhar mass is reached.

Accretion onto Oxygen/Neon/Magnesium white dwarf.
Accumulation onto ONe WDs is treated the same way as
for CO WD accretors. The only difference arises when an
accretor reaches the Chandrasekhar mass. In the case of
ONe WD this leads to an AIC and NS formation, and bi-
nary evolution continues (see Belczynski & Taam 2004a,
2004b).

6. SPATIAL VELOCITIES

6.1. Overview

All stars (single and binary systems) may be initialized
with arbitrary velocities appropriate for a given environ-
ment. For example, a galactic rotation curve may be used
for a field population of a given galaxy, or a velocity disper-
sion can be applied for a cluster population. The velocities
of stars are then followed throughout their evolution. Sin-
gle stars and binary systems are subject to recoil (change
of spatial velocity) in SN explosions. Additionally, binary
systems may be disrupted as a result of an especially vio-
lent explosion. We account for both mass/angular momen-
tum losses as well as for SN asymmetries (through natal
kicks that NSs and BHs receive at their formation; see be-
low). The detailed description of SN explosion treatment
is given in BKB02. Here, we only list the new additions to
StarTrack. The most important modification allows us to
trace velocities of disrupted binary components after a SN
explosion. For the first time, a full general approach with
explosions taking place on orbits of arbitrary eccentricity
(in contrast to circular orbits only) is applied in popula-
tion synthesis studies (see Belczynski et al. 2005c for first
results).

6.2. Natal Kick Distribution

At the time of birth, both NSs and BHs receive an ad-
ditional speed, the so-called natal kick, which is connected
to asymmetries in SN explosions. We use the distribu-
tions inferred from observed velocities of radio pulsars. We
have replaced the natal kick distribution used in BKB02
(Cordes & Chernoff 1998) with two more recent alterna-
tives. One presented by Arzoumanian et al. (2002) is a
bimodal distribution with a weighted sum of two Gaus-
sians, one with σ = 90 km sec−1 (40%) and another with
σ = 500 km sec−1 (60%). The other was derived by Hobbs
et al. (2005) and is a single Maxwellian with σ = 265 km
sec−1. According to this most recent study there is no

indication of a bimodal (low- and high-velocity) kick dis-
tribution claimed in earlier studies (e.g., Fryer, Burrows &
Benz 1998; Cordes & Chernoff 1998; Arzoumanian et al.
2002). If this is indeed true, then some theoretical mod-
els built in support of the bimodal kick distribution (e.g.,
Pfahl et al. 2002b and Podsiadlowski et al. 2004 model of
high mass X-ray binaries) may need to be revised. Motions
of many hundreds of pulsars are expected to be measured
in the next few years. These measurements will provide
better constraints on the natal kick distribution (Hobbs
et al. 2005). Until then we will use both distributions to
assess the associated uncertainties in StarTrack calcula-
tions.

NSs receive full kicks drawn from one of the above dis-
tributions. BH kicks are lowered proportionally to the
amount of fallback associated with BH formation

Vbh,kick = (1 − ffb)V (59)

where V is the kick magnitude drawn from either Arzou-
manian et al. (2002) or Hobbs et al. (2005) distribution,
and ffb is a fallback parameter, i.e., the fraction (from 0
to 1) of the stellar envelope that falls back. For the most
massive BHs, formed silently (no SN explosion) in a direct
collapse (ffb = 1) of a massive star to a BH, we assume
that no natal kick imparted. Details of the BH kick distri-
bution and BH masses at formation are given in BKB02
(see their § 2.2.5). The adopted natal kick distribution and
kick scaling for NSs and BHs can be readily changed for
parameter studies (e.g., full BH kicks).

6.3. Supernova disruptions

Just prior to the SN explosion, the two components of
the binary move with velocities ~vI

1 and ~vI
2 , which, in the

center of mass (CM) system of coordinates, denoted here
with the superscript I, satisfy

M1,int~v
I
1 + M2,int~v

I
2 = 0 (60)

where M1 denotes the SN component and M2 its compan-
ion. Subscripts int, fin stand for initial and final values.

We make no assumptions about the orbit; it can have
an arbitrary eccentricity, in contrast to the derivation by
Tauris & Takens (1998), who assumed that the orbit is cir-
cular prior to the explosion. At the moment of a supernova
explosion the orbital separation is r0~n. The exploding star
loses its envelope, its mass becomes M1,fin and receives a
kick ~w, so now its velocity in the coordinate system I is

~vI
1,int = ~vI

1 + ~w . (61)

The secondary star may be affected by the expanding
shell and may receive an additional velocity ~vimp, how-
ever it has been shown (Kalogera 1996) that the effect
of this velocity is small, unless the pre-supernova orbital
separation is smaller than ≃ 3R⊙. We assume that the
velocity of the companion is not affected by the impact of
supernova ejecta. We also assume that the velocity of the
shell is large and the shell leaves the system quickly, i.e.
vshell >> roP , where P is the orbital period of the system
prior to the explosion.

In order to calculate the final velocity of the two stars
we first transform the velocities to the CM system of the
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two post-SN stars. The velocity of this system, denoted
as II, in relation to system I is

~vII
CM =

M1,fin~v
I
1,int + M2~v

I
2,int

M1,fin + M2
(62)

The relative velocity of the two stars in this system is

~vII = ~vI
1 − ~vI

2 + ~w − ~vimp (63)

while the initial direction between the two stars remains
the same as in the coordinate system I, ~nII = ~nI . In this
new system the relative motion of the stars is a hyper-
bola in the plane perpendicular to the angular momentum
vector:

~J = µr0~n
II × ~vII , (64)

where µ = M1,finM2/(M1,fin + M2) is the reduced mass
of the system. It is convenient now to introduce a third

coordinate system III in which the angular momentum ~J
lies along the z-axis. The transformation from II to III
is a rotation R: vIII = RvII ,nIII = RnII . The orbit in
III is described by

r =
p

1 + ǫ cosφ
(65)

where

p =
J2

αµ
and ǫ =

√

1 +
2EJ2

α2µ
, (66)

with E = µ(vII)2/2 − α/|r0| is the (positive) energy of
the system, and α = GM1,finM2. The final velocity, at
r → ∞, follows from energy conservation:

|~vIII
fin | =

√

2E

µ
. (67)

In order to find the direction of the final velocity we
note that conservation of angular momentum implies that
at infinity (r → ∞): the final relative ~vIII

fin is parallel to
the direction between the stars ~nIII

fin. The initial position
of the two stars on the trajectory described by eq. 65 is

cosϕint =
1

ǫ

(

p

r0 − 1

)

. (68)

The sign of the angle ϕint is negative if the two stars
initially lie on the descending branch of the hyperbola
~vIII
int ~rIII

0 > 0 and positive if they are on the ascending
one ~vIII

int ~rIII
0 < 0. In the first case, when the two stars are

initially on the descending branch, we need to compare the
distance of closest approach on the orbit rmin = p/(1 + ǫ)
with the radius of the companion star to examine whether
the two stars collide instead of escaping to infinity.

We obtain the final position on the trajectory from

cosϕfin = −1

ǫ
(69)

and ϕfin > 0. Thus the final direction between the two
stars at r = ∞ is ~nIII

fin = T (ϕfin −ϕint)~n
III , where T (φ) is

the matrix of rotation around the z-axis, and their relative
velocity is:

~vIII
fin =

√

2E

µ
~nIII

fin . (70)

We now have to transform quantities from system III back
to system I to obtain the final velocities of the two dis-
rupted binary components in the initial (pre-SN) CM sys-
tem:

vI
1,fin = R−1

( −M2v
III
fin

M1,fin + M2

)

+ vII
CM (71)

vI
2,fin = R−1

(

M1,finv
III
fin

M1,fin + M2

)

+ vII
CM. (72)

7. DISTRIBUTIONS OF INITIAL PARAMETERS

Each binary system is initiated by four parameters,
which are assumed to be independent: the primary mass
M1 (the initially more massive component), the mass ratio
q = M2/M1, where M2 is the mass of the secondary, the
semi-major axis a of the orbit, and the orbital eccentricity
e.

For both single stars and binary system primaries, we
use the initial mass function adopted from Kroupa, Tout
& Gilmore (1993) and Kroupa & Weidner (2003),

Ψ(M1) ∝







M1
−1.3 0.08 ≤ M1 < 0.5 M⊙

M1
−2.2 0.5 ≤ M1 < 1.0 M⊙

M1
−αimf 1.0 ≤ M1 < 150 M⊙

(73)

where parameter αimf = 2.35 − 3.2, with our standard
choice being 2.7 for field populations and 2.35 for cluster
populations. Stars are generated within an initial mass
range: Mmin −Mmax, and the range is chosen accordingly
based on the targeted stellar population. For example, NS
studies would require evolution of single stars within range
∼ 8−25 M⊙ while the formation of WDs would require an
initial range ∼ 0.08−8 M⊙. Binary evolution, due to mass
transfer events (both mass accretion and mass loss) may
significantly broaden any of the ranges mentioned above.

Following Kuiper (1935), we assume a flat mass ratio
distribution,

Φ(q) = 1 (74)

in the range q = 0−1. Given the value of the primary mass
and the mass ratio, we obtain the mass of the secondary
M2 = qM1.

The distribution of initial binary separations is assumed
to be flat in the logarithm (Abt 1983),

Γ(a) ∝ 1

a
, (75)

where a ranges from a minimum value, such that the pri-
mary fills at most 50% of its Roche lobe at ZAMS, up to
105 R⊙.

Finally, we adopt the thermal-equilibrium eccentricity
distribution for initial binaries,

Ξ(e) = 2e, (76)

in the range e = 0 − 1 (e.g., Heggie 1975; Duquennoy &
Mayor 1991).
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8. CALIBRATIONS AND COMPARISONS

8.1. Mass Transfer Sequences

In the following subsections we present StarTrack mass
transfer calculations and compare them to published and
unpublished results based on the use of stellar evolution
and mass transfer codes.

8.1.1. Case B Mass Transfer: MS+HG binary

We choose this RLOF sequence from Wellstein et al.
(2001, their Case B). We start with a 16 M⊙ + 15 M⊙

ZAMS binary in a 8 day circular orbit. RLOF starts af-
ter the primary evolves off the MS. The system at the
onset of RLOF (t = 11.7 Myr since ZAMS) is character-
ized by: K1 = 2, K2 = 1, Porb = 7d.9, e = 0, M1 =
15.6 M⊙, M2 = 14.7 M⊙, R1 = 20.0 R⊙, and R2 =
11.8 R⊙. The evolution of the system during the RLOF
phase is shown in Figure 4.

The RLOF proceeds on the thermal timescale of the
donor, which is rapidly expanding while crossing the
Hertzsprung Gap. First, there is a phase characterized
by very high mass transfer rates (∼ 3 × 10−3 M⊙ yr−1),
until the mass ratio is reversed and the donor becomes the
less massive binary component. Shortly thereafter, the
transfer rate slowly decreases (∼ 10−3 − 10−4 M⊙ yr−1).
After the mass ratio reversal the orbit starts expand-
ing instead of contracting in response to mass transfer.
Part (50%) of the transferred material is accreted by the
companion and the rest is lost from the binary (non-
conservative evolution). RLOF terminates when the en-
velope of the donor is nearly exhausted and its radius con-
tracts below the Roche lobe radius, thereby, causing the
system to become detached. The primary loses most of its
mass (M1 = 4.03 M⊙), while the secondary is rejuvenated
(M2 = 20.47 M⊙). The orbital period increases to reach
∼ 80 days at the end of the RLOF phase.

The calculation of Wellstein et al. (2001) shows similar
behavior during this RLOF phase in terms of the duration,
mass transfer rate, and orbital period. Final donor masses
in both simulations are almost the same, while our accre-
tor mass is significantly smaller than that of Wellstein et
al. (2001). This difference stems from their assumption
of conservative (no mass loss from binary) binary evolu-
tion. Further differences are associated with the fact that
Wellstein et al. (2001) did not allow for rejuvenation of
the secondary (accretor). That is, the secondary is still
on the MS when the primary (former donor) ends its life
in a SN explosion. A second RLOF phase ensues after
the secondary evolves off the MS and becomes a HG star.
Despite the very high mass ratio of 26.5/2.8, Wellstein et
al. (2001) find the mass transfer to be dynamically stable.
The system evolves to final disruption as the secondary
undergoes a SN explosion. In contrast to the above find-
ings, we allow the secondary to be rejuvenated in the first
RLOF episode. As it evolves off the MS and overfills its
Roche lobe, the second RLOF episode occurs when the
secondary (now a donor) is a 20.3 M⊙ HG star and the
primary is a 3.8 M⊙ HeMS. This phase directly leads to
CE evolution and to a subsequent component merger.

8.1.2. Case A Mass Transfer: MS+MS binary

This RLOF sequence is selected from Wellstein et al.
(2001, their Case A). We start with a 12 M⊙ + 7.5 M⊙

ZAMS binary in a 2.5 day circular orbit. RLOF starts
while the primary still evolves through the MS phase. The
system at the onset of RLOF (t = 14.8 Myr since ZAMS)
is characterized by: K1 = 1, K2 = 1, Porb = 2d.3, e =
0, M1 = 11.9 M⊙, M2 = 7.5 M⊙, R1 = 8.3 R⊙, and R2 =
4.0 R⊙. The evolution of the system during the RLOF
phase is shown in Figure 5.

First phase. At first, the RLOF proceeds on the thermal
timescale with a mass transfer rate of ∼ 5×10−4 M⊙ yr−1,
through the so called rapid case A transfer phase. The
transfer rate then rapidly decreases by more than 2 or-
ders of magnitude until the component masses are nearly
equal. Subsequent evolution proceeds on the much slower
nuclear timescale of the donor with transfer rates below
10−6 M⊙ yr−1. RLOF continues until the final stages of
the donor MS lifetime, when the primary contracts and
detaches from its Roche lobe. The evolution of the or-
bital period is characterized by an initial small decrease
and then (after the thermal timescale phase has ended) a
slow but rather constant increase up to 3.5 days. At that
point the primary mass is ∼ 6 M⊙ and the secondary mass
∼ 10 M⊙.

Second phase. After ∼ 0.5 Myr the primary starts
expanding as it enters the Hertzsprung Gap and RLOF
restarts. This mass transfer phase is much more rapid
and is driven by expansion of the primary. This phase
is characterized by high mass transfer rate (10−4 −
10−5 M⊙ yr−1) and the envelope of the primary is soon
(0.2 Myr) exhausted, ending the second RLOF phase.
During this relatively short phase, the orbit expands signif-
icantly (final orbital period ∼ 165 days), while the primary
loses most of its mass (M1 = 1.1 M⊙) while the secondary,
that is still on its MS, is rejuvenated to a much higher mass
(M2 = 12.8 M⊙). The dramatic orbit expansion is an ef-
fect of the rather extreme mass ratio for this system at the
time of the second RLOF.

For both RLOF phases non-conservative evolution was
applied. The evolution of this system ends when the pri-
mary forms a low-mass helium star and the secondary then
evolves off MS, initiating a CE phase while crossing the
Hertzsprung Gap. This phase leads to inspiral and com-
ponent merger.

The calculation of Wellstein et al. (2001) shows a
qualitatively similar system behavior during both RLOF
phases; initial high mass transfer phase, then a slower one,
short break in RLOF followed by another rapid phase
while the donor evolves off the MS. There are some dif-
ferences in the final mass of accretor and orbital period
which are easily understood in the context of the differ-
ent treatment of mass loss from the binary system (non-
conservative here versus conservative in Wellstein et al.
(2001) models). Also as mentioned in § 8.1.1 Wellstein
et al. (2001) do not allow for rejuvenation of the accre-
tor star which leads to a different final fate of the system.
However, they remark that had rejuvenation been included
the system would have ended in a CE merger during the
expansion phase of the secondary after MS evolution in
agreement with our findings.

8.1.3. BH-MS binary

This calculation starts with a 10 M⊙ BH + 5 M⊙ ZAMS
star. We let the secondary evolve through about half of
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its MS lifetime before bringing the system into contact at
t = 51.3 Myr (counted from the secondary ZAMS) . The
system at the onset of RLOF is characterized by: K1 =
14, K2 = 1, Porb = 1d.0, e = 0, M1 = 10 M⊙, M2 =
5 M⊙, R1 = 0.000042 R⊙, and R2 = 3.5 R⊙. The evo-
lution of the system during the RLOF phase is shown in
Figure 6.

First phase. RLOF is stable and proceeds on the nu-
clear timescale of the secondary with a mass transfer rate
of ∼ 2 × 10−8 M⊙ yr−1. Since this rate is sub-Eddington
we allow all the transferred material to be accreted onto
the primary BH, which increases its mass to ∼ 11.5 M⊙,
while the secondary mass decreases to ∼ 3.5 M⊙. During
this phase, the period increases from 1 to 2 days. The
phase ends when the secondary begins contraction at the
end of its MS life.

Second phase. RLOF restarts when the secondary
crosses the Hertzsprung Gap with mass transfer proceed-
ing at the high rate (∼ 10−6 M⊙ yr−1) corresponding to
rapid expansion of the star on its thermal timescale dur-
ing that phase. At some point the donor starts ascending
along the red giant branch, and the transfer rate drops
by about an order of magnitude to ∼ 3 × 10−7 M⊙ yr−1.
Since the transfer rate is super-Eddington throughout this
entire phase we limit accretion onto the BH to the Ed-
dington rate, allowing the rest of the material to leave the
binary with the specific orbital angular momentum of the
BH. In the end the BH has increased its mass to 12.6 M⊙

and the mass of the donor has decreased to 0.6 M⊙. The
orbit expands significantly (∼ 300 days) during this rapid
RLOF phase.

The RLOF phase ends at the point when the donor, due
to the loss of its almost entire H-rich envelope, stops its
expansion. The system ends its life as a wide BH-WD
binary.

The same RLOF sequence was calculated with the de-
tailed stellar evolution code of Ivanova et al. (2003; also
see Ivanova & Taam 2004). The comparison of the two
phases of RLOF shows overall qualitative agreement with
the StarTrack calculation. The mass transfer rates are
virtually the same: ∼ 2 × 10−8 and ∼ 10−6 M⊙ yr−1, for
first and second phase, respectively. However, the detailed
calculation with the evolution code shows a longer dura-
tion (by a factor ∼ 2) for the first RLOF phase.

8.1.4. BH-RG binary

This calculation starts with a 7 M⊙ BH + 2 M⊙ ZAMS
star. We let the secondary evolve through about one third
of its red giant lifetime before bringing the system into
contact at t = 1180.4 Myr (counted from the secondary
ZAMS). The system at the onset of RLOF is character-
ized by: K1 = 14, K2 = 3, Porb = 4d.8, e = 0, M1 =
7 M⊙, M2 = 2 M⊙, R1 = 0.000030 R⊙, and R2 =
7.1 R⊙. The evolution of the system during RLOF phase
is shown in Figure 7.

RLOF is stable and proceeds through the entire RG
phase (K2 = 3) on the nuclear timescale of the donor. The
mass transfer rate is sub-Eddington and thus the material
transferred to the BH is entirely accreted. In the end the
mass of the BH is increased to 8.4 M⊙ while the mass of
the donor is decreased to 0.6 M⊙. As the donor expands,
ascending the RG branch, the orbit expands as well, and
finally the RLOF phase terminates at an orbital period of

∼ 90 days. The phase ends when the donor contracts upon
igniting helium in its core. The system eventually forms a
wide BH-WD binary.

This RLOF sequence was also calculated with the de-
tailed stellar evolution code of Ivanova et al. (2003). The
mass transfer rates found in both cases are similar (∼
10−7 − 10−8 M⊙ yr−1) and in this case the StarTrack

timescales are shorter, but do not differ by more than 50%.

8.1.5. Short period NS-RG binary

This RLOF sequence is chosen from Tauris & Savonije
(1999, their example 2b). We start with a 1.3 M⊙ NS
+ 1.6 M⊙ ZAMS star in a 3 day circular orbit. RLOF
starts while the secondary is on the RG branch (t = 2321.4
Myr since secondary ZAMS) and the binary is described
by: K1 = 13, K2 = 3, Porb = 2d.8, e = 0, M1 =
1.3 M⊙, M2 = 1.6 M⊙, R1 = 0.000014 R⊙, and R2 =
4.7 R⊙. The evolution of the system during the RLOF
phase is shown in Figure 8.

At first the RLOF proceeds on a thermal timescale
with a highly super-Eddington mass transfer rate (∼
10−6 M⊙ yr−1). After the donor becomes less massive
than its accretor, the mass transfer is driven by the ex-
pansion of the red giant donor (on its nuclear timescale)
at a much smaller rate of ∼ 10−8 M⊙ yr−1. As the mass
transfer rate decreases, the NS starts to accrete efficiently
and its mass increases to 1.9 M⊙. Eventually, after ∼ 65
Myr of RLOF, the RG secondary loses most of its mass
(0.28 M⊙) and contracts, leaving a remnant helium WD.
At this point the RLOF phase ends (orbital period 60
days), and further evolution leads to the formation of wide
binary, with a recycled pulsar.

Comparison with the detailed evolutionary calculation
of Tauris & Savonije (1999) shows good agreement be-
tween the results. The detailed calculations show an ini-
tial rapid RLOF phase followed by a sub-Eddington mass
transfer phase, eventually leading to the formation of NS-
He WD binary. Final component masses (NS and donor:
2.05 and 0.29 M⊙, respectively) are very similar to the
ones obtained with StarTrack. The final orbital period of
42 days obtained by Tauris & Savonije (1999) is shorter
than in our calculation (60 days). In addition, there is
a difference in the duration of RLOF phase, lasting 123
Myr in the Tauris & Savonije (1999) model, as compared
to 60 Myr in our calculations. This may be understood in
terms of a different treatment of binary interactions (tides,
magnetic braking, winds) as well as the difference in stel-
lar models which may lead to a different starting point of
RLOF.

8.1.6. Long period NS-RG binary

This RLOF sequence is taken from Tauris & Savonije
(1999, their example 2c). We start with a 1.3 M⊙ NS
+ 1.0 M⊙ ZAMS star in a 60 day circular orbit. RLOF
starts while secondary is on the RG branch (t = 12312.5
Myr since secondary ZAMS) and the binary is described
by: K1 = 13, K2 = 3, Porb = 60d.708033, e = 0, M1 =
1.3 M⊙, M2 = 0.98 M⊙, R1 = 0.000014 R⊙, and R2 =
30.5 R⊙. The evolution of the system during RLOF phase
is shown in Figure 9.

RLOF is highly super-Eddington and driven by the ex-
pansion of the donor on a nuclear timescale. Only shortly
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before the system detaches as a result of the exhaustion
of the donor’s envelope, the transfer rate becomes sub-
Eddington. As a result, the donor loses most of its mass
(M2 = 0.4 M⊙) while the NS hardly accretes any ma-
terial (M1 = 1.43 M⊙). The orbit expands throughout
this phase with the orbital period increasing to over 300
days. The system eventually forms a wide NS-He WD bi-
nary, with a potential recycled pulsar (the NS has accreted
∼ 0.1 M⊙).

The above results are very similar to the calculations of
Tauris & Savonije (1999), who obtain a 1.5 M⊙ NS with a
0.4 M⊙ NS-He WD binary in a 382 day orbit. The mass
transfer rates and duration of the RLOF phases are similar
in both calculations.

8.1.7. Long period NS-He star binary

This RLOF sequence follows from Dewi & Pols (2003,
see their Fig. 1). We start with a 1.4 M⊙ NS + 2.8 M⊙

ZAMS He star in a 10 day circular orbit. RLOF starts
while the secondary is already an evolved He star (t =
2.9 Myr since the secondary He ZAMS) and the bi-
nary is described by: K1 = 13, K2 = 8, Porb =
9d.804617, e = 0, M1 = 1.4 M⊙, M2 = 2.5 M⊙, R1 =
0.000014 R⊙, and R2 = 15.4 R⊙. The evolution of the
system during RLOF phase is shown in Figure 10.

RLOF proceeds on the donor’s thermal timescale
throughout the entire phase. The very high mass transfer
rate (6× 10−3 M⊙ yr−1) makes this phase very short and
RLOF stops after the envelope of He star is exhausted.
Since the mass transfer rate is highly super-Eddington,
the NS hardly accretes any material while the donor loses
its entire He-rich envelope (M2 = 1.65 M⊙). The orbital
period at first decreases to reach a minimum at 8.9 days,
and then increases to 9.5 days at the end of RLOF phase.
After the phase of RLOF the secondary core explodes in
SN Ic leading to double neutron star formation (provided
that a natal kick does not disrupt the binary). This result
was presented also in Ivanova et al. (2003).

Dewi & Pols (2003) calculated a mass transfer rate span-
ning the range: 10−4−10−2 M⊙ yr−1. Our rate is constant
and close to the high end of the Dewi & Pols (2003) range.
We have adopted a constant mass transfer rate following
Paczynski (1971) who pointed out that thermal timescale
mass transfer rates do not vary by more than factor of
2-3 (for details see § 5.3). This system may appear as an
X-ray binary during this phase. However, the chances of
catching it at this phase are very small, since the thermal
timescale mass transfer is very short. Besides, in this case
the X-rays may be significantly degraded because of high
optical depths (material shed out of the system). On the
other hand, some of these sources might appear to be γ-ray
emitters with high intrinsic absorption, and the discovery
of objects with these broad characteristics (see e.g., Dean
et al. 2005) lends some hope for detecting this phase of
binary evolution.

The results from Dewi & Pols (2003) reveal an oppo-
site period evolution than in our simulation; it starts at
higher value (10.36 days), growing to reach a maximum at
10.46 days and then decreasing to 10.37 days. However,
the period changes in both calculations are rather small,
and are probably related to our consistently high mass
transfer rate throughout the RLOF phase. This leads to
higher mass and angular momentum loss from the binary

which determines the orbit evolution. Additionally, we in-
clude tidal interactions between binary components (see
§ 3.3 and § 8.2 ). These differences between the models for
low mass helium stars were already noted by Dewi & Pols
(2003).

8.1.8. Short period NS-He star binary

We choose this RLOF sequence from Dewi & Pols (2003,
see their Fig. 3). We start with a 1.4 M⊙ NS + 3.6 M⊙

ZAMS He star in a 0.6 day circular orbit. RLOF starts
while secondary is already an evolved He star (t = 2.0
Myr since the secondary He ZAMS) and the binary is de-
scribed by: K1 = 13, K2 = 8, Porb = 0d.59, e = 0, M1 =
1.4 M⊙, M2 = 3.2 M⊙, R1 = 0.000014 R⊙, and R2 =
2.4 R⊙. The evolution of the system during RLOF phase
is shown in Figure 11.

RLOF proceeds on the donor’s thermal timescale with a
mass transfer rate of ∼ 10−3 M⊙ yr−1 until the envelope of
He star is almost exhausted. Since the mass transfer rate
is highly super-Eddington, the NS does not accrete much
material while the donor loses most of its He-rich envelope
(M2 = 2 M⊙). The orbital period decreases from 0.6 to
∼ 0.4 days at the end of RLOF phase. After the RLOF
phase ceases the secondary explodes in SN Ib/Ic leading
to a close double neutron star system (again provided that
a natal kick does not disrupt the binary).

Dewi & Pols (2003) RLOF sequence for this case is very
similar to our calculation. They find a period decrease
(from 0.65 to 0.47 days) and a high constant mass transfer
rate of a few ×10−4 M⊙ yr−1. The inspiral phase and CE
is not expected in this case, and therefore further evolution
may lead to a close double neutron star formation.

8.2. Tidal Evolution Calibration

Whenever coeval binary populations in nearby clus-
ters are observed to constrain the circularization rate, it
is found that standard tidal dissipation theories do not
match the data (see Meibom & Mathieu 2005 for a recent
review). In all cases an increase in the tidal dissipation
rate appears necessary (Claret & Cunha 1997; Terquem et
al. 1998). Depending on which theory is used, the increase
needed in the overall efficiency of tidal dissipation is by a
factor ∼ 10 − 100.

We have used StarTrack models to calibrate our theo-
retical treatment by comparing them against observations
of (i) the cutoff period for circularization in a population
of MS binaries (in M67), and (ii) the orbital decay accom-
panying tidal synchronization in a high mass X-ray binary
(LMC X-4). The results, presented in two following sub-
sections, confirm that tidal dissipation is more effective
than predicted by our simple theory. Therefore, in all our
standard model calculations, we will use an increased rate
of tidal dissipation, corresponding to Ftid = 10 (see § 3.3
for our implementation of tidal dissipation theory and the
definition of Ftid), but we will also allow for even more ef-
fective tidal dissipation rates in our parameter studies (all
the way to Ftid = 100) .

8.2.1. Cutoff Period for M67

Open star clusters have often been used to test tidal in-
teraction theories (Mathieu et al. 1992; Meibom & Math-
ieu 2005). Observations of single- and double-line spectro-
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scopic binaries allow estimates of the periods and eccen-
tricities for a number of systems within clusters. It was
expected and then confirmed that the cutoff period (Pcut,
the longest period of a circular binary) should increase
with the age of the cluster. The tidal dissipation depends
strongly on the orbital separation and therefore the wider,
longer-period binaries will take a greater time to circular-
ize. In principle, with knowledge of the initial conditions in
a given cluster, the observed value of the cutoff period may
be used to calibrate the efficiency of tidal interactions. In
practice, binaries within a given cluster form with eccen-
tricities, separations and angular momenta which are not
precisely known. In addition, the observed samples may
suffer from small number statistics (the observed cutoff pe-
riods are only lower limits), rendering such a calibration
quite uncertain. However, we can use the cutoff-period
observations to provide at least an order of magnitude es-
timate for the factor by which any standard theoretical
estimate must be increased.

M67 is an old open cluster with an age of 3.98 Gyr and
observed cutoff period of 10 − 12 d (Mathieu, Latham &
Griffin 1990; Mathieu et al. 1992) and a solar metallic-
ity stellar population (Janes & Phels 1994). The period
was estimated for a sample of MS binaries with compo-
nents close to the cluster turnoff mass. Recently Meibom
& Mathieu (2005) proposed a new way to estimate the
point of transition from circular to eccentric systems. In-
stead of a simple cutoff period, they use a new estima-
tor called the “tidal circularization period.” This period
is found from fitting a special function which mimics the
tidal circularization isochrone of the most frequently oc-
curring eccentric binary orbits for a given cluster. They
find that the tidal circularization period for M67 is 12.1 d.

Several calculations, with different efficiencies of tidal
dissipation, were performed to try to reproduce the binary
population of the open cluster M67. In each calculation
we have evolved 104 binaries at solar metallicity with com-
ponent masses in the 0.7 − 1.4 M⊙ range, requiring that
the mass ratio be greater than 0.5. The limits are some-
what arbitrary, but chosen to include the population of
bright MS stars observed in M67. The initial distributions
were chosen as in our standard evolutionary model (see
§ 5.7), but with IMF exponent αimf = 2.35, which is more
appropriate for clusters (Kroupa & Weidner 2003).

In Figure 12 we show synthetic binary MS popula-
tions in the period–eccentricity plane corresponding to an
evolution with different efficiencies for the tidal interac-
tion. As expected we see that the cutoff period increases
for more efficient tidal interactions, Pcut ≃ 4, 7, 10 d for
Ftid = 1, 10, 100, respectively. It is found that only for
significantly increased dissipation (Ftid ∼> 10 − 100) the
predicted cutoff period approaches the observed value of
10-12 days. One additional calculation with Ftid = 1000
results in a cutoff period of ∼ 16 days, now clearly higher
than the observed value.

8.2.2. Orbital decay of LMC X-4

Levine, Rappaport & Zojcheski (2000) measured the or-
bital period decay for the high mass X-ray binary (HMXB)
LMC X-4. The system consists of a 1.3 M⊙ NS and a mas-
sive 15.6 M⊙ companion in a 1.4-day circular or almost cir-
cular orbit (Woo et al. 1996; van der Meer et al. 2005). The
X-ray emission in HMXBs is believed to arise from wind

accretion onto the compact object; however it was also
suggested that some systems may be in an atmospheric
RLOF phase (e.g., Kaper 2001). For wind-fed detached
systems, the orbital decay may be directly connected to
the tidal interaction of the HMXB components. The ro-
tation of the massive component decreases with time as it
expands during the evolution. The tidal forces act to try
to synchronize the massive component, resulting in loss of
orbital energy and angular momentum, i.e., decay of the
orbit.

If, in fact, LMC X-4 is a wind-fed system, i.e., not in
RLOF, then the massive star must be smaller than its
Roche lobe Rroche = 8 R⊙. A 15.6 M⊙ star exceeds that
size, while still on MS, after about 10.5 Myr of evolution
(from the ZAMS). Subsequent RLOF is dynamically un-
stable (extreme mass ratio) and leads to a rapid merger
of the binary components, terminating the HMXB phase.
We perform a set of calculations for a synthetic binary sim-
ilar to the LMC X-4 using our standard model parameters,
with the metallicity appropriate for the LMC (Z = 0.007).
We assume that the binary configuration is detached and
we calculate the rate of orbital decay. The results are
shown in Figure 13 for various efficiencies of tidal interac-
tions (Ftid = 1, 10, 100). The orbital decay rate increases
with time as the massive component expands along the MS
and approaches its Roche lobe. The time to reach contact
(at which point calculations are stopped) decreases with
increasing effectiveness of tidal forces. For comparison we
show the observed orbital decay for LMC X-4, which falls
within a model with moderately increased tidal interac-
tions efficiency (Ftid = 10).

However, the orbital decay rate depends crucially on the
current relative radius of the massive component of LMC
X-4 (∝ (R/a)8, see eq. 13). The calculations shown in Fig-
ure 13 correspond to the massive MS star at 8 Myr (after
the ZAMS) with a radius of ≃ 6.5 − 7 R⊙. If the calcula-
tions were started at a later age when the star was larger,
say about 8 R⊙ (almost filling its Roche lobe), then it
would be possible to reproduce the observed orbital decay
with weaker tidal dissipation (Ftid ∼ 1). The orbital de-
cay measurements with the associated error on the stellar
radius (R ≃ 6.8 − 8.5 R⊙; Woo et al. 1996) are consistent
with both small and intermediate values of our Ftid cali-
bration factor. We also find that we cannot reproduce the
observed decay rate with Ftid ∼> 100 for any radius within

observational errors (a good match is then found only if
the massive component radius is < 5.8 R⊙).

9. X-RAY MODELING

9.1. X-ray luminosity calculations

In our study we consider only accreting binaries with
NS and BH primaries, which are brighter than some X-
ray luminosity cut Lx,cut. This cut may correspond to a
detection limit of a particular set of observations. Typical
Lx,cut values for most current Chandra observations are in
the range 1034−1036 erg s−1. At these high luminosities in
the Chandra sensitivity range (∼ 0.3−7 keV) the only WD
accretors will be supersoft sources, which are easily iden-
tifiable from their X-ray spectra and are thought to have
most of their X-ray emission coming from nuclear burn-
ing rather than gravitational energy release (see Kuulkers
et al. 2003 for a review of the X-ray properties of WD
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accretors). Although, for some deep Galactic exposures
Chandra has reached levels of ∼ 1030 erg s−1 (e.g., Galac-
tic Center image of Muno et al. 2003) and a contribution
from cataclysmic variables may also become important.
The calculation of X-ray luminosities of systems with WD
accretors will be described in a separate study (Ruiter,
Belczynski & Harrison 2005, in preparation).

Binary companions to NS/BHs may lose material either
through a stellar wind or via RLOF. In the latter case,
the donors transfer all the material toward the accretor,
whereas for the wind-fed systems only a fraction of the
material is captured by the compact object. We calculate
the bolometric luminosity (Lbol) arising from the accretion
onto a compact object. The accretion rate is based on the
secular averaged mass accretion rate. If a system is de-
tached then we use the wind mass accretion rate (eq. 29),
and if system is semi-detached the RLOF accretion rate
is used (eq. 45). We do not calculate X-ray luminosities
arising from the accretion in dynamically unstable phases,
since the timescales are very short and additionally X-ray
emission would be highly absorbed due to large optical
depths in the CE. The Lbol is calculated from

Lbol = ǫ
GMaccṀacc

Racc
(77)

where the radius of the accretor is 10 km for a NS and
3 Schwarzschild radii for a BH, and ǫ gives a conversion
efficiency of gravitational binding energy to radiation asso-
ciated with accretion onto a NS (surface accretion ǫ = 1.0)
and onto a BH (disk accretion ǫ = 0.5).

For RLOF-fed systems we make a distinction between
persistent and transient X-ray sources. All wind-fed sys-
tems are considered as persistent X-ray sources. The issue
of the wind-fed XRBs with massive Be companions and
their outburst behavior is discussed in § 9.2.

RLOF-fed systems are subject to a thermal disk instabil-
ity and may appear either as persistent or transient X-ray
sources depending on the mass transfer rate. A system be-
comes a transient X-ray source when the RLOF rate falls
below a certain critical value Ṁdisk. We use the work of
Dubus et al. (1999) for H-rich disks (see their eq.30) and
the study of Menou, Perna, & Hernquist (2002) for disks
with heavier elements (see their eqs.1–4)

Ṁdisk =



































1.5 × 1015M−0.4
acc R2.1

diskC
−0.5
1 gs−1 H − rich

5.9 × 1016M−0.87
acc R2.62

diskα0.44
0.1 gs−1 He − rich

1.2 × 1016M−0.74
acc R2.21

diskα0.42
0.1 gs−1 CO − rich

5.0 × 1016M−0.68
acc R2.05

diskα0.45
0.1 gs−1 O − rich,

(78)
where Macc is accretor mass in M⊙, Rdisk is a maximum
disk radius (2/3 of accretor Roche lobe radius) in 1010 cm.
Constants are: C1 = C/(5×10−4), with C being radiation
constant of typical value 5 × 10−4); α0.1 = α/0.1, with
α being a viscosity parameter. Following Menou et al.
(1999) we adopt α = 0.1 for all types of donors since there
is empirical evidence from dwarf nova outbursts that this
is the right order of magnitude for the viscosity parame-
ter. The same value of α is used to derive the critical mass

transfer rate for H-rich disks (Dubus et al. 1999). H-rich
donors are the stars with types Ki = 0, 1, 2, 3, 4, 5, 6, 16,
He-rich donors are Ki = 7, 8, 9, 10, 17, CO-rich donors are
Ki = 11, while we apply formulae for O-rich type donors
to ONe WDs (Ki = 12).

We adopt a semi-empirical approach to calculate quies-
cent X-ray luminosities of transient NS RLOF-fed sources,
since little is known about the emission mechanism during
quiescence. It is not certain if the emission arises from a
low level accretion or a deep crustal heating (for a detailed
discussion see Belczynski & Taam 2004b, and references
therein). Using X-ray studies of Galactic transient systems
with NS accretors (e.g., Tavani & Arons 1997; Rutledge
et al. 2001; Campana & Stella 2003; Jonker, Wijnands &
van der Klis 2004; Tomsick et al. 2004; Campana 2004),
we adopt 1031 erg s−1 as a lower limit for the hard X-
ray luminosity, above 2 keV. However, it was shown that
the average luminosity level can be higher ∼> 1032 erg s−1

(e.g., Rutledge et al. 2002; Jonker et al. 2004). We adopt
an X-ray luminosity level of 1031 − 1032 erg s−1 above 2
keV. Furthermore, we assume that the quiescent NS tran-
sient X-ray luminosities are evenly distributed in the above
range.

The quiescent emission from BH transient systems is
likely related to a low level of mass accretion. Recent ob-
servations of BH transients in their quiescent states (Tom-
sick et al. 2003) reveal rather hard spectra that are not well
described by a black body. The observed luminosities are
found in the range ∼ 1030−1033 erg s−1 with a median lu-
minosity ≃ 2×1031 erg s−1. For BH systems we also use a
semi-empirical approach, and we assume that most (80%)
of the quiescent BH transient X-ray luminosities above 2
keV are evenly distributed in the 1030−1032 erg s−1 range,
while the rest (20%) of the systems are slightly brighter:
luminosities evenly distributed in the ∼ 1032 − 1033 erg
s−1 range (see Fig. 3 of Tomsick et al. 2003). There are
some indications that the highest quiescent luminosities
are found in the longest period systems (e.g. Garcia et
al. 2001), but we do not implement this effect until more
observations are available.

RLOF-fed transient systems in outburst reach high
(close to Eddington) X-ray luminosities. We introduce a
factor ηout describing the fraction of the critical Eddington
luminosity a given system has reached. The long period
systems, with orbits that are sufficiently extensive for a
large accretion disk to be formed, are usually found to
emit at the Eddington luminosity (Ledd) during outburst,
while the outburst luminosities of short period systems
are lower by about an order of magnitude. The correction
factor to an X-ray luminosity at outburst corresponding
to ηout = 0.1 and ηout = 1 for the short and long period
systems is applied respectively. The critical periods, over
which the Eddington luminosity is adopted, are taken to
be 1 day and 10 hrs for NS and BH transients in outburst,
respectively (Chen, Shrader & Livio 1997; Garcia et al.
2003; see also appendix A1 in Portegies Zwart, Dewi &
Maccarone 2004).

In order to decide if a given transient system is in an
active (outburst) state or inactive (quiescent) state we
need to know the disk duty cycle (DCdisk). However, the
disk instability theory cannot provide a reliable estimate
of DCdisk. Empirically it is thought that DCdisk ∼< 1%



19

(e.g., Taam, King & Ritter 2000). We adopt DCdisk = 1%
(probability of finding a system in outburst) in our cal-
culations and use Monte Carlo to decide the state of a
transient system. In practice when we study a stellar pop-
ulation we extract the information for all X-ray binaries
at some specified time (time slice). Once we decide that a
given system is a transient (see eq. 78) we draw a random
number (flat probability distribution) from the range 0–1.
If the number is smaller than 0.01 (1% probability) the
system is then in outburst, otherwise it is in quiescence.
The appropriate X-ray luminosity is then assigned to the
system (see eq. 80). Alternatively, we use a phenomeno-
logical model for the duty cycle developed by Portegies
Zwart et al. 2004. The model is based on the observations
available for the Galactic BH transient systems. In partic-
ular comparison of the recurrence time and the decay time
combined with the observed peak outburst energy allows
to calculate the time in which system is brighter than a cer-
tain critical X-ray luminosity. Specific application of that
model will be discussed in the forthcoming paper on the
evolution of X-ray luminosity function in starburst galax-
ies (Belczynski et al. 2006, in preparation).

Finally, the bolometric accretion luminosity is converted
to an X-ray luminosity in a specific energy range. We
perform the conversion to the 0.3 – 7 keV range, which
may be used directly for comparison with Chandra ob-
servations. For all the persistent RLOF-fed sources, all
wind-fed sources and the transients in the outburst stage,
where accretion is the dominant contributor to the ob-
served luminosity, we apply a bolometric correction (ηbol).
For all quiescent transients the bolometric correction is
not needed since we adopted their X-ray luminosities di-
rectly from observations. For different types of systems we
estimate the correction to be:

ηbol =











0.15 NS : wind : all
0.55 NS : RLOF : pers., outburst trans.
0.8 BH : wind : all
0.8 BH : RLOF : pers., outburst trans.

(79)
Corrections were obtained from: La Barbera et al. (2001)
for wind-fed NS systems; from Di Salvo et al. (2002) and
Maccarone & Coppi (2003) for RLOF-fed NS systems; and
from Miller et al. (2001) for BH systems. These bolomet-
ric corrections will be applicable for the typical Chandra
observations of external galaxies. For deeper observations,
where the lower luminosity cutoffs are below a few percent
of the Eddington limit, the objects make spectral state
transitions (see Maccarone 2003 and references within),
and the bolometric corrections are much larger2.

Combining all of the above information, we can calcu-
late the X-ray luminosity of synthetic X-ray binaries from

Lx =



















1031 − 1032 all quiescent NS transients
1030 − 1032 80% quiescent BH transients
1032 − 1033 20% quiescent BH transients
ηbolηoutLedd outburst NS/BH transients
ηbolLbol persistent (RLOF and wind)

(80)
where Lx is expressed in erg s−1 and Ledd represents the
Eddington luminosity.

9.2. High Mass X-ray Binaries: Be Star Transients

9.2.1. Observational Overview

High mass X-ray binaries (HMXBs) consist of a com-
pact object (either a NS or a BH) orbiting a massive star.
Both galactic and extra-galactic populations of HMXBs
are known (Liu, van Paradijs & van den Heuvel 2000,
2005). The majority of HMXBs (about 2/3; see Liu et
al. 2000, 2005; Hayasaki & Okazaki 2005) are so-called
Be/X-ray binaries, in which the primary is a Be star, or-
bited by a magnetized NS. Orbits are generally wide with
a moderate eccentricity. The compact star accretes from
the wind of a massive main sequence or subgiant Be (spec-
tral types B3-O with Balmer emission lines; Zorec & Briot
1997) companion. Many of these systems show transient
behavior (see below). The remaining HMXBs are those in
which the primary is a supergiant, so called SG/X-ray bi-
nary (e.g., Liu et al. 2000). For these systems the compact
object either accretes from the wind of the supergiant, or
in brighter systems through RLOF via an accretion disk.

Some Be/X-ray binaries (Be XRBs) are persistent
sources (varying by less then a factor of ∼ 10) observed at
low luminosity levels Lx ∼ 1032−1034 erg sec−1 (e.g., Van
Bever & Vanbeveren 2000; Okazaki & Negueruela 2001).
However, most Be XRBs show periodic outbursts and are
called transient Be XRBs. Transient Be XRBs exhibit
two different types of outbursts (e.g., Bildsten et al. 1997;
Okazaki & Negueruela 2001; Hayasaki & Okazaki 2005;
Baykal et al. 2005):
– Type I (normal) outbursts, which are of moderate inten-
sity (Lx ∼ 1036 − 1037 erg sec−1) and they appear to be
related to the orbital period. It is generally accepted that
these outbursts are associated with the periastron passage
of a NS, and are explained by the increased accretion from
the Be star wind at periastron.
– Type II (giant) outbursts, with luminosities reaching
Lx ∼> 1037 erg sec−1, are irregular, and although they
seem to appear shortly after the periastron passage, they
do not exhibit any other correlations with an orbital pe-
riod. Although the origin of the Type II outbursts remains
unknown, it was suggested that the outflow from the Be
star may lead to the formation of a transient accretion disk
around the NS. Disk accretion results in higher X-ray lu-
minosities than direct surface wind accretion (see Bildsten
et al. 1997 for a discussion and references). Some systems
show both types of outbursts, e.g., A 0535+262 (Motch
et al. 1991; Finger, Wilson & Harmon 1996), V0332+53
(Stella, White & Rosner 1986) or 4U 0115+634 (Baykal et
al. 2005).

9.2.2. Modeling

Type I outbursts are averaged out of our calculations
if we use the orbit-averaged wind accretion model (see
§ 4.2). In the general (arbitrary eccentricity) wind accre-
tion model (see § 4.1) Type I outbursts are a natural out-
come. However, it was noted (Avni & Goldman 1980) that
the transient phenomenon may be then hard to explain.

We construct a simple phenomenological model for Type
II outbursts in order to be able to assess the influence of
this transient activity on XRB population characteristics.

2However, note that the quiescent X-ray luminosities are not affected since they are adopted directly from the deep observations.
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For a system to be a potential Type II Be XRB outburster
we require:
– a binary with a NS or a BH accretor and a massive MS
(Ki = 1) or subgiant (Ki = 2) donor (M ≥ 8 M⊙, spectral
type earlier than B3),
– that the system is tight enough so it appears as a HMXB
with a persistent (outside outbursts) wind accretion lead-
ing to an X-ray luminosity greater than Lx,Be. We allow
Lx,Be to change within the range 1032 − 1034 erg sec−1.

Furthermore, only a fraction (fBe) of donors in the above
binaries are Be stars (as opposed to a regular B stars), and
can potentially trigger the Type II outbursts. To provide
an upper limit on the contribution of bursting HMXBs to
the XRB population one may choose fBe = 1. For de-
tail studies, the fBe may be constrained based on the age
of a massive star (McSwain & Gies 2005) or its spectral
type and luminosity class (Zorec & Briot 1997). Little is
known about the duty cycle of Type II outbursts, we there-
fore allow the duty cycle to change within a wide range
DCBe = 0.1− 0.5 and use Monte Carlo to decide whether
the system is in outburst or in quiescence. DCBe gives
the fraction of a time a given system spends in the out-
burst. We use an orbit averaged X-ray luminosity (direct
wind accretion) for the quiescence (ηbol = 0.15, 0.8 § 9.1),
although thermal emission from a NS is also observed in
some systems. For systems in the Type II outburst the
X-ray luminosity is taken to be uniformly distributed in
the range Lx = 1037 − 1038 erg sec−1. We adopt bolo-
metric correction factors: ηbol = 0.15, 0.8 for NS and BH
accretors, respectively (see § 9.1).

The X-ray modeling will be further developed as we pro-
ceed with the studies of the Galactic and extragalactic
X-ray binary populations (e.g., Belczynski et al. 2006, in
preparation).

10. SUMMARY

We have presented a detailed description of the updated
StarTrack population synthesis code. The code is be-
ing used to study populations of different varieties of bi-
naries hosting compact objects. The code has been cal-
ibrated and tested against different sets of observations
and detailed evolutionary calculations and the results are
presented here. The updated version of StarTrack was
already used in several studies of compact object bina-
ries and XRBs. StarTrack allows for evolution of stellar

systems with a wide variety of different initial conditions
(IMF, metallicity, star formation history) and for a number
of different evolutionary models, subject to the parameter-
izations of the input physics.

In a series of papers that will follow we will address the
issues of modeling of XRBs, and will focus on the compar-
ison of synthetic XRB populations with the observed X-
ray point source populations in nearby galaxies. The code
is also being used to study populations of binaries with
NSs and BHs as potential source candidates for ground
based interferometric gravitational radiation observatories
(e.g., GEO, LIGO, VIRGO) as well as populations of less-
massive WD binaries for space-based projects (e.g., LISA).

Although a number of physical processes governing sin-
gle and binary evolution remain highly uncertain, the ad-
vances in observational techniques and new results of mas-
sive surveys allow now various aspects of stellar evolution
to be explored. We have incorporated several different evo-
lutionary models within StarTrack (e.g., different mag-
netic braking laws or CE prescriptions) making possible
tests of their validity. For example, one such test may be
based on a comparison of synthetic and observed X-ray
luminosity functions for nearby starburst galaxies.

The StarTrack code described in this paper may be
used only for the evolution of isolated stars and bina-
ries, i.e., in stellar systems in which dynamical interactions
are not important (e.g., field populations, open clusters).
However, a number of interesting studies may be carried
out for dense stellar environments, in which both stellar
evolution and dynamical interactions play an important
role in the formation of compact object binaries. In par-
ticular, StarTrack was integrated with a dynamical code
for these types of studies (for details see Ivanova et al.
2005).
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Fig. 1.— Initial rotational velocities of stars used in StarTrack calculations. In the top panel we present the fit to the
observational data from Stauffer & Hartmann (1986). In the bottom panel we show the ratio of the data and the model.
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Fig. 2.— The diagnostic diagram (top panel) used to decide whether a binary should be evolved on a thermal timescale
or rather RLOF is dynamically unstable (leading to CE evolution and a potential merger). If the mass ratio at the onset
of RLOF (qint) is much greater than the mass ratio at the moment when the orbit starts expanding (qlow) then the system
is dynamically unstable, otherwise RLOF on a thermal timescale is assumed. The arrow represents the partial derivative
of donor radius (equal to the Roche lobe radius) with respect to its mass, and points to the place where the donor is
expected to regain thermal equilibrium. The bottom panel shows a specific system: a 16 M⊙ Hertzsprung Gap donor
with a 15 M⊙ MS companion in an 8-day orbit, for which the diagnostic diagram is plotted. The mass transfer begins on
a thermal timescale (flat part) and then evolves on a slower nuclear timescale (decline). For more details see § 5.2.
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Fig. 3.— The case of a binary disrupted in a supernova explosion: we present the orbit in the coordinate system III (for
details see § 6). The line OA is parallel to the vector ~nIII

int , while the line OB, the asymptote of the hyperbola, is parallel
to the vector ~nIII

fin . The point O is the focus of the hyperbola.
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Fig. 4.— RLOF sequence for 16 M⊙ HG + 15 M⊙ MS binary. Top panel shows mass transfer rate, middle panel orbital
period, while bottom panel component mass evolution during RLOF phase.
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Fig. 5.— RLOF sequence for 12 M⊙ MS + 7.5 M⊙ MS binary. Panels same as in Fig. 4.
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Fig. 6.— RLOF sequence for 10 M⊙ BH + 5 M⊙ MS binary. The critical Eddington mass accretion rate onto the BH is
about 3.1 − 4 × 10−7 M⊙ yr−1. Panels same as in Fig. 4.
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Fig. 7.— RLOF sequence for 7 M⊙ BH + 2 M⊙ RG binary. The critical Eddington mass accretion rate onto the BH is
about 2.2 − 2.6 × 10−7 M⊙ yr−1. Panels same as in Fig. 4.
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Fig. 8.— RLOF sequence for 1.3 M⊙ NS + 1.6 M⊙ RG binary. The critical Eddington mass accretion rate onto the NS
is ∼ 1.7 × 10−8 M⊙ yr−1. Panels same as in Fig. 4.
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Fig. 9.— RLOF sequence for 1.3 M⊙ NS + 1 M⊙ RG binary. The critical Eddington mass accretion rate onto the NS is
∼ 1.7 × 10−8 M⊙ yr−1. Panels same as in Fig. 4.



31

2.9052 2.9053

1

1.5

2

2.5

9

9.5

10

Fig. 10.— RLOF sequence for 1.4 M⊙ NS + 2.8 M⊙ evolved He-star binary. The critical Eddington mass accretion rate
onto the NS is ∼ 2.9 × 10−8 M⊙ yr−1. Panels same as in Fig. 4. Note the very short duration of this RLOF phase; the
(finite) timesteps taken by the code may be seen through lines showing orbital period and donor mass.
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Fig. 11.— RLOF sequence for 1.4 M⊙ NS + 3.6 M⊙ evolved He-star binary. The critical Eddington mass accretion rate
onto the NS is ∼ 2.9 × 10−8 M⊙ yr−1. Panels same as in Fig. 4.
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Fig. 12.— Tidal calibration calculation for the open cluster M67. The figure shows the period–eccentricity plane with the
population of main sequence binary stars at 3.98 Gyr, the current age of the cluster. Bottom and middle panels show the
results of evolution with increased tidal interactions (Ftid = 100, 10, respectively) as opposed to the standard prescription,
presented on the top panel (Ftid = 1). Note the increase of cutoff period (the longest period circular binary in a given
sample) with increasing Ftid. The observed cutoff period for M67 is Pcut ≃ 10 − 12 days. For more details see § 8.2.1.
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Fig. 13.— Tidal calibration calculation for the high-mass X-ray binary LMC X-4. The observed orbital decay rate for
LMC X-4 is −9.8×10−7yr−1 (marked with dotted line). Predicted decay rates for different efficiencies of tidal interactions
(Ftid = 100, 10, 1) are shown with solid lines. For more details see § 8.2.3.
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