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ABSTRACT

We present a new analytic study of ellipsoidal figures of equilibrium for compressible, self-gravitating Newton-
ian fluids. Using an energy variational method, we construct approximate hydrostatic equilibrium solutions for
rotating polytropes, either isolated or in binary systems. Both uniformly and nonuniformly rotating configura-
tions are considered. Compressible generalizations are given for most classical incompressible objects, such as
Maclaurin spheroids, Jacobi, Dedekind, and Riemann ellipsoids, and Roche, Darwin, and Roche-Riemann
binaries. The validity of our approximations is established by presenting detailed comparisons of our results to
those of recent three-dimensional computational studies. Although our treatment is quite different, the presenta-
tion of our results follows closely that of Chandrasekhar in his work on the incompressible solutions using the
tensor virial method. In the incompressible limit, our equilibrium solutions reduce exactly to those of Chandra-
sekhar. For binary systems, however, our analysis improves on previous results even in the incompressible limit.
Our energy variational method can also be used to study the stability properties of the equilibrium solutions. Both
secular and dynamical instability limits can be identified. For an isolated rotating star, we find that, when
expressed in terms of the ratio 7/| W | of kinetic energy of rotation to gravitational binding energy, the stability
limits for axisymmetric configurations to nonaxisymmetric perturbations are independent of compressibility in
our approximation. We also study the effects of rotation and tidal forces on the radial stability of stars against
gravitational collapse. Our most significant new results concern the stability properties of binary configurations.
Along a Roche sequence parameterized by binary separation, we demonstrate the existence of a point where the
total energy and angular momentum of the system simultaneously attain a minimum. A similar minimum exists
for Darwin binaries when the polytropic index # of both components is below a critical value #;, ~ 2. We show
that such a turning point along an equilibrium sequence marks the onset of secular instability. The instability
occurs before the Roche limit is reached in Roche binaries, and before the surfaces of the two components come
into contact in Darwin binaries. We point out the critical importance of this instability in determining the final
evolution of coalescing binary systems.

Subject headings: binaries: close — hydrodynamics — stars: rotation

1. INTRODUCTION In our recent work on hydrodynamic stellar interactions
(e.g., Rasio & Shapiro 1992) we have frequently felt the need
for approximate solutions for the equilibrium structure and
stability properties of stars perturbed by rotation or tidal fields
in close binary systems. By far the most complete source of
information is the authoritative monograph by Chandrasekhar
(1969, hereafter Ch69), Ellipsoidal Figures of Equilibrium.
Unfortunately, this monograph treats solely the case of incom-
pressible matter, whereas current numerical work deals mostly
with compressible fluids and, in particular, polytropes.

The work presented here is our attempt at generalizing the
results of Ch69 to polytropes, using a formalism as simple and
physically intuitive as possible. Our approach is based on the
use of an ellipsoidal energy variational principle to construct
approximate stellar equilibrium solutions and study their sta-
bility. An energy variational technique very similar to ours was
introduced at least as early as 1860 by Riemann (Riemann
1860; see also Lebovitz 1966, and Ch69, chap. 7) for exploring
the properties of incompressible rotating configurations. Re-
cently, ellipsoidal energy variational methods have been ap-

Computers now make it possible to explore stellar hydrody-
namic equilibria in more than one dimension. Examples of
multidimensional stellar equilibria include uniformly rotating
stars, stars with nonuniform internal motions, and stars in bi-
nary systems. Each of these fluid systems requires two or three
spatial dimensions for a complete mathematical description.

While computer modeling of such configurations is a rap-
idly advancing science, it is useful to find simple analytic coun-
terparts to the detailed results of numerical simulations. Sim-
ple and physically intuitive analytic results, even those based
on crude approximations, are invaluable aids in interpreting
the very large sets of numerical data produced by multidimen-
sional computations. They are very helpful in reducing these
data sets to simple, meaningful conclusions of astrophysical
relevance. Often, however, adequate analytic models are not
available in the literature.

. . N

, pepattment of Physics, Comell University. plied by Zel’dovich & Novikov (1971, hereafter ZN), Shapiro

3 Current address: Institute for Advanced Study, Princeton, NJ 08540. & TCUk01§kY( 1983, heI:eafter ST), and others, to ComI_)reS§lble

4 Department of Astronomy, Cornell University. (polytropic) configurations. In all of these recent applications,
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the emphasis was on determining the effects of perturbations
such as rotation, magnetic fields, or general relativity, on the
stability of a star against gravitational collapse. In all cases, the
equilibrium configurations considered were axisymmetric. In
this paper we extend the method to study the equilibrium
structure and stability properties of compressible, fully triaxial
configurations. Single rotating stars, the compressible ana-
logues of the classical Maclaurin, Jacobi, Dedekind, and Rie-
mann-S ellipsoids, as well as stars in binary systems, generaliza-
tions of the Roche, Darwin, and Roche-Riemann problems,
are all considered. ‘

Exact solutions for all the equilibrium configurations consid-
ered here can be obtained in the incompressible limit (al-
though for binaries, “exact” applies only to a truncated tidal
interaction potential ). Much of our modern knowledge about
these exact triaxial solutions comes from the pioneering work
of Chandrasekhar and his colleagues (see Ch69 and references
therein) using the tensor virial (TV) method. In the incom-
pressible limit, our energy variational method reproduces
these exact equilibrium solutions. For compressible configura-
tions, the method yields an approximate solution, equivalent
to the use of an ellipsoidal trial function when extremizing the
energy functional of the system. As in the TV treatment, our
method replaces the full set of coupled hydrodynamic equilib-
rium equations—partial-differential equations in two or three
dimensions—with two or three coupled algebraic equations
for the principal axes of the configuration. Our discussion for
compressible configurations makes extensive use of results de-
rived in Ch69 for incompressible configurations. Hence we
will frequently cite that reference for comparisons throughout
this paper.

In the opposite limit of highly compressible configurations
(polytropes with indices n > 3), the first-order perturbation
technique of Monaghan & Roxburgh (1965) has been used
successfully to calculate semianalytic equilibrium solutions
(see, e.g., Martin 1970; Naylor & Anand 1970). In this tech-
nique the polytrope is divided into two regions. In the inner
region the perturbing tidal and centrifugal forces are assumed
to be small, and a linear perturbation of the Lane-Emden solu-
tion is used. In the outer region the density is assumed to be
negligible so that the potential can be written as a solution of
the Laplace equation. The two solutions are then matched at
some critical radius. Clearly this method is only applicable to
highly compressible, centrally condensed stars for which the
two-region approximation is valid. An extreme version of the
same approximation consists in replacing the stars by point
masses embedded in gaseous envelopes of negligible density.
This leads to the well-known Roche-type models for rotating
stars and binary systems (Kopal 1959; Paczynski 1971; ST,
§§ 7.4 and 13.7). Because they are essentially analytic, these
models are widely employed, even for configurations which do
not meet the criterion of high compressibility.

Little has been done analytically about the intermediate cate-
gory of stars that are neither very centrally condensed nor
quasi-homogeneous ( effective polytropic index 0.5 S n < 2).
Many rotating and binary configurations of astrophysical rele-
vance contain stars which belong precisely to this category. In
particular, all low-mass white dwarf and main-sequence stars
have n = 1.5, and all observed neutron stars (which have
masses M =~ 1.4 M) may very well have n ~ 0.5-1.0 (see ST,
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chap. 9, and Chau, Cheng, & Zhang 1992). The ellipsoidal
approximation we adopt here is ideally suited to this mildly
compressible regime.

Our ellipsoidal energy variational method to obtain equilib-
rium solutions is formally equivalent to the hydrostatic limit of
the affine model developed by Carter & Luminet (1985; see
also Luminet & Carter 1986). In that model a linear transfor-
mation matrix with time-dependent coefficients is introduced
to approximate the Langrangian displacement of the fluid in a
perturbed configuration. The model has been used to study a
number of time-dependent problems, such as the tidal disrup-
tion of a star by a massive black hole (Carter & Luminet 1985)
and the evolution of tidal-capture binaries in globular clusters
(Kochanek 1992a). The ellipsoidal trial function which char-
acterizes our approximation can be obtained as the static limit
of the linear transformation used in the affine model. How-
ever, our treatment in this paper remains much closer to that
of Ch69, and the language of the affine model is never intro-
duced.

Fully numerical studies of rotating compressible stars, iso-
lated or in binary systems, have become possible in recent
years. The original treatments of rotating equilibria (see Tas-
soul 1978 for a comprehensive summary and references) have
been considerably improved and can now be used to handle
highly eccentric, rapidly rotating stars as well as nonaxisym-
metric configurations (see Hachisu 1986a, b; Cook, Shapiro, &
Teukolsky 1992, and references therein). The new methods
are capable in principle of providing equilibrium solutions of
great accuracy, even for very compressible configurations, pro-
vided of course that sufficient computer resources are avail-
able. Unfortunately, it is often difficult to derive physical in-
sight from purely numerical data, especially in three
dimensions. The recent numerical studies are very useful, how-
ever, in providing a reference against which the validity of our
approximations can be tested.

The advantages of our energy variational approach come
from its simplicity. All results are analytic or quasi-analytic,
and usually lend themselves to straightforward physical inter-
pretation. This is in part because the method deals directly
with the global quantities of interest in most astrophysical
problems, such as the various energies in the system. More-
over, once quantities like the total energy and angular momen-
tum (conserved by the hydrodynamic equations for a perfect
gas) are determined along an equilibrium sequence, the future
evolution of the system can be tracked as it loses energy and
angular momentum by some quasi-static dissipative process.
Such an evolution can lead to the spin-up or spin-down of a
rotating star due to radiation, viscosity, or gravitational-wave
emission, and to the coalescence of close binary systems un-
dergoing orbital decay by some similar mechanism. Astrophys-
ical applications of great current interest include the spin evo-
lution of millisecond pulsars (Shapiro, Teukolsky, &
Nakamura 1990; Chau et al. 1992), the coalescence of neu-
tron-star binaries and neutron-star-black-hole binaries (Clark
& Eardley 1977; Nakamura & Oohara 1989; Kochanek 1992b;
Rasio & Shapiro 1992, 1993), and the formation of blue
stragglers and other binary mergers in globular cluster cores
(Bailyn 1993; Rasio 1993).

Our paper is organized as follows. In § 2 we review briefly the
energy variational method and describe our approximations.
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We also establish several equivalent stability conditions and
discuss secular versus dynamical instabilities. In §§ 3-5 we de-
rive the equilibrium structure equations for isolated, rotating
polytropes. Axisymmetric configurations (compressible Mac-
laurin spheroids) are considered briefly in § 3, but our efforts
focus on triaxial configurations, either in a state of uniform
rotation (generalizing the classical Jacobi ellipsoids), in § 4, or
with internal fluid motions of uniform vorticity (the compress-
ible analogues of Riemann-S ellipsoids), in § 5. The stability
properties of these single star configurations are discussed in
§ 6. Secular stability against both axisymmetric and nonaxi-
symmetric perturbations is considered, as well as dynamical
stability. In §§ 7 and 8 we solve the compressible generaliza-
tions of the Roche and Roche-Riemann problems for a poly-
trope in orbit about a point-mass companion. The stability of
our binary equilibrium solutions is studied in § 9. Finally, in
§ 10 we consider the generalized Darwin problem for two iden-
tical polytropes in a binary.

2. METHOD AND APPROXIMATIONS
2.1. The Energy Variational Method

We consider an isolated, self-gravitating fluid system in
steady state. The specific entropy is assumed to be constant
throughout the fluid. The system is specified by conserved
global quantities such as its total mass M, entropy S, and angu-
lar momentum J. The total energy of such a system, not neces-
sarily in equilibrium, can always be written as a functional of
the fluid density and velocity fields p(x) and v(x),

E = E[p(x), v(x); M, S, J,...]. (2.1)

It is well known that the equilibrium configuration of the sys-
tem can be determined by extremizing this functional with
respect to all variations of p(x) and v(x) that leave the con-
served quantities unchanged. The direct application of such a
general variational principle to solve for multidimensional
equilibrium configurations is in general a very difficult and
computationally intensive task. '

Great simplification is achieved if we can replace the infinite
number of degrees of freedom contained in p(x) and v(x) by a
limited number of parameters «,, a,, ..., so that the total
energy becomes a function of these parameters,

E=E(ay,0p,...; M, S, J, ). (2.2)
For sufficiently simple systems, it is often possible to write
down directly an expression of this type for the energy, based
on a set of simplifying assumptions. We will follow that ap-
proach in this paper. Our set of simplifying assumptions is
described in § 2.2. Equivalently, an expression of the type (2.2)
can be obtained by inserting trial functions with parameters a;
for p(x) and v(x) in the general functional (2.1). We will not,
however, refer explicitly to trial functions in our treatment.

Given an expression of the type (2.2), the equilibrium con-
figuration of the system is determined by extremizing the en-
ergy according to

_a_E_-_-O, i=1,2, .-

(equilibrium) , (2.3)
da i
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where the partial derivatives are taken holding M, S, J, - - -
constant.

A trivial example clearly illustrates the method (see ST,
chap. 6 for other examples). Consider a spherical (nonrotat-
ing) configuration with mass M and radius R. Assume that the
density and pressure profiles are those of a polytrope of index
n, where

1
P=Kp", T=1+—, (2.4)

but that R is not necessarily the equilibrium radius corre-
sponding to the mass M and polytropic constant K. In place of
R, we can introduce the central density

UL P
737001 " 7 4xl0 RS

(2.5)

where 6 and £ are the usual Lane-Emden variables for a poly-
trope (see, e.g., Chandrasekhar 1939). The total energy of such
a configuration can be written in the form (2.2) as®

E(p; M)y=U+ W, (2.6)
where U is the internal energy,
U= kKp!"M, (2.7)
W is the gravitational potential energy,

3 GM?

= — - 1/3 5/3
R kop \3GM/? (2.8)

and we have introduced two dimensionless constants (cf. ST
§6.10)

nn+1
=D g (29)
3 (416 |
ZES_n(";l") . (2.10)

In equilibrium, p,. (or R) must be such that F is minimum.
This implies

a
dp,

)

=0, (2.11)

u 1w
_...+ —_—
Pc Pc

X | =
w|

which gives immediately the virial relation,

3

;U+ w=0, (2.12)

% The polytropic constant X is a function the entropy S. Since we con-
sider only polytropes in this paper, we will henceforth omit .S from the list
of conserved quantities.
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and, using equations (2.7) and (2.8), the equilibrium M(p,)
relation for spherical polytropes,

— 3k1K 32 (3—n)/2n
MGe) = (3] T, @)
as well as the total equilibrium energy,
3—-n 3-nGM?
= =— . .14
Eq="3—W=-3— % (2.14)

2.2. The Ellipsoidal Approximation

To arrive at an expression of the type (2.2) for the energy of
a rotating polytrope, we make two simplifying assumptions
(ZN, chap. 11; ST, chap. 7). First, we assume that the surfaces
of constant density (and constant pressure, since P = Kp") are
self-similar ellipsoids. The geometry of the configuration is
then completely specified by the three principal axes of the
outer surface (where P = p = 0), which we denote by a,, a,,
and a,. Under this assumption, the axis ratios a,/a, and a;/ a,
are the same for all interior isodensity surfaces. Our second
assumption is that the density profile p(m) (and the specific
energy profile u(m), since u = nKp'/"), where m is the mass
interior to an isodensity surface, is identical to that of a spheri-
cal polytrope of same K and 7, but with radius R = (a,a,a;)'/?,
that is, a spherical polytrope of same volume as the rotating
configuration. It is important to note that R is not, in general,
the equilibrium radius of that spherical polytrope ( cf. the exam-
ple at the end of § 2.1).% Both assumptions are strictly valid
only in the incompressible (7 = 0) limit (see Tassoul 1978,
§ 4.4). In this limit, our method can provide the exact equilib-
rium solution for any particular problem (as does the TV
method of Ch69). In the general case where »n # 0, it provides
an approximation to the true equilibrium solution. Clearly we
expect this approximation to be best for slowly rotating, nearly
incompressible configurations, but we will see in this paper
that our method yields, in fact, very good numerical results in
all cases.

The ellipsoidal approximation adopted here is closely re-
lated to the “affine model” developed by Carter & Luminet
(1985). In that model the positions of all fluid elements are
linearly related to their initial positions in the spherical star
through a time-dependent matrix. Deformation of the spheri-
cal star into an ellipsoidal configuration of the type described
above is accomplished by such a linear transformation. Equiv-
alently, we can think in terms of a density trial function
Puiat(X) = po(] Q- x|), where py(r) is the density profile of a
spherical equilibrium polytrope, and Q is the matrix of an
affine transformation. In the affine model a set of ordinary
differential equations is derived for the evolution of the matrix
elements Q;(¢). The static limit of these evolution equations is
equivalent to the equilibrium structure equations obtained
with our method. While the affine model is very useful for

¢ Both ZN and ST state this assumption incorrectly, indicating that a
spherical surface of constant density in the (equilibrium) nonrotating star
transforms into an ellipsoidal surface enclosing the same volume. This
would imply that the central density p, of all rotating configurations is the
same as that of the nonrotating star. Instead, both ZN and ST proceed, as
we do here, to vary p, when extremizing the energy.
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calculating numerically the approximate dynamical evolution
of stellar models, our approach based on energy considerations
is both simpler and more convenient for studying equilibrium
configurations and identifying their stability limits.

2.3. Stability Conditions

In general, stability requires that an equilibrium configura-
tion correspond to a true minimum of the total energy E(o;,
ay,...; M, J, -+ ), that s, that all eigenvalues of the matrix
(02E/da;0c; )eq be positive. Here and throughout this paper, a
subscrlpt * indicates a quantity evaluated in equilibrium
(with all condmons [2.3] satisfied). The onset of instability
along any one-parameter sequence of equilibrium configura-
tions can be determined from the condition

’E .
aaiaaj) - 09 L= 13 29 D
eq

det(

(onset of instability) . (2.15)
When this condition is first satisfied along the sequence, one of
the eigenvalues must change sign. It may then become possible
for the system to further minimize its energy by evolving away
from the equilibrium configuration considered. In the space of
the parameters «;, the evolution should be in the direction of
the eigenvector associated to the eigenvalue responsible for the
realization of condition (2.15). Whether the instability actu-
ally arises depends on the presence of a dissipation mechanism
which preserves the conservation laws built into the equilib-
rium model (see § 2.4). Moreover, since the approximations
leading to expression (2.2) are equivalent to the use of a trial
function to evaluate the general functional (2.1), the condi-
tion (2.15) is in general a sufficient but not necessary condition
for instability (Hunter 1977).

It is easy to show that condition (2.15) is equivalent to the
more familiar “turning point™ or “static” method for locating
the onset of instability (see Tassoul 1978, chap. 6, and ST,
chap. 6). In this method a turning point along a certain equilib-
rium curve indicates the onset of instability along a one-pa-
rameter sequence of models. Consider, for example, an energy
function of the form E(«;; M, J). Differentiating the equilib-
rium conditions (2.3), we get

92E 9°E 9*E
0= z(aaa ) +(a aM)dM+(a aJ)dJ
i=1,2,.... (2.16)

Now construct the one-parameter equilibrium sequence ob-
tained by allowing the mass M to vary, but keeping J constant.
Let us use «, as parameter along that sequence. The equilib-
rium conditions (2.3) then give M and «;, j # 1, as functions of
a; only. Evaluating equations (2.16) along this equilibrium
sequence gives

2 2
D d’FE ) (doz!- + d*F aMm
j#1 \ 0 0c; da, da;,0M da,
eq eq e eq

3’E .
__(aaiaal) , i=1,2,....
eq

(2.17)
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We can solve this set of linear equations for the derivatives
(da;/da,)eq, j # 1 and (dM/da,).,. We see immediately that

2
am = (0 < det E =0. (2.18)
da, do;0cr;
eq €q
A similar result can be written for (dM/do;)eq, i =2, ..., as

well as for (dJ/da;)., along a sequence with constant M.

Consider next the variation of the total equilibrium energy
E. () along the same one-parameter sequence considered
above. We have along that sequence

dE,, ( GE) (GE) ( daj)
—_ = —_— + —_— —L
da, o « ;Z:l da; « da, «

(o) (), (@) S,
~(aw) ).

where we have used the equilibrium conditions (2.3) and the
constancy of J to obtain the second equality. Clearly,

dE,, 0o am -0,
da, da, «

(2.19)

(2.20)

Thus a turning point on the equilibrium energy curve also
identifies the onset of instability.

Note that the determinant condition (2.15) and the turning
point conditions (2.18) or (2.20) are equivalent only for insta-
bilities that do not involve new degrees of freedom besides
those considered explicitly in the equilibrium model. Condi-
tion (2.15) can be used more generally to study instabilities
involving new degrees of freedom if these can be included in
the construction of the energy function (see §§ 6.2, 6.3, and 9.2
for examples). Note also that all of the conditions for instabil-
ity given above are applicable to very general equilibrium con-
figurations, including uniformly and nonuniformly rotating
single stars (see § 6), as well as binary configurations (see § 9).

As a trivial example, consider again the nonrotating spheri-
cal model introduced in § 2.1. We see immediately from equa-
tion (2.13) that along a one-parameter sequence with constant
J =0, (dM/dp.)eq ¢ (3 — n), with a positive constant of
proportionality. It is easy to show from equations (2.6)-
(2.14) that (d°E/dp?)., and dE,,/dp, are also proportional
to (3 — n). Thus we recover the well-known result that a spheri-
cal polytrope is radially unstable when I'" < g. The determinant
condition and turning point criteria are equivalent here since
the instability preserves the spherical symmetry of the configu-
ration.

2.4. Secular versus Dynamical Instabilities

We now specialize our discussion to the two particular types
of velocity fields considered in this paper. For stars in uniform
rotation, the conserved quantities appearing in the energy
function (2.2) are the mass A/ and angular momentum J. We
will also consider nonuniformly rotating stars, with internal
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fluid motions of uniform vorticity. For these stars, the con-
served circulation € along the stellar equator will also be intro-
duced in the energy function.

The conditions for onset of instability given in § 2.3 are
based on the existence of a neighboring configuration with
lower total energy. The equilibrium system can evolve into this
neighboring configuration provided that a suitable dissipation
mechanism is operating. Clearly the evolution will take place
over the time scale of the dissipation. The conditions given in
§ 2.3 are therefore in general for the onset of secular instability.
Note that, by construction, all conserved quantities appearing
in the energy function (2.2) are constant for all configurations
near the equilibrium state. For the secular instability to arise, a
dissipation mechanism which conserves these quantities must
be present. For example, viscosity conserves M and J, but not
%€, while gravitational radiation reaction forces conserve M
and %, but not J (see Miller 1974).

When the conservation of M, J, and %€ is built into the
equilibrium model, the conditions given in § 2.3 cannot be
interpreted in terms of a secular instability, since no physically
realistic dissipation mechanism is compatible with all three
conservation laws. However, these conditions may then signal
the onset of dynamical instability. Indeed, conservation of M,
J, and € is a property of the Euler equations of motion for an
ideal (dissipationless) fluid. For spherical models (with J =
% = 0), it is well known that a turning point (conditions
[2.18] or [2.20]) marks the location along an equilibrium se-
quence where the frequency of the radial pulsation mode
changes from real to imaginary, that is, the onset of dynamical
instability (see, e.g., ZN, chap. 10, or ST, § 6.8). This is be-
cause there exists a Lagrangian displacement which carries the
equilibrium configuration into a neighboring configuration
along the sequence, with no second-order variation of the en-
ergy.” The same cannot be concluded, in general, for turning
points along sequences of uniformly rotating models, since
viscous transfer of angular momentum is needed to maintain
the uniform rotation during a perturbation. If we relax the
assumption of uniform rotation, a turning point could mark
the onset of dynamical instability, provided that enough de-
grees of freedom have been incorporated into the equilibrium
model (see § 6.3 for a particularly clear example). By conven-
tion in this paper, we will label as “dynamical” an instability
point determined by one of the conditions given § 2.3 for any
equilibrium model that was constructed without imposing uni-
form rotation. Specifically, instability points are presumed dy-
namical whenever M, J, and € are held fixed in all first- and
second-order variations of the energy function. We emphasize
that no rigorous proof can be given that a dynamical instability
will in fact arise at those points (but see § 6.3). This problem
may be of little astrophysical relevance since we expect that
secular instability, which is less restrictive, always occurs be-
fore a dynamical instability point is reached along an equilib-
rium sequence. For more detailed discussions about secular
versus dynamical instabilities in rotating stars, see Bardeen et
al. (1977), Friedman, Ipser & Sorkin (1988), and references
therein.

7 We assume implicitly here that the adiabatic index T', governing dy-
namical perturbationsisequaltoI' = 1 + 1/n.
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3. COMPRESSIBLE MACLAURIN SPHEROIDS

We begin by treating the simplest case of a uniformly rotat-
ing polytrope in axial symmetry, constructing the compress-
ible analogue of a classical Maclaurin spheroid (see Ch69,
chap. 5, and ST, § 7.3). Some of the results obtained in this
section were first derived in ZN (§ 11.13) and ST (§ 7.4),
where post-Newtonian correction terms were also included.
More sophisticated models of uniformly rotating polytropes
based on a more general variational calculation were con-
structed by Roberts (1963a, b) and Hurley & Roberts (1964,
1965). While our method is somewhat more approximate, it
leads to purely algebraic equations. In addition, our results
agree well with those of detailed numerical models (see § 3.4)
and can be easily extended to nonaxisymmetric and binary
configurations.

3.1. Equilibrium Conditions

Consider an axisymmetric, uniformly rotating polytrope of
mass M, index n = 1/(I' — 1), and entropy constant K =
P/pT. Its equilibrium configuration is uniquely determined
once the total angular momentum J is specified. We denote
the central density by p, and the principal axes of the outer
surface by a, (=a,), and a,, with a; measured along the rota-
tion axis and g, in the equatorial plane. It is easy to write down
the expression for the total energy E of such a configuration as
the sum of an internal energy U, gravitational potential energy
W, and rotational kinetic energy T. We treat each contribu-
tion in turn.

In the ellipsoidal approximation (§ 2.2), the specific internal
energy profile u(m) of the rotating star is identical to that of a
spherical polytrope of same central density. The same must be
true of the total internal energy U. Therefore we can write, as
in § 2.1,

U= kKp'/"M, (3.1)

where k, is given by equation (2.9). Thus U is a function of p,
alone, independent of the shape of the configuration.

When compared to that of a spherical polytrope with the
same central density, the gravitational potential energy W is
modified by rotation in the same way as it is modified for a
homogeneous star. This follows from Newton’s theorem that
the potential inside an ellipsoidal shell of constant density is
constant (see Ch69, § 17), together with our assumption that
the density profile p(m) remains unchanged (§ 2.2). For a
sphere of constant density p we have

3 GM?

5 R
1/3

%(4—3”) GM3%p'3 . (32)

W (Sphere) = —

Compare this to the result for a homogeneous spheroid of den-
sity p (Ch69, chap. 3),
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2 -1
W (Spheroid) = _% Gﬁl sme e
1

3 fem—
= _%(4_")” GM5/3p‘/3&el—e(1 _e?)ls,

3
(3.3)
where the eccentricity e is defined by
2
21 _[&
e’ = (al ) . (3.4)

Given expression (2.8) for the potential energy of a spherical
polytrope, it follows that for our compressible spheroid we
must have

sin"!e

W= —k,GM3/pl/3 (1—e)s.  (35)

Following ZN and ST, we introduce for convenience (espe-
cially when taking derivatives) the oblateness parameter

2/3
xz(ﬂ)/ —(1-e?)'h3. (3.6)

a,
In terms of this quantity we have
W= —k,GM*?p/*g(\), (3.7)
where we have defined the function

g(\) = A2(1 — A3 V2 cos™H (N?)

_sin”!

e

(1—e>)"e. (3.8)

It is also often convenient to introduce, instead of the central
density p,, the mean radius R of the spheroid,

R = (a%a;)'? = a,(1 — e*)V6 = g \"/*. (3.9)

This is not to be confused with the radius of the nonrotating,
spherical equilibrium configuration with the same mass and
entropy, which we denote by R, (see § 3.2 below). Either R or
p. can be used as an independent variable, and we will often
switch from one to the other. Using the definition of k,, equa-
tion (2.10), and the relation between the central and mean
density for a polytrope, '

M 16)]
4xR> P

(3.10)

we find that expression (3.7) can be rewritten in terms of R as

3 GM?

W:_
5-n R

g(\). (3.11)
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Not surprisingly, this is just the first of the two expressions in
equation (2.8) multiplied by the same factor g(\) that corrects
for rotation.

Now turn to the kinetic energy of rotation. For a spheroid,
the moment of inertia I oc Ma?. Therefore, if we define I, to be
the moment of inertia of the sphere of same volume, we must
have

I a? a2 1
—_—=s— = — = —, .12
LT R @a)” X (312
For the spherical polytrope of same volume we have
I, = 2k, MR?, (3.13)
where we have defined (cf. ST, eq. [7.4.9])
£1 o 4d
5 Jo s (3.14)

=37 ENe ]

so that x, = 1 for n = 0. Combining equations (3.12) and
(3.13), we see that for our compressible spheroid

I
I=7’=%x,,Maf, (3.15)
and the kinetic energy of rotation can be written
J2
T=2—I=k3)\JZM‘5/3p§/3, (3.16)
where
4 2/3 2/3
k= S (Am)*P (1611 (3.17)
4 Kn El

is a constant (independent of A\).® For convenience, we have
listed in Table 1 the values of all the structure constants, k,, k,,
ks, and «,,, for polytropes of various indices.

The total energy of a configuration with given mass M and
angular momentum J, not necessarily in equilibrium, is ob-
tained by summing equations (3.1), (3.7), and (3.16),

E(pi, M, )=U+W+T. (3.18)
In equilibrium we must have
0E 9JE
0pc_5—0' (3.19)

The first condition gives immediately the virial relation,
%U+ W+2T=0, (3.20)

& Note that k; defined here is called ks in ST.
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TABLE 1
POLYTROPIC STRUCTURE CONSTANTS?
n Kn I’ k2 k3
00 1 0 0.96720 3.2481

0.1 0.96064 0.041374 0.94627 3.1083
0.2 092257 0.085269 0.92714 2.9815
0.3 0.88562 0.13139 0.90949 2.8656
0.4 0.84973 0.17950 0.89310 2.7587
0.5 0.81482 0.22939 0.87777 2.6594
1.0 0.65345 0.50000 0.81289  2.2472
1.5 0.51149 0.79586 0.76077  1.9252
2.0 0.38712 1.1078 0.71618 1.6562
2.5 0.27951 1.4295 0.67623  1.4202
3.0 0.18839 1.7558 0.63899 1.2041
3.5 0.11387 2.0817 0.60294 0.99766
4.0 0.05643 2.4008 0.56640 0.78954
4.5 0.01724 2.7019 0.52676  0.55896

* k, is defined by eq. (3.14); k,, k,, k; by egs.
(2.9), (2.10), and (3.17).

while the second can be used to derive an equilibrium relation
between A (or e) and the ratio T'/| W |. We find

T _1f,, 3N N2
|\w| 2 1—A% (1= A})2cos™t )32

3 e(1 — )12
2e2(1 P . ) l. (3.21)
This is the same relation between e (or A) and 7'/| W| as that
found for a homogeneous Maclaurin spheroid (ST, eq.
[7.3.24]). Using the virial relation (3.20), together with ex-
pressions (3.1) for Uand (3.11) for W, we can now determine
the equilibrium relation between M and p, for fixed J (cf. ST
eq. [7.4.40]),

T -3/2
Mp.: J)=M<pc;0)[g<x>(1—2|—W—I)J . (3.22)

where M(p.;0)is given by equation (2.13), as well as the total
equilibrium energy

3—-n 3-2n T
E="5— W(l— T, —IWI)’

(3.23)

Equations (3.11)and (3.20)-(3.23) completely determine the
equilibrium configuration corresponding to a given eccentric-
ity e. The angular momentum and rotation frequency can be
calculated from equations (3.15) and (3.16) as J = (2IT)!/?
and Q = (2T/1)'/?.

3.2. Constructing the Equilibrium Sequences

Consider a one-parameter sequence of equilibrium models
where the stars have a fixed mass M, polytropic index #, and
entropy constant K. Each model along the sequence is com-
pletely determined by specifying just one other quantity, such
as the angular momentum J or the eccentricity e. As an illus-
tration, Figures 1 and 2 show the behavior of E and Q along
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O T ———T—T o To=o— the incompressible case, { attains a maximum along all com-
B P A — === pressible sequences. The values of ¢ and J at the maximum
Rt ] clearly depend on the polytropic index. In contrast, both F and
-0.21=° —~ J increase monotonically as a function of e. The mass-shed-
i ] ding limit (see § 3.3) and stability limits (see § 6) along each
E L ] sequence are also indicated in Figures 1 and 2. Stellar models
-04 — past the maximum of Q tend to spin-up as they lose angular
B i momentum. For stars in strictly uniform rotation, this behav-
L 4 ior seems possible only for nearly incompressible models. In-
-0.6 = = deed, we find that when n = 0.5, mass shedding occurs before
N T the maximum of Q is reached along an equilibrium sequence
05— 1 T 1 T T ] with increasing J. However, although this is not shown in Fig-
F E ure 1, for n very close to 3, once again the mass-shedding limit
0.4 = is reached beyond the point where € is maximum, making
E ] spin-up possible again (Shapiro et al. 1990).
_ 03y -] The results of § 3.1 can also be presented as a single equilib-
Q@ r LN ] rium sequence described in terms of universal dimensionless
0.2 // = quantities that are functions of e¢ only (independent of the
E I’ / ] polytropic index n). One such quantity is the ratio 7/| W|.
0.1 3 Others are
ol - — -, Q2
0 0.5 1.5 2=l n/s)(rGﬁ)’

e

Fi1G. 1.—Plots of the equilibrium energy and angular frequency of rota-
tion as a function of angular momentum along compressible Maclaurin
sequences with polytropic index » = 0 (solid lines), n = 0.1 (dotted lines),
n = 1 (short-dashed lines), n = 1.5 (long-dashed lines), and n = 2.5 (dot-
ted-dashed lines). The secular instability limits ( filled circles), dynamical
instability limits (triangles), and mass-shedding limits (open circles) are
also indicated. The units are defined in eq. (3.26).

equilibrium sequences corresponding to different polytropic
indices. The curves corresponding to » = 0 are identical to
those shown in Ch69 (chap. 5). All numerical values are given
in units referring to the nonrotating, spherical equilibrium
polytrope of same mass M, entropy constant K, and polytropic
index n. The radius of this spherical polytrope is

M \-m/(3=n) (n+ DK n/(3—n)
= £ (£21. 1)-0-re-n[ 2 n+ DR )
Ro=£(£114) ()

(3.24)

It is important to note that for n # 0, R, is not equal to the
mean radius R = (a2a;)'/? of a rotating spheroidal polytrope
along the sequence. Combining equations (3.22) and (3.24),
we find that R and R, are related by

B T —n/(3—n)
R‘R"[g(“(‘ - zm)] '

Since, in contrast to R, the quantity R varies along a compress-
ible equilibrium sequence, it should not be used to define the
units. The rotation frequency, angular momentum, and en-
ergy have been made dimensionless by introducing the ratios

(3.25)

Q E
(vGp)'/?’ GM?*/R,

where po= M /(47R}/3). Note from Figures 1 and 2 that, asin

J

 E=
(GM®R)'"”

Q= J=

, (3.26)

L1 J?
2 = __ - [,
= ”/5)(GM3R)’

- S5—n w
V=3 (GMZ/R)’

. R \GB-n)/n
R=|— .
(&)

Table 2 presents the variation of these quantities along the
universal equilibrium sequence. The equilibrium energy E,,

(3.27)

0.5

T T T I

0.4
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0.1
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)
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TIIIIIIIIIIIIIIIII|I|IlIl

e

Lo v b vy b v b v by
0 0.2 0.4 0.6 0.8
e

3
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FIG. 2.—Variation of the angular frequency with eccentriqity along the
same compressible Maclaurin sequences as in Fig. 1. Conventions are as in
Fig. 1.
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TABLE 2
COMPRESSIBLE MACLAURIN SEQUENCE?
et T/|W| 0 J 114 R

0. 0. 0. 0. 1. 1.
0.1000 0.1340(-2)  0.5341(-2) 0.2540(-1) 1.0000 1.003
0.2000 0.5437(-2)  0.2146(-1) 0.5144(-1) 0.99996 1.011
0.3000 0.1254(-1)  0.4862(-1) 0.7882(-1) 0.9998 1.026
0.4000 0.2314(-1) 0.8727(-1) 0.1085 0.9993 1.049
0.4500 0.2998(-1)  0.1111 0.1245 0.9989 1.065
0.5000 0.3804(-1)  0.1380 0.1416 0.9982 1.084
0.5500 0.4751(-1) 0.1681 0.1601 0.9971 1.108
0.6000 0.5867(-1)  0.2014 0.1804 0.9956 1.138
0.6500 0.7187(-1)  0.2378 0.2029 0.9934 1.176
0.7000 0.8765(-1)  0.2773 0.2283 0.9901 1.225
0.7500 0.1068 0.3195 0.2579 0.9852 1.291
0.8000 0.1305 0.3632 0.2935 0.9776 1.384
0.8127*  0.1375 0.3742 0.3038 0.9751 1.415
0.8500 0.1611 0.4058 0.3383 0.9653 1.528
0.9000 0.2031 0.4405 0.3999 0.9434 1.785
0.9529** 0.2738 0.4402 0.5091 0.8903 2.483
0.9800 0.3396 0.3780 0.6249 0.8164 3.818
0.9900 0.3809 0.3103 0.7121 0.7515 5.587
0.9950 0.4127 0.2437 0.7945 0.6858 8.355
0.9990 0.4590 0.1254 0.9738 0.5422 22.50
0.9999 0.4867 0.4286(-1) 1.2263 0.3765 99.64
1. 0.5 0. oo 0. 0o

2Q, J, W, and R are defined in eq. (3.27).
® One asterisk marks the secular instability limit, two the dynamical insta-
bility limit.

can be calculated easily for any » from equation (3.23) once
T/\W| and W are known. Note that both W and R have been
normalized in such a way that they tend to unity as e = 0.
Although the definitions (3.27) are general and will be used for

other configurations, they can be written explicitly as simple -
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functions of e (or \) for Maclaurin spheroids. Using the results
of § 3.1 we find

. _ p2)\1/2 2
Qz=2[(—li—)(3—2e2)sin“e—3(l—ze) ,
e e
72 3 2\-2/302
JP==—(1-¢e*)723Q2,
25 (3.28)

W=2g(\),

o[l -255)]

with g(\) and T/| W | given by expressions (3.8) and (3.21).

3.3. The Mass-Shedding Limit

Because of the limited number of degrees of freedom in our
approximation, the equilibrium configurations constructed in
§ 3.2 are not guaranteed to satisfy the exact hydrostatic equilib-
rium condition locally at every point in the fluid. In particular,
mass shedding can occur when a fluid element near the equa-
tor can no longer be held by gravity against the centrifugal
effect of rotation.

We list in Table 3 the values of all equilibrium parameters at
the mass-shedding limit of sequences with different polytropic
indices. To construct this table we have used the values of
T/|W| at the mass-shedding limit as published in recent nu-
merical studies of rotating polytropes by Hachisu & Eriguchi
(1982), Hachisu, Eriguchi, & Sugimoto (1982), Hachisu
(1986a), and Cook et al. (1992). For several values of n, we
have confirmed the position of the mass-shedding limit by per-

TABLE 3
MASS-SHEDDING LIMITS FOR ROTATING POLYTROPES®
Ref. n  az2/a1 asfar T/|W| 02 J E R/R,
Axisymmetric Configurations
0. 1. 0. 0.5 0. [e) 0. 1.
[2] 0.1 1. 0.2680 0.295 0.4072 0.5485 -0.3552 1.036
[3) 0.1 1. 0.2284 0.320  0.3779 0.5944 -0.3303 1.042
[3] 0.2 1. 0.2945 0.279  0.4040 0.5247 -0.3579 1.069
[3] 0.3 1. 0.3563 0.244 0.4191 0.4675 -0.3786 1.088
[3] 0.4 1. 0.4138 0.214 0.4270 0.4197 -0.3938 1.101
[1,2] 05 1. 0.4846 0.180 0.4315 0.3657 -0.4122 1.103
[3] 0.5 1. 0.4631 0.190 0.4297 0.3818 -0.4030 1.111
[1] 1.0 1. 0.6716 0.103 0.4131 0.2423 -0.4139 1.130
[1,2] 15 1. 0.7974 0.0595 0.3839 0.1660 -0.3742 1.140
1] 2.0 1. 0.8801 0.0338 0.3478 0.1146 -0.2983 1.154
[1] 2.5 1. 09338 0.0182 0.2835 0.0785 -0.1778 1.206

Triaxial Configurations

[4] 0.1 0.456 0.3589 0.1600 0.2974 0.3782 -0.4564 1.016
[4] 0.2 0532 0.4002 0.1524 0.3297 0.3507 -0.4585 1.031
[4] 0.3 0.591 0.4295 0.1480 0.3526 0.3349 -0.4548 1.045
[4] 0.4 0670 0.4654 0.1437 0.3773 0.3199 -0.4508 1.060
[4] 0.5 0.732 0.4912 0.1413 0.3942 0.3115 -0.4430 1.076

2 Q, J, and E are defined in eq. (3.26).
REFERENCES: [1] Cook et al. 1992; [2] Hachisu 1986a; [3] Hachisu et al.

1982; [4] Hachisu & Eriguchi 1982.
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forming dynamical simulations using our own smooth-parti-
cle-hydrodynamics (SPH) code (see Rasio & Shapiro 1992,
1993). With SPH we were able to locate the mass-shedding
limit to within an accuracy of about 5% in T/| W |, compara-
ble to the spread in other published values. The other equilib-
rium quantities listed in Table 3 were calculated using the re-
sults of § 3.1 and are therefore subject to our approximations.
For large n, we see that the values of T'/| W| and J at mass
shedding decrease sharply with increased compressibility. This
is a well-known result: centrally condensed objects rotating
uniformly cannot sustain much rotation (see, e.g., Tassoul
1978, chap. 10).

Note that it is possible to use the results of § 3.1 to calculate
analytically the mass-shedding limit by setting the surface grav-
ity at the equator (calculated using the results of Ch69, chap.
3) equal to the centrifugal force there. However, we find that,
in the case of large #, the results are not in good agreement with
those obtained from the more accurate, self-consistent numer-
ical calculations (which we have used in constructing Table 3).
This is because the location of the mass-shedding limit is ex-
tremely sensitive to the precise shape of the stellar surface,
which our ellipsoidal approximation cannot determine accu-
rately for very compressible, rapidly rotating stars. All the
quantities calculated in § 3.2, however, are global quantities,
which are not very sensitive to surface effects. This is even true
of the eccentricity e, if we consider it to be the mean eccentric-
ity of isodensity surfaces in the interior of the star, rather than a
measure of surface distortion (see § 3.4 below for a demonstra-
tion of this point).

A related point concerns the applicability of our equilibrium
sequences well past the true mass-shedding limit. While no
equilibrium configuration in strictly uniform rotation can ex-
ist beyond this limit, very similar configurations with a slight
amount of differential rotation probably do. Axisymmetric
models of differentially rotating polytropes which resemble in
all essential respects the Maclaurin spheroids have been con-
structed numerically by Bodenheimer & Ostriker (1973).
Their models cover most of the range allowed by the virial
theorem, having 0 < T/|W| < 0.5, even though differential
rotation always remains very moderate, with most models hav-
ing Q(center)/Q(equator) = 1. Therefore, we expect that the
uniformly rotating equilibrium models constructed here
beyond mass shedding are reasonable approximations for the
interior of these more realistic, differentially rotating struc-
tures.

3.4. Comparison with Other Work

To check the validity of our assumptions and the accuracy of
our method, we have compared in detail our results for axisym-
metric rotating equilibria to recent numerical calculations by
Hachisu (1986a) and Cook et al. (1992). These calculations
for rotating polytropes are based on a mixed integral, finite-dif-
ference method using a Green’s function to invert Poisson’s
equation for the potential. They improve on earlier work based
on the self-consistent-field method of Ostriker & Mark (1968).
The new schemes are capable of handling extreme configura-
tions which rotate rapidly, are far from spherical, and ap-
proach mass shedding. We have also used the results of our
own numerical calculations using the SPH method (Rasio &

Vol. 88

Shapiro 1992, 1993). This method has the advantage of being
dynamical, so that it can be applied to study the stability of the
solutions as well. Moreover, it is fully three-dimensional and
can be used to construct numerically the triaxial equilibrium
configurations considered later in this paper. All the SPH re-
sults reported in this paper were obtained with about 10* parti-
cles per star and using an initially uniform spatial distribution
of particles (i.e., varying the individual particle masses). The
relaxation technique described by Rasio & Shapiro (1992) was
used to construct rotating equilibrium models.

In Figure 3 we show the behavior of £ and @ ? as a function
of J(cf. eq.[3.26]), as predicted by the different methods. The
agreement with the results of § 3.2 is excellent, even for very
compressible configurations. This is in part because the nu-
merical solutions cannot extend beyond the mass-shedding
limit. The rapidly rotating, very compressible structures, for
which the ellipsoidal approximation should be poorest, do not
exist. As seen in Figure 3, the disagreement is indeed largest
near the mass-shedding limit of each sequence. The largest
fractional deviation is about 3% for ©2, and occurs near the
mass-shedding point of the n = 1 sequence. The fractional
deviation of E never exceeds 1% for all sequences.

In Figure 4 we show our predicted profile for T/|W| as a
function of e (eq. [3.21]), compared to numerical results ob-
tained with SPH. Note that, in contrast to J, which is a well-
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FiG. 3.—Comparison of our analytic results for compressible Mac-
laurin sequences with those of numerical calculations. Our curves for the
equilibrium energy and angular frequency of rotation as a function of
angular momentum are shown for n = 0.1 (dotted lines), n = 1 (short-
dashed lines), n = 1.5 (long-dashed lines), and n = 2.5 (dotted-dashed
lines). The open circles mark the position along the sequences of the mass-
shedding limit as determined in Table 3. The solid lines show the numeri-
cal results obtained by Cook et al. (1992) for n = 1, 1.5, and 2.5 using a
self-consistent-field method; these lines terminate at the mass-shedding
limit. Also shown are the results of our own SPH calculations for n = 0.1
(filled circles) and n = 1 (triangles). Units are defined in eq. (3.26).
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FiG. 4.—Comparison of our predicted equilibrium curve for 7/| W| as
a function of e (cf. eq. [ 3.21]; recall that this curve is independent of  in
our approximation ) with the results of SPH calculations for #n = 0.1 ( filled
circles), n = 0.5 (filled squares), and n = 1 (triangles). Equation (3.29)
was used to define e for the SPH models.

defined global quantity, there is no unique way to define e fora
numerical solution. In Figure 4, the value of e for the SPH
solution was calculated as an average over the interior of the
star, as

(e) = —]:? e(m)dm , (3.29)

where e(m) is the eccentricity of the isodensity surface con-
taining an interior mass m. Clearly, the agreement is excellent.
However, had we instead determined e by looking at the shape
of the outer surface in the numerical solution, the agreement
would not have been nearly as good. Indeed, as illustrated in
Figure 5, the distribution e() remains nearly constant in the
interior of the star, but varies more rapidly near the surface.
This result confirms our assumption (§ 2.2 ) that the isodensity
surfaces in the interior of a rotating polytrope can be well ap-
proximated as self-similar ellipsoids. Figure 5 also shows that
the density profile p(m) is nearly independent of rotation, con-
firming the other key assumption in our model.

4. COMPRESSIBLE JACOBI ELLIPSOIDS

In this section we consider uniformly rotating zriaxial struc-
tures, the compressible analogues of the classical Jacobi ellip-
soids (see Ch69, chap. 6). Many of the results derived in this
section can be generalized to all triaxial configurations and will
be reused many times throughout our paper. To our knowl-
edge this is the first time that the energy variational method has
been applied to the calculation of nonaxisymmetric rotating
configurations.

4.1. Equilibrium Conditions

Consider as in § 3 a polytropic star, rotating rigidly with
angular velocity @ = Qe;. In this section we construct approxi-
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mate, nonaxisymmetric equilibrium configurations with prin-
cipal axes a, > a, > as.

We begin by writing the general expression for the total en-
ergy of a rigidly rotating triaxial structure in the ellipsoidal
approximation. The expression for the internal energy U, a
function of the central density p, alone, is identical to that used
for Maclaurin spheroids, equation (3.1). We use the same ar-
gument as in § 3.1 to find the expression for the gravitational
potential energy W. For a homogeneous ellipsoid of density p,
we have (cf. Ch69, eq. [3.128])

g 3 GM?

W (Ellipsoid) = — % G2 -3
1

S, (41

where we have defined the mean radius R = (a,a,a5)'/3, the
quantity

I = Aa? + Aai+ Azal (4.2)

(called I in Ch69, cf. his egs. [3.15] and [3.22]), and the di-
mensionless ratio
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== . 43
4 2 (a,a,a3)*"” 43

1 T T T I T T T ‘ T T T l L T ] T T T J_
- ~N— ]
L e —
08 eI T K
e(m) : lthl‘bniqﬂ‘l-rw.\11"‘._1,v\..‘—1 M~a-""l”#”~/av 1
0.6 -
0.4 B PR "'IM}‘L?\.':A’—.
o A e e S e AR
3k T
"\\_ 7
RN 1
FON :
2+ AN -
p(m)/p, | e ]
~— . i
1 L - — —
—I 1 1 1 L 1 11 I 1 1 1 ]

0 0 0.2 0.4

m/M

FiG. 5.—Interior eccentricity and density profiles of axisymmetric ro-
tating polytropes constructed with SPH. Here m is the mass enclosed by a
surface of constant density p(m1), and e(m) is the eccentricity of that sur-
face (defined by eq. [3.4]). We show three models near the mass-shedding
limits of the Maclaurin sequences with n = 0.1 (solid lines; T/|W| =
0.26), n = 0.5 (long-dashed lines; T/|W| = 0.16), and n = 1 (short-
dashed lines; T/| W| = 0.10), and one slowly rotating model with n = 1
(dotted lines; T/|W| = 0.02). The two p(m) curves for n = 1 are practi-
cally indistinguishable. (Numerical values of e(m) near the center, where
m/M < 0.1, are not reliable because of poor spatial resolution.)
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The dimensionless coeflicients 4; can be calculated in terms of
elliptic integrals involving only the axis ratios a;/a,; and a;/a,
(see Ch69, § 17). Here it is convenient to introduce two oblate-
ness parameters,

2/3 2/3
AIE(%) , xzs(ﬂ) . (4.4)

1 a,
In terms of these parameters we have

A, | A
X TN

r=1on = 5 ), (@5)

with 4; = 4;(\,, \,). As before, when compared to that of the
spherical polytrope of radius R, the potential energy of the
rotating compressible configuration is modified by rotation in
the same way that it is for a homogeneous object. Comparing
equations (4.1) and (3.2), it follows that, for our compressible
ellipsoid,

3 GM2
W= o SN N)

= —szM5’3pc’3f(>\1, A2) s (4.6)

where the polytropic structure constant k, is given by equa-
tion (2.10).

For an ellipsoid, the moment of inertia I oc M(a? + a2), so
that

I (a,+a2)/2 1

I R?

a?+a 1
2/3° 1
2 (a1a,a3)” h

i

(4.7)

where I is the moment of inertia of a sphere of same volume,
equation (3.13). Therefore we have

-t

T g k(@] + a)M (4.8)

and the kinetic energy of rotation can then be written as

2
T—i ksh(Ny, \)JPM~5/3p213 | (4.9)
with
222
A\, A = S22 (4.10)
PRI+ N

The structure constants «, and k; are given by equations (3.14)
and (3.17). Note that when @, = a,, \, = A, = A (eq. [3.6]),
and f(\,, A\,) and A(A,, A\,) reduce to g(\) and A, respectively
(cf. egs. [3.7] and [3.16]).

For a configuration with given mass M and angular momen-
tum J, the equilibrium conditions are

(4.11)

Vol. 88

where E(p., A\, \y; M, J)= U+ W+ Tisthe total energy. The
first condition leads to the same virial relation as in the axisym-
metric case, equation ( 3.20). The equilibrium relations (3.22)
and (3.23) also retain the same form, except that f(A,, A\;)
replaces g(\) in relation (3.22). For the second and third con-
ditions we need to evaluate the partial derivatives d f/d\, and
df/d\,. This can be done easily with the help of the relation
(cf. Ch69, eq. [3.23])

34 g
& ai(a—? —A,.) . (4.12)
After some algebra we find
w1 1 1
0= —fm (Ala% — EAzaﬁ - 51‘130%)
2a% - a?
=2 4.13
1) 1
0=(1<2).

Adding these two conditions, we obtain a simple expression
giving the ratio 7/| W| in terms of the principal axes,

T A} + A,a5— 24543
Y4 29 :

(4.14)

One can easily verify that this expression reduces to equation
(3.21) when a, = a,. The total equilibrium energy is still given
by expression (3.23), which results directly from the virial re-
lation (3.20), but with T/|W| calculated from equation
(4.14) and W from equation (4.6).

Using equation (4.6) for Wand T = (1/2)IQ2, with I given
by expression (4.8 ), the two equilibrium conditions (4.13) can
be rewritten as

_ 207Gp 1 1
+ k,(2a3 —az)Q2 (4.15)
0=(12),

where p = 3M/(47R>). We now combine these two condi-
tions by adding each one to ; times the other and get

0%alq, — 24,a% = Q0%adq, — 24,a% = 24543, (4.16)
where we have defined

Q

(not to be confused with Q; cf. eq. [3.26]) and
= K,,(l —%) (4.18)
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Expression (4.16) reduces to expression (6.2) of Ch69 when
n=0(g,=1). Following Ch69, we now introduce the quanti-
ties (“index symbols”; see Ch69, § 21)

A —A
Ay = A, = —+—=2, 4.19
12 = Ay Z-a ( )
By, = By = A4, — aiA,,, (4.20)

and we add a term 2a3a}A4,, to each of the three sides of ex-
pression (4.16). This gives

X%, - 2B,,) = a3(2%g, — 2By,)
= 2(4palal - 45a3), (4.21)

which reduces to equation (6.3) of Ch69 when n = 0. Clearly,
solutions with a, # a, exist if and only if

ala3A,, = a34,, (4.22)
and
Q2= 25'2 . (4.23)

Equation (4.22), which gives the relation between the axis
ratios in equilibrium, is identical to that obtained in the in-
compressible case (cf. Ch69, eq. [6.4]). As a consequence, the
ratio 7/| W |, equation (4.14), is also identical for compress-
ible and incompressible equilibrium configurations with the
same axis ratios. The expression (4.23) for Q2 is modified by
the presence of the factor 1/g, (cf. Ch69, eq. [6.5]).

Finally, given equation (4.23) for Q and expression (4.8 ) for
I, we can calculate the angular momentum as J = I, or

J V3ai+ai -
(GM’R)'/Zzl_Ol 2 4, (4.24)

jE Rz n

4.2. Constructing the Equilibrium Sequences

Asin § 3.2, we now proceed to construct sequences of equi-
librium models corresponding to fixed M, K, and »n. The pro-
cedure we use is as follows. Given the ratio a,/a,, we calculate
as/a, from equation (4.22). The quantities 4;, #, B;, and 4;
are obtained by performing numerically the quadratures ap-
pearing in their definitions (cf. Ch69, expressions [ 3.103] and
[3.104]). We then calculate 7'/ | W | and f, which depend only
on the axis ratios, from equations (4.3) and (4.14). Asin § 3.2,
we construct the dimensionless ratios defined in equations
(3.26) by introducing the radius R, of the spherical equilib-
rium polytrope of same M, K, and 7 (eq. [3.24]). Using the
virial relation (3.20), together with expressions (3.1) for Uand
(4.6) for W, we can relate the mean radius R = (a,a,a;)'/? to
R, by (cf. eq. [3.25])

—n/(3—n)
R=R0[f()\,,)\2)(1 —2|—§/|)] . (4.25)
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We calculate the ratio R/ R, using expression (4.25), and then
the quantities Q, J, and E from equations (4.23), (4.24),
and (3.23).

We illustrate some of our results in Figures 6 and 7. The
compressible Jacobi sequences bifurcate from the compress-
ible Maclaurin sequences at the point where 7/| W| = 0.1375,
independent of » in our approximation. For all polytropic indi-
ces, the compressible Jacobi ellipsoid has always lower equilib-
rium energy than the Maclaurin spheroid of same J and n,
although for large »n the fractional energy difference is very
small. Also note that dQ/dJ < 0 along all compressible Jacobi
sequences, indicating that the secular loss of angular momen-
tum (e.g., via gravitational or electromagnetic radiation) will
cause the configuration to spin-up (see Chau et al. 1992). For
n < 1 spin-down occurs once the configuration becomes axi-
symmetric.

In Table 4 we give the variation along the compressible Ja-
cobi sequences of the universal variables defined in equation
(3.27), as well as T/| W| and the two axis ratios. This table
allows one to calculate very easily the equilibrium properties of
a Jacobi ellipsoid for any polytropic index #. The total equilib-
rium energy can be calculated from expression (3.23) once
T/|W| and W are known.

4.3. The Mass-Shedding Limit

It is well known that for n > 0.808 the mass-shedding limit
along the Maclaurin sequence occurs before the point of bifur-
cation into the Jacobi sequence (James 1964; see Tassoul
1978, § 10.3, for a summary). Thus, strictly speaking, Jacobi
ellipsoids can exist only when # < 0.808 (but see the discussion
in § 3.3).

FIG. 6.—Equilibrium curves of total energy as a function of angular
momentum along compressible Maclaurin (solid lines), Jacobi (dotted
lines), and irrotational Riemann-S (dashed lines) sequences withn =0, 1,
and 2.5. The filled circles show the position of the secular instability limit
along each Maclaurin sequence (cf. § 6.2). Units are defined in eq. (3.26).
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T T ] TABLE 4
L “ j COMPRESSIBLE JACOBI SEQUENCE®
04 -] - - - -
L _ a2/a1  a3zfa1 T/|IW| Q2 J w R
0.2 r ] 1.00  0.5827 0.1375  0.3742 0.3038 09751 1415
e i 0.95  0.5677 0.1376  0.3738 0.3041 0.9749 1415
¥ - B 0.90  0.5519 0.1380 0.3726 0.3051 0.9742 1.418
o, ., . | .\L._ i 0.85  0.5351 0.1386  0.3703 0.3070 0.9730  1.422
0.80  0.5172 0.1395 0.3668 0.3098 0.9711 1.428
- 0.75  0.4983 0.1407  0.3620 0.3139 0.9684 1.437
N 0.70  0.4781 0.1424  0.3557 0.3193 0.9649 1.449
04 "~ 0.65  0.4567 0.1446  0.3475 0.3264 0.9602 1.465
02 B S 0.60  0.4338 0.1474 0.3373 0.3356 0.9542 1.486
B 0.55  0.4094 0.1509  0.3248 0.3474 0.9467 1513
0.2 0.50  0.3833 0.1553  0.3096 0.3624 0.9371 1.548
C 0.45  0.3554 0.1606  0.2913 0.3815 0.9251 1.593
L e T 0.40  0.3256 0.1673  0.2697 0.4061 0.9099 1.651
() =T 0.35  0.2937 0.1754  0.2443 0.4380 0.8906 1.730
T T 0.30  0.2594 0.1855 0.2149 0.4801 0.8659 1.836
- 0.25  0.2228 0.1980 0.1813 0.5372 0.8337 1.986
04 0.20  0.1835 0.2138  0.1436 0.6181 0.7908  2.209
- 0.15  0.1416 0.2339  0.1027 0.7401 0.7315  2.569
ol 0.10  0.9682(-1) 0.2608 0.6047(-1) 0.9470 0.6445 3.243
02k 0.08  0.7817(-1) 0.2743 0.4417(-1) 0.1079(+1) 0.5967 3.713
- 0.05  0.4944(-1) 0.2997 0.2187(-1) 0.1404(+1) 0.5001 4.991
B 0. 0. 0.5 0. 00 0. 00
0 . - ‘
0 *Q, J, W, and R are defined in eq. (3.27).

Fi1G. 7.—Equilibrium curves of Q2 as a function of J for the same se-

quences as shown in Fig, 6. Conventions are as in Fig, 6. Although this is probably not an exact result (for a discussion,

see Tassoul 1978, chap. 10), the numerical data of Hachisu &
Eriguchi (1982) indicate that, for 0 < n < 0.5, the value of
T/|W| at the bifurcation point is constant to within about 2%
We are aware of only one numerical study of the mass-shed- (see Table 3).
ding limit along the compressible Jacobi sequence itself, done

by Hachisu & Eriguchi (1982). These authors find that, even

for very small n # 0, the mass-shedding limit along the Jacobi 0.55
sequence never extends much past the bifurcation point: for ’
0.1 < n < 0.5, the mass-shedding limit corresponds to 0.14 <
T/|W| < 0.16, whereas T/| W | = 0.1375 at the bifurcation
point (see Table 3). This important result implies that uni-
formly rotating, triaxial equilibria may in fact be of little astro-
physical interest. It is possible that, as in the case of axisymmet-
ric configurations (cf. § 3.3), a small amount of differential 0.45
rotation may stabilize triaxial ellipsoids against mass shedding, Q2
but we are unaware of any numerical study of this particular

question. 0.4

0.5

4.4. Comparison with Other Work

In Figure 8 we compare our solution to the numerical results 0.35
of Hachisu (1986a) and Hachisu & Eriguchi (1982) for n =
0.5. The variation of Q2 as a function of angular momentum J
is shown near the bifurcation point. Note that, to make this 0.3
comparison possible given their published data, we had to ex-
press 22 and Jin units based on the miean radius R, rather than
R,. Thus the quantities Q2 and J are shown (eqgs. [4.17] and
[4.24]). Clearly, the agreement is excellent. The Jacobi se-
quence for n = 0.5 terminates at the point where Q% = 0.492
and J = 0.297, which is the last point shown in Figure 8.

In our approximation the bifurcation of the Maclaurin se-
quence into the Jacobi sequence always occurs at the point
where T/| W| = 0.1375, independent of the polytropic index.

Illlllllllllll'lllllllll
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Fi1G. 8.—Comparison of our analytic results for the bifurcation of the
n = 0.5 Maclaurin sequence (solid line) into the n = 0.5 Jacobi sequence
(dotted line) with the numerical results ( filled circles) of Hachisu (1986a)
for axisymmetric configurations and Hachisu & Eriguchi ( 1982) for triax-
ial configurations. The last circle along the Jacobi branch corresponds to
the mass-shedding limit for triaxial configurations (cf. Table 3). The units
are defined in eqs. (4.17) and (4.24) (note that they differ from the units
used in previous figures).
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5. COMPRESSIBLE RIEMANN-S ELLIPSOIDS

We now generalize the treatment of § 4 to allow for the
presence of nonuniform rotation. We restrict our discussion to
the case where internal fluid motions have uniform vorticity
parallel to the rotation axis, as in the classical Riemann-S ellip-
soids (Ch69, chap. 7). The notations and definitions of § 4 are
used except when noted.

5.1. Equilibrium Conditions

Consider first an ellipsoidal equilibrium configuration rotat-
ing rigidly with angular velocity @ = Qe;, as in § 4. Now super-
pose on this background rigid rotation an internal velocity
field specified by two requirements: (1) it must have a uniform
vorticity parallel to Q; (2) it must leave the ellipsoidal figure
unchanged, that is, the velocity vector at any point in the fluid
must be tangent to the isodensity surface passing through that
point. Following Ch69 (chaps. 4 and 7) we write the fluid
velocity in the frame corotating with the equilibrium figure as

u=0xe + Q)xe, (5.1)

where Q, and Q, are constants. This form ensures that our first
requirement is satisfied. The second requirement can be used
to calculate the values of O, and Q, for a given vorticity. We
find

2
aj a,
=- =+21A,
Z a?+ a3 ¢ a,
(5.2)
2
a;s aQ,
= + = — —= A ,
Q. a’+al ¢ a,
where { is the vorticity in the corotating frame,
2 2
ai+a
(=(VXu)eg=——"—T24, (5.3)
a,a,

and A is the angular frequency of the internal fluid motions.
The fluid velocity in the inertial frame is given by

D =u+QXx. (5.4)

Using equations (5.1)—-(5.4) one can easily calculate the total
angular momentum J and rotational Kinetic energy 7. We find

J= f x X u®pd’x = (IQ — 2k,Ma,a,A)e;,  (5.5)

f u® - u®pdx

I(A? + Q) — 24, Ma,a,AQ
k. M(a, — a,)*(Q + A)?
+ %K,,M(al + a2)2(Q —A)?, (5.6)

20
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where I is the moment of inertia, given by equation (4.8), and
K, is given by expression (3.14). Also of interest are the fluid
circulation along the equator,
C= f u® . dl =72 + fR)a,a,, (5.7)
equator
and the vorticity in the inertial frame,

(O =VXu®)e,=(2+f)Q, (5.8)

where we have defined the ratio

O~y

fr (5.9)

Conventionally Riemann-S equilibrium sequences have f; =
constant along the sequence. The Riemann-S sequence corre-
sponding to fr = { = 0 is the Jacobi sequence (§ 4), while that
corresponding to fz = oo is the Dedekind sequence (Ch69,
chap. 6). Dedekind ellipsoids have @ = 0, that is, they are
stationary in the inertial frame, their triaxial ellipsoidal shape
being supported entirely by internal fluid motions. Also of as-
trophysical interest is the irrotational Riemann-S sequence,
which has fz = —2 and therefore {(® = C = 0. Since Cis a
conserved quantity in the absence of viscosity, it may be more
interesting to consider in general sequences of constant C # 0,
rather than sequences of constant f; (see, e.g., Kochanek
1992b).

Before we proceed to derive the equilibrium conditions, it is
useful to rewrite the kinetic energy in a more convenient form,
similar to those obtained in previous sections. We first intro-
duce a conserved quantity €, proportional to the circulation
C, but with dimensions of an angular momentum,

€= - L k,MC = I\ — 2 k,Ma,a,Q . (5.10)
S5 5

Since the quantity C as defined by equation (5.7) rarely ap-
pears explicitly in our results, we often refer to € itself as the
circulation. In terms of the two conserved quantities Jand €,
the kinetic energy, equation (5.6), can be rewritten in a form
similar to that of equation (4.9) as

T=T,+T
Ley(J + 6)2 M5 p23h,
+ L (J — €)M p3h_, (5.11)

I

where we have defined (cf. egs. [4.4], [4.7], and [4.10])

_ 2(a,a,a3)*" _ 2NN
(@ Fa)?  (N2F N

h. (5.12)

When A = 0, that is, for Jacobi ellipsoids, we see from equa-
tions (5.10), (5.5), and (4.8) that € = —2a,a,J/(a? + a?),
and expression (5.11) reduces to (4.9), as expected.

The equilibrium conditions are the same as in § 4, but now
E=E(p., \j, \y; M, J, €) = U+ T + W and the partial
derivatives must be calculated at constant M, J, and €. The
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expressions for U and W are the same as in § 4, while T'is given
by equation (5.11). The condition dE/dp, = 0 provides the
same virial relation as before, equation (3.20). The two condi-

tions dE/O\, = 0E/dX, = 0 give
‘ 207G 1 1
0= - F2 (a7 - § 403 - 3 Auad)
+ lx,,(a, - a)(2a; + a,)(2 + A)?
2 (5.13)
4360+ @) (20— )@ - A)?,
0=(1<2),

analogous to the two conditions (4.15). Following manipula-
tions similar to those described in § 4.1, these two conditions
can be rewritten in terms of Q (eq. [4.17]) and f; as

a’a? 2B
1+ ——( L )ZfR 02=2"12) (5.14)
1 n
and
a a
a1'+22 Q2 = alalA,, — a3d, . (5.15)

These two conditions agree with equations (7.33) and (7.34)
of Ch69 when n = 0 (g, = 1). If we eliminate 2 between
expressions (5.14) and (5.15), we obtain an equation relating
the axis ratios along a given sequence (with fixed f3),

2.2
2aia3 B, Sfr
a2 22 3, 2
a3As —aiazA;; ait+a;

aial

+1=0.
(at+

)2fR (5.16)

Once the axis ratios are known, equation (5.14) can be solved
for Q2

Note that, as we found in §§ 3 and 4, the equilibrium relation
(5.16) for the axis ratios is independent of the polytropic index
n. All properties of the incompressible Riemann-S ellipsoids
resulting from this relation (Ch69, § 48) apply equally to the
compressible analogues. In particular, to any compressible
Riemann-S ellipsoid there corresponds another adjoint ellip-
soid with the same axis ratios. If (fx, Q) and ('}, Q1) define
ellipsoids adjoints of one another, then

(af +a3)® 1

I = _
fh="at (5.17)
and
2’ = 4D . (5.18)
T+a3’® ’

This result is known as Dedekind’s theorem (Ch69, §§ 28 and
48). Using equations ( 5.17) and (5.18) together with the defi-
nition (5.3) for A, we see that the adjoint ellipsoids have

Qt=—A, AT=-Q. (5.19)
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Similarly, from equations (5.5) and (5.10) we see that

Jt=-%¢, €'=-J. (5.20)
The Jacobi (fzx = 0) and Dedekind (fz = o) sequences are
adjoints of one another. In general, however, the configura-
tions adjoint to the members of a Riemann-S sequence do not,
strictly speaking, form another Riemann-S sequence, since
they do not have fz = constant. An important example is the
sequence of configurations adjoint to the irrotational (€ = 0,
J& = —2) Riemann-S ellipsoids. These configurations have
zero angular momentum in the inertial frame (J = 0, cf. eq.
[5.20]), although both © and A are nonzero.

5.2. Constructing the Equilibrium Sequences

The procedure we use for constructing compressible Rie-
mann-S sequences is similar to that described in § 4.2 for Ja-
cobi ellipsoids. For given fg and a,/a,, we determine a,/a, by
solving equation (5.16). We then calculate () from equation
(5.14)and A = A/(wGDp) "% = —a,a, frQ/(a? + a2). We calcu-
late the ratio 7//| W| by using expressions (5.6) for 7" and
expression (4.6) for W. The ratio R/ R, is obtained from equa-
tion (4.25), and, finally, J and E from equations (5.5)
and (3.23).

Figures 6 and 7 illustrate our results for the irrotational case
(fx = =2 and % = 0). The variation of E and Q2 is shown
along sequences with different values of n. Also shown are the
corresponding Jacobi and Maclaurin sequences. The first
member of each irrotational Riemann-S sequence is actually a
nonrotating (J = 0) sphere, in which the rigid rotation (with
Q # 0) and internal fluid motions cancel each other exactly.
This can be seen from equations (5.5) and (4.8) witha, = a, =
R. Thus the compressible Riemann-S sequences with € = 0
bifurcate from a spherical polytrope.

In Table 5 we give the universal irrotational sequence, in
terms of the variables introduced in § 3.2 (eq. [3.27]). Note
that the irrotational Riemann-S ellipsoids all have a, = a; = a,,
in contrast to the Jacobi ellipsoids which have a, = a, = a, (cf.
Table 4). With the help of the results (5.19) and (5.20), as well
as the relation A = 2a,a,Q/(a? + a2) for irrotational Riemann-
S ellipsoids (cf. egs. [5.3]and [5.9] with fg = —2), Table 5 can
also be used to calculate the properties of the adjoint configura-
tions, the zero-angular-momentum ellipsoids. Similarly, with
the relation € = —2a,a,J/(a? + a2) for Jacobi ellipsoids, Ta-
ble 4 can be used to calculate the properties of the Dedekind
sequence.

In the limit where J — 0, the value of the angular frequency
Q for an irrotational Riemann-S ellipsoid is equal to half the
eigenfrequency of the / = 2 f~mode of oscillation of a spherical
polytrope (see, e.g., Cox 1980, chap. 17). Using the definition
(3.27) of 22 and the result 92 = £ for J = 0 (cf. Table 5), we
obtain a very simple approx1mate expression for this eigenfre-
quency as a function of polytropic index,

GM/R: x(5—n)"
For n = 0, this gives Q;,_,/(GM/R})'/? = 2/\/3 an exact re-

sult (cf. Cox 1980, eq. [17.80]). For n = 2, expression (5.21)
together with Table 1 gives Q. 2/(GM/R3)”2 = 1.495,

(5.21)
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TABLE 5
COMPRESSIBLE RIEMANN-S SEQUENCE WITH € = 0*
ag/al 03/01 T/IWI ﬁ2 j W R
1.00 1. 0. 0.2667 0. 1. 1.
0.95 0.9741 0.1755(-3)  0.2667 0.4707(-3)  0.9998 1.001

0.90  0.9464 0.7412(-3)  0.2669 0.1986(-2)  0.9993 1.002
0.85  0.9167 0.1767(-2) 0.2673 0.4728(-2) 0.9982 1.005
0.80  0.8848 0.3341(-2)  0.2677 0.8917(-2)  0.9967 1.010
0.75  0.8505 0.5575(-2)  0.2683 0.1483(-1)  0.9945 1.017
0.70  0.8136 0.8611(-2) 0.2688 0.2282(-1)  0.9915 1.026
0.65  0.7736 0.1263(-1)  0.2692 0.3332(-1)  0.9876 1.039
0.60  0.7304 0.1788(-1)  0.2691 0.4691(-1)  0.9825 1.056
0.55  0.6835 0.2464(-1)  0.2683 0.6433(-1)  0.9759 1.078
0.50  0.6325 0.3331(-1)  0.2660 0.8660(-1)  0.9675 1.107
045  0.5772 0.4438(-1) 0.2614 0.1151 0.9566  1.147
0.40  0.5174 0.5842(-1) 0.2534 0.1516 0.9425 1.201
0.35  0.4531 0.7613(-1)  0.2403 0.1988 0.9239 1.277
0.30  0.3850 0.9826(-1)  0.2206 0.2606 0.8990 1.384
0.25  0.3143 0.1255 0.1927 0.3428 0.8653 1.543
0.20  0.2430 0.1584 0.1559 0.4551 0.8189 1.787
0.15  0.1737 0.1970 0.1117 0.6154 0.7534 2.190
0.10  0.1094 0.2415 0.6454(-1) 0.8666 0.6578  2.941

0.08 0.8546(-1) 0.2612 0.4653(-1) 0.1017(+1) 0.6063 3.454
0.05 0.5167(-1)  0.2941 0.2252(-1)  0.1370(+1) 0.5045 4.814
0. 0. 0.5 0. 0o 0 oo

2 Q, J, W, and R are defined in eq. (3.27).

which agrees to better than 3% with the value 1.456 from Table where the primes indicate a derivative with respect to A and we

17.2 of Cox (1980). As expected from our use of a variational
principle, expression ( 5.21) slightly overestimates the eigenfre-
quency. For an n = 3 polytrope with adiabatic index T, = 3,
Cox (1980) gives Q;,_,/(GM/R3)"/* = 2.86, still in reasonable
agreement (to within about 15% ) with the value 3.26 predicted
by equation (5.21) for n = 3 (and T = T, = %; note that,
f-modes being nearly incompressible, their eigenfrequencies
should depend mostly on #, and very little on T';).

6. STABILITY PROPERTIES OF SINGLE ROTATING STARS

As discussed in § 2.3, the energy variational method can be
used to assess the stability of equilibrium configurations. As an
illustration we study here the stability properties of compress-
ible Maclaurin spheroids. Specifically, we identify the onset of
instability to axisymmetric perturbations (§ 6.1), secular insta-
bility to nonaxisymmetric perturbations (§ 6.2), and dynami-
cal instability (§ 6.3). We adopt the notations and definitions
of §§ 3-5.

6.1. Instability to Axisymmetric Perturbations

The energy function E(p,, A\; M, J) of a compressible Mac-
laurin spheroid was given in § 3.1. Using the equilibrium con-
ditions (3.20) and (3.21) we can calculate the second deriva-
tives appearing in the condition (2.15). We find

(52), -~ zel(r=3)=2(r3)am]

2 ’
EY __Weg 1 T, (6.1)
apcaxeq

aZE) gll
= W=
2 s
( N/ g

have used the relation g' = (g/A)(T/|W|) (cf. ST, eq.
[7.4.36]). The onset of instability is then determined by condi-
tion (2.15),

62E) (aZE) ( ’E )2
- =0. (6.2)
2 2
( apZ «a oA «a dp O\ «
Substituting expressions (6.1) yields

4__ 2_ T R T \?
3251 3x2g"(|W|)‘ (63)

This condition becomes realized when T falls below a critical
value T;,. Although g” < 0, the first term in the righthand side
of equation (6.3) is always dominant, so that I' ;, < § Thus we
recover the well-known result that rotation always tends to
stabilize a star against collapse (see ST, § 9.6 and references
therein®). In Figure 9 we plot the critical value T, for instabil-
ity, determined from equation (6.3), as a function of the ratio
T/|W|. We see that for rapidly rotating stars, the deviation
from Ty, = 2 can be very large.

According to our discussion in § 2.4, the instability discussed
above can be triggered only in the presence of viscosity, since
uniform rotation was assumed in constructing the equilibrium
model and maintained in the variation (i.e., M and J, but not
€, were held fixed). Therefore, we can only conclude here that
the condition (6.3) signals the onset of secular instability to

® Note that the condition (9>E/dp?)., = 0 used in both ZN (§ 11.15)
and ST (§ 9.6) is too restrictive, being limited to perturbations which do
not change X (see Colpi, Shapiro & Teukolsky 1991). Note also that our
result is valid only for infinitesimal perturbations. It has been shown that
for Ty, < T' < 4, the rotating polytrope is metastable, i.e., it is unstable to
finite-amplitude perturbations (Tassoul 1970; Tassoul & Tassoul 1971).
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0F UL L L T T T T T The first condition is
| v B (e I N R )
L 1 +|— =2 . (6.5
i ] dp? o O\, O\, . N2 @ dp A\ o (65)
-0.5+ —
I..—4/3 - . Substituting expressions (6.4) gives
eri | -‘
I r _%
_1 — R
5 5 T 1 T )
L =-2(=-T — . (6.6)
I 1 1 1 1 I 1111 I | I I 1 1 1 | I 11 1 1 (3 ) |W| 6(J(ll)+j(12))(|W|

0 01 02 03 04 05
T/IW|

Fi1G. 9.—Critical adiabatic exponent for the onset of radial instability
in a compressible Maclaurin spheroid.

axisymmetric perturbations. However, we will show in § 6.3
that the same condition applies in fact at the onset of dynami-
cal instability to “radial” collapse.

6.2. Secular Instability to Nonaxisymmetric Perturbations

We now allow for more general, nonaxisymmetric perturba-
tions, but still maintaining uniform rigid rotation. This is done
by using the energy function E = E(p,, A\, Ay; M, J) of a
compressible Jacobi ellipsoid (§ 4.1) in condition (2.15), but
evaluating the determinant along the equilibrium Maclaurin
sequence (for which A\, = A,). Using the results of §§ 3.1 and
4.1 we find

2 d*E wiftr 1 2 1 T
rel==| =z =2z
‘\ 9p2 w 3L\ 3 n/|W|

pcxl( rE ) = 2h‘"T+j3“> w
eq

3p.0N, 3
“fop_ 2
3 6 T,
d’E 6.4
7\%(-‘%) = h(“)T‘!- j(“)W ( )
eq

5
=—§T+j(ll)W’

where the quantities h;y, A;), £ ;), and # ; are defined in
Appendix A and have been evaluated here for A, = \,. When
A\, = \,, the determinant appearing in condition (2.15) can be
factored explicitly into a product of two expressions, corre-
sponding to the two eigenmodes of perturbation (cf. § 2.3).
Two stability conditions are obtained by setting either expres-
sion equal to zero.

Using the results of Appendix A and chapter 3 of Ch69 for q, =
a,, we find that

1
Fan+FIay = 7 (—9a3B,, + 2a%4, + a%4;)

7\2g”
T (6.7)

and we recover with equation (6.6) the condition (6.3) for the
onset of secular instability to axisymmetric perturbations al-
ready derived in § 6.1.

The second condition is

9%E J*E
( ax%) - (axlaxz) ‘ (6.8)
eq eq

Substituting expressions (6.4) we get

T 1
17'=§(j(12)_j(u))- (6.9)
With the help of the results of Appendix A and chapter 3 of
Ché69 for a, = a,, one can see that

1
Fay —Fan = 27 (9a3B,, + a3A, — a3A4;)

_ 5aiB,
== > (6.10)
where we have used equation (6.9) and the equilibrium rela-
tion (4.14) for a, = a, to obtain the last expression. On the
other hand, the equilibrium relations (4.14) and (4.16) give

T

,02?
| W

, (6.11)

N | —
w8

so that the condition (6.9) is equivalent to

QZ _ ZB“

(secular instability) . (6.12)

n

Comparing this to equation (4.23), and noting that B,, = B,
when a, = a,, we see that the condition becomes realized pre-
cisely at the point where the Jacobi and Dedekind sequences
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bifurcate from the Maclaurin sequence. Thus we have shown
that, just as in the incompressible case (Ch69, § 37), compress-
ible Maclaurin spheroids become secularly unstable to tri-
axial deformations at the bifurcation point, where 7/| W | =
0.1375.

In our approximation, the value of T/ | W | = (T/| W )s at
the secular instability limit is therefore independent of the poly-
tropic index 7. This prediction is in agreement with the results
of extensive numerical studies of the oscillations of axisymmet-
ric polytropes in rapid rotation. In the most recent of these
studies, Ipser & Lindblom (1990) give a value of (T/| W | )sec =
0.1298 for n = 0.75, very close to the value (T/| W |)se =
0.1375 obtained for n = 0. These values correspond to the
point where a uniformly rotating polytrope becomes secularly
unstable to the / = m = 2 f-mode of oscillation. This is the only
mode of oscillation compatible with our ellipsoidal approxi-
mation. However, it should be noted that higher modes of
oscillations, with m > 2, can become unstable at values of
T/|W| that are somewhat smaller and depend more sensi-
tively on the compressibility (see Ipser & Lindblom 1990 and
references therein). This reflects our expectation that the con-
ditions given in § 2.3 are only sufficient—but not necessary—
conditions for instability.

The analysis presented above is based on an equilibrium
model for which we specify the angular momentum J. As
noted in § 2.4, the secular instability identified here can there-
fore be triggered only by a dissipation mechanism which con-
serves J, such as viscosity. We can also use our method to
study secular stability against a dissipation mechanism which
conserves the circulation €, rather than J, such as the emis-
sion of gravitational radiation. The energy function of a Dede-
kind ellipsoid (§ 5.1) should then be used in condition (2.15),
before evaluating it along the equilibrium Maclaurin se-
quence. Because the energy function of a general Riemann-S
ellipsoid (§ 5.1) is symmetric under interchange of J and €
(cf. eq. [5.11]), the analysis is virtually identical to the one
presented above, with € appearing in place of J in all results.
In particular, the onset of secular instability is again given by
equation (6.12), and occurs at the bifurcation point. Physi-
cally, viscous forces (which conserve Jbut not €) can drive a
perturbed Maclaurin spheroid past the point of bifurcation to a
(lower energy) Jacobi ellipsoid, while gravitational radiation
reaction forces (which conserve € but not J) can drive it to a
Dedekind ellipsoid. These results are well established for the
incompressible case (see ST, § 7.3 and references therein).

6.3. Dynamical Instability

We now consider the stability of compressible Maclaurin
spheroids to perturbations which conserve M, J, and €. Ac-
cording to our discussion of § 2.4, we refer to this as dynamical
stability. We use the energy function E = E(p., A, \y; M, J,
%) of a general Riemann-S ellipsoid (§ 5.1) to evaluate the
determinant of condition (2.15) for a, = a,.

The only difference between the energy functions of Jacobi
and Riemann-S ellipsoids lies in the kinetic energy term. For
Riemann-S ellipsoids we can write 7 in the form (cf. egs.
[4.7]-[4.9] and [5.11])

_(J+ €)?

_ (J- %)’
T=T,+T = il h, + T

h_. (6.13)
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However, since

J+ € = x,M(a, — a,)* (2 + A), (6.14)
(cf. egs. [5.6] and [5.11]), while for Maclaurin spheroids a, =
a,, the perturbed configurations must have J + € = 0if Jand
%€ are both conserved. Thus we can write here

J2
T=T_=—h_
Ish ’

(6.15)
whereas T = (J2/21,)h for Jacobi ellipsoids (cf. eq. [4.9]), so
that the stability analysis proceeds exactly as in § 6.2 but with
2h_ replacing 4 in all expressions. In particular we find that the
second derivatives are given by expressions similar to expres-
sion (6.4), but we now have to use the values h_,, =1, h_,,, =
—Land h_, =1L

8 (12) 8

Once again the determinant can be factored into a product
of two expressions, leading to the two conditions (6.5) and
(6.8). As in § 6.2, with the first one, we recover the condition
(6.3) obtained in § 6.1 for the onset of secular instability to
axisymmetric perturbations. Therefore, this condition does in
fact give the onset of dynamical instability to “radial” collapse
as well.

Using the results of Appendix A and chapter 3 of Ch69 for
a, = a,, we find that the second condition (eq. [6.8]) leads to

T 4
m = ﬁ (j(lz) - j(u))
2 2a?B
=117 (94iBu +ald, - aid;) = —7H . (6.16)
With equation (6.11), this is equivalent to
~, 4By .. -
Q= T (dynamical instability) . (6.17)

This is the compressible analog of a well-known result for the
dynamical instability of classical Maclaurin spheroids (Ch69,
§33). When n = 0 (g, = 1), expression (6.17) reduces to
equation (5.58) of Ch69. This result confirms our interpreta-
tion of condition (2.15) in terms of a dynamical instability
when nonuniform rotation of the equilibrium model is al-
lowed (§ 2.4). The onset of instability occurs at the point
where e = 0.9529 and T/| W| = 0.2738, independent of 7 in
our approximation. This point was in fact identified by Rie-
mann ( 1860) for incompressible spheroids, using a variational
method very similar to ours (see Ch69, § 53, for a summary).

7. COMPRESSIBLE ROCHE ELLIPSOIDS

In this section we apply our energy variational method to the
classical Roche problem for a polytrope in circular orbit about
a point-mass companion. So far as we know, this is the first
time that the energy variational method has been applied to
determine the equilibrium and stability properties of a binary
stellar configuration. Except when noted, we adopt the nota-
tions and definitions of § 4.
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7.1. Equilibrium Conditions

Consider a binary system consisting of a polytrope of mass
M and central density p,, in circular orbit around a pointlike
companion of mass M’. The binary is assumed to be in a state
of synchronized rotation, with the spin of the polytrope
aligned and equal in magnitude to the orbital angular fre-
quency €. We denote the mass ratio by p = M/M’ and the
distances from the centers of mass of M and M’ to that of the
binary by r,, and r,,. The binary separation can then be writ-
ten as 7 = gy + rem = (1 +p)r,,. We denote by J the total
angular momentum of the binary. Under the combined effects
of centrifugal and tidal forces, the polytrope assumes a non-
spherical equilibrium configuration which we approximate by
a triaxial ellipsoid as described in § 2.2. We denote the princi-
pal axes of the outer surface by q,, a,, and a;, with a, measured
along the axis of the binary, a, in the direction of the orbital
motion, and a; along the rotation axis. _

The total energy of the system (not necessarily in equilib-
rium) can be written

E(po Ay A, M, M, ) =U+T+ W+ W,. (7.1)

Here W is the gravitational potential self-energy of the star,
whereas W, is the gravitational interaction energy of the bi-
nary. The expressions for the internal energy U and the poten-
tial energy W retain the same form they had for an isolated
rotating star (eqs. [3.1] and [4.6]). The kinetic energy T is
modified by the orbital motion,

J? 1
T=7='2_Icm92’ (72)

with
In= Mri + Mr2 +1

MrZ M5/3p—2/3
= + 4
L+p o 2ksh(A, A)°

(7.3)

where 7 is the moment of inertia of M about the polar axis
as (cf. egs. [4.8]-[4.10]). The general form of the gravita-
tional interaction energy W, for two ellipsoidal configura-
tions in a binary system is given in Appendix B. Here, since
M'is a point mass, we have I';; = 0, and equation (B7) gives

GMM' 1 GM'

Wi=- r 2

2Ly~ Iy = Iy), (74)

where the I ;; are given by equation (B8). There are now
four equilibrium conditions,

oEF OF oE oFE
o o o an 0 (7.5)

where the derivatives are evaluated at constant M, M’,
and J.

The first condition, dE/dr = T /dr + dW,/dr = 0, pro-
vides us with an equilibrium relation between Q2 and r, that

Vol. 88

is, the modified Kepler’s law for the binary. Using equations
(7.2)-(7.4) we find

_(L+p) aW, _ G(M+ M)
Mr  or ri

Q2 (1+9d), (7.6)

where we have defined

3 (2111 - Izz - 133)

655 Mr?
=i;c(2az—az—az)i (7.7)
10 n 1 2 3 r23 .

with k, given by equation (3.14). Note that the conven-
tional TV treatment of the Roche problem uses instead the
unmodified Kepler’s law, Q2 = Q% = G(M + M')/r3 (cf.
Ch69, eq. [8.5]). This is because Q2 is determined by the
requirement that certain terms linear in the coordinates dis-
appear from the fluid equation of motion, to lowest order
(Ch69, § 65). We refer the reader to Appendix C, however,
for a discussion of how the more accurate equation (7.6)
can actually be obtained within the TV approach.

As before, the equilibrium condition dE/dp, = 0 leads to
the virial relation. Using equations (7.1)-(7.4) we get

%U+W+2n=2m, (7.8)

where we have defined the spin kinetic energy,
T,=319%, (7.9)
and the tidal interaction energy,

MM’
msm+Gr.

(7.10)

Combining this with equations (7.1)-(7.4) we can calcu-
late the total equilibrium energy. We find

3—-n 3-2n\ T, Mr3Q?
Fa=3 ”{1_( ) ]+2u+p)

3—n ) |W|

GMM' (2n+ 3\ GM'
Sl C U B CTAR AR AR CAT

The first term in this expression represents the “intrinsic”
energy of the polytrope (cf. eq. [3.23]), the second term the
orbital kinetic energy, and the last two terms the gravita-
tional interaction energy. The total angular momentum of
the system in equilibrium is

Mr?
(1+p)

with Q calculated from equation (7.6). Note that [ = I}, +
I, (cf. egs. [4.8] and [B4]).

J=Lm9=[ +4Q, (7.12)
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Following manipulations similar to those described in
§ 4, the two equilibrium conditions dE/I\, = 3T /3N, +
W /AN, + dW,;/O\, = 0 = JE /I, can be written

1 1
_-/”22_5

o= (-1

*/”33)"'111(2#"'92)
+Iz ﬁ__l_QZ +13ﬁ
2 2 2 3 2’

=(l<2), (7.13)

where, following Ch69, we have introduced the compo-
nents of the potential-energy tensor (Ch69, § 10),

Ma?s, .
jlijs—27rG7)A,~( a,6u) (no summation), (7.14)

S—n
such that W = .#;, and the quantity

GM'
pepl (7.15)

=

which measures the strength of the tidal forces. Note that
the quantity in parentheses in expression (7.14) is equal to
I; (eq. [B4]) only in the incompressible limit, so that the
result (3.128) of Ch69 applies only when n = 0. Together
with the virial relation, equation (7.8), the two conditions
(7.13) can be rewritten in the symmetric form

M+ Iu(Q2 + 2u) = My, +Izz(92 —

U
=My — ply = T (7.16)

These are the compressible generalizations of equations
(8.9) of Ch69, but now, according to equation (7.6), we
have

Q2= (1+p)u(l+38), (7.17)

instead of Q% = Q% = (1 + p)u(Ch69, eq. [8.12]). The first
two conditions in equation (7.16) can also be written as

g {[2 + (1 + p)(1 + 0)]lai + a3}i

=2(A,a} — 4;a3) = 2(a} — a3)B,;, (7.18)
and
g, {[(1 +p)(1 +68) — 1]aj + a3}i

= 2(4,a; — Asa3) = 2(aj — a3)By, (7.19)

where we have defined & = u/(wGp) and introduced the
index symbols B,; and B,; (Ch69, § 21). Taking the ratio of
these two conditions, we get

[2+(1+p)(1+8)]al+a} (a}—ad)B;
[(1+p)(1+8)—1lai+ad (ai—ad)By’

(7.20)
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If we set 6 = 0, that is, neglect the correction to Kepler’s law,
this equation reduces to the same relation between the axis
ratios of incompressible Roche ellipsoids given by Ch69 (cf.
his eq. [8.16]). But since 6 # 0 in our treatment, simply
taking the ratio of equations (7.18) and (7.19) does not
yield a relation between the axis ratios, since § has an ex-
plicit dependence on r (cf. eq. [7.7]). Instead, we have to
properly eliminate r between equations (7.18) and (7.19),
after replacing 6 and n by their definitions. Since the result
is very cumbersome, and not useful in practice (cf. § 7.2),
we do not give it explicitly. It is worth noting, however, that
the relation between the axis ratios for compressible Roche
ellipsoids is not independent of 7 (in contrast to the result
obtained for all isolated configurations). But the explicit
dependence on compressibility is very weak. This can be
seen as follows. From equation (7.20) we see that 6 is
uniquely specified once the two axis ratios are known.
Therefore the dependence on compressibility in equations
(7.18)and (7.19)is through the product g, u only. But since
6 oc k,/r? we have q,i oc k,(1 —n/5)/r* oc (1 —n/5)/
k172, where all constants of proportionality are functions of
the axis ratios only. Using the values listed in Table 1, we
find that the quantity (1 — n/5)/«L/? varies only between
09and 1.0for0 <n<3.

7.2. Constructing Equilibrium Sequences

For given masses M and M’, we construct a one-parameter
sequence of equilibrium configurations, parameterized by the
binary separation r or the angular momentum J, as follows.
We choose a value for the ratio r/a, and solve equations (7.18)
and (7.19) for the two axis ratios a,/a, and a,/a, . This is done
by iteration, starting with the values given in Ché69 (for n = 0
and 6 = 0) as initial guesses, and using a multidimensional
Newton-Raphson scheme. The quantities Q, f(A;, A,), and
T,/| W] are then determined using equations (7.17), (4.3),
(7.9) and (4.6). The angular momentum J and total energy
E,, are obtained from equations (7.12) and (7.11). As before,
we will give numerical values in units scaled to the spherical
polytrope of radius R, (eq. [3.24]). One can convert from
units based on R, to units based on the mean radius R =
(a,a,a;)'"? by using the relation

_ T, 5—n —n/Gmm
r= il f0nw(1-2 55 ) - ()|

(7.21)

which can be derived easily from the results of § 7.1. Here we
have defined

2 R

=T QI - L) =355 (1.22)

Universal variables (cf. § 3.2) cannot be defined here be-
cause of the explicit dependence of § on the polytropic index
(The limiting case p = 0 is an exception and is discussed in
§ 8.3). Therefore, equilibrium sequences must be calculated
separately and explicitly for each #n. Representative results are
given in Table 6 for p = 1 and 0.1, and n= 0, 1, 1.5, and 2.5.
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TABLE 6
COMPRESSIBLE ROCHE SEQUENCES?*
rp*Jay® rp*/R, azfar  asfar  T,[|W| Q J E R/R,
p=1 n=0

5.0 5.131 0.9707 0.9533 0.506(-2) 0.1406 1.653 -0.6943 1.
4.0 4.202 0.9441 09139 0.943(-2) 0.1901 1.522 -0.7128 1.
3.0 3.348 0.8750 0.8222 0.199(-1) 0.2690 1.408 -0.7349 1.
2.7 3.124 0.8345 0.7738 0.257(-1) 0.3000 1.386 -0.7404 1.
2.5 2.989 0.7981 0.7330 0.306(-1) 0.3222 1.377 -0.7427 1.
2.380* 2.916 0.7715 0.7044 0.341(-1) 0.3358 1.375 -0.7432 1.
2.2 2.821 0.7236 0.6553 0.401(-1) 0.3556 1.380 -0.7418 1.
2.112** 2.783 0.6960 0.6281 0.436(-1) 0.3648 1.386 -0.7399 1.
2.0 2.744 0.6561 0.5901 0.484(-1) 0.3753 1.399 -0.7358 1.
1.801*** 2.713 0.5708 0.5123 0.588(-1) 0.3886 1.441 -0.7218 1.
1.697 2.724 0.5184 0.4664 0.653(-1) 0.3908 1.477 -0.7097 1.
1.6 2.759 0.4644 0.4198 0.724(-1) 0.3884 1.524 -0.6939 1.
1.5 2.831 0.4040 0.3682 0.810(-1) 0.3798 1.590 -0.6717 1.
1.0 5.312 0.0823 0.0811 0.167 0.1685 2.888 -0.3772 1.

=1 n=1
5.0 5.083 0.9845 0.9748 0.271(-2) 0.1425 1.628 -0.5963 1.0028
4.0 4.129 0.9701 0.9524 0.516(-2) 0.1948 1.484 -0.6170 1.0055
3.0 3.228 0.9314 0.8960 0.114(-1) 0.2826 1.344 -0.6453 1.0131
2.5 2.826 0.8860 0.8359 0.183(-1) 0.3465 1.288 -0.6605 1.0228
2.2 2.619 0.8393 0.7794 0.250(-1) 0.3905 1.267 -0.6671 1.0336
2.047* 2.531 0.8063 0.7420 0.295(-1) 0.4131 1.264 -0.6683 1.0418
1.9 2.462 0.7664 0.6991 0.347(-1) 0.4332 1.268 -0.6668 1.0524
1.760** 2.417 0.7189 0.6506 0.407(-1) 0.4490 1.281 -0.6617 1.0661
1.7 2.406 0.6954 0.6275 0.436(-1) 0.4540 1.290 -0.6580 1.0734
1.632%** 2.401 0.6656 0.5990 0.473(-1) 0.4579 1.305 -0.6522 1.0831
1.3 2.587 0.4723 0.4265 0.714(-1) 0.4272 1.472 -0.5873 1.1665
1.0 3.750 0.2327 0.2200 0.113 0.2634 2.046 -0.4185 1.3925

p=1 n=15
5.0 5.067 0.9894 0.9825 0.187(-2) 0.1432 1.618 -0.5256 1.0038
4.0 4.104 0.9794 09667 0.359(-2) 0.1965 1.469 -0.5472 1.0075
3.0 3.185 0.9522 0.9256 0.812(-2) 0.2879 1.319 -0.5780 1.0180
2.5 2.767 0.9197 0.8799 0.133(-1) 0.3565 1.253 -0.5964 1.0313
2.2 2.545 0.8855 0.8353 0.184(-1) 0.4054 1.223 -0.6062 1.0463
2.0 2.420 0.8519 0.7942 0.232(-1) 0.4392 1.212 -0.6104 1.0621
1.902* 2.367 0.8309 0.7697 0.262(-1) 0.4551 1.210 -0.6110 1.0725
1.7 2.290 0.7749 0.7080 0.336(-1) 0.4824 1.219 -0.6072 1.1027
1.592%* 2.272 0.7357 0.6674 0.386(-1) 0.4913 1.235 -0.6007 1.1260
1.564%** 2.271 0.7243 0.6559 0.401(-1) 0.4926 1.240 -0.5983 1.1331
1.3 2.388 0.5848 0.5248 0.571(-1) 0.4696 1.347 -0.5533 1.2388
1.0 3.303 0.3447 0.3175 0.906(-1) 0.3069 1.782 -0.4086 1.5798

p=1 n=25
5.0 5.056 0.9958 0.9931 0.740(-3) 0.1436 1.604 -0.2980 1.0075
4.0 4.088 0.9919 0.9866 0.143(-2) 0.1976 1.450 -0.3206 1.0147
3.0 3.159 0.9809 0.9691 0.333(-2) 0.2910 1.288 -0.3542 1.0352
2.5 2.732 0.9674 0.9481 0.562(-2) 0.3620 1.211 -0.3759 1.0617
2.0 2.375 0.9378 0.9050 0.104(-1) 0.4474 1.151 -0.3967 1.1245
1.9 2.321 0.9281 0.8914 0.120(-1) 0.4636 1.144 -0.3993 1.1468
1.763* 2.263 0.9112 0.8685 0.146(-1) 0.4825 1.140 -0.4009 1.1873
1.7 2.244 0.9018 0.8561 0.160(-1) 0.4889 1.141 -0.4005 1.2110
1.582%%* 2.229 0.8804 0.8289 0.192(-1) 0.4951 1.150 -0.3969 1.2681
1.294** 2.390 0.7966 0.7312 0.308(-1) 0.4510 1.238 -0.3605 1.5433
1.0 3.567 0.6268 0.5627 0.521(-1) 0.2552 1.625 -0.2455 2.5203
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TABLE 6—Continued

fpl/:’/al b rp1/3/Ro 02/81 13/61 T,/IWI Q J E R/Ro
p=01 n=0

5.0 5.116 0.9711 0.9615 0.279(-2) 0.1047 10.048 -1.0519 1.

4.0 4.177 0.9454 0.9286 0.520(-2) 0.1419 9.100 -1.1520 1.
3.0 3.302 0.8812 0.8514 0.110(-1) 0.2022 8.131 -1.2943 1.

2.5 2.916 0.8129 0.7751 0.169(-1) 0.2441 7.682 -1.3808 1.

2.0 2.609 0.6923 0.6510 0.268(-1) 0.2900 7.337 -1.4599 1.

1.8 2.527 0.6211 0.5821 0.326(-1) 0.3053 7.268 -1.4777 1.
1.714* 2.503 0.5855 0.5484 0.355(-1) 0.3103 7260 -1.4799 1.
1.670%* 2.495 0.5661 0.5302 0.371(-1) 0.3122 7.262 -1.4793 1.

1.6 2.488 0.5328 0.4993 0.399(-1) 0.3143 7.277 -1.4752 1.
1.576%** 2.487 0.5209 0.4883 0.409(-1) 0.3147 7.286 -1.4727 1.

13 2.591 0.3651 0.3461 0.557(-1) 0.3000 7.591 -1.3911 1.

1.0 3.315 0.1677 0.1637 0.843(-1) 0.2129 8.965 -1.0883 1.

p=01 n=1
5.0 5.069 0.9846 0.9793 0.149(-2) 0.1061 9.989 -0.9567 1.0016
4.0 4.107 0.9705 0.9607 0.284(-2) 0.1455 9.004 -1.0628 1.0031
3.0 3.187 0.9335 0.9137 0.631(-2) 0.2130 7.957 -1.2226 1.0076
2.5 2.765 0.8913 0.8630 0.101(-1) 0.2637 7.437 -1.3295 1.0135
2.0 2.404 0.8098 0.7718 0.172(-1) 0.3262 6.977 -1.4461 1.0277
1.8 2.292 0.7575 0.7167 0.215(-1) 0.3510 6.842 -1.4859 1.0389
1.6 2.215 0.6879 0.6466 0.272(-1) 0.3708 6.765 -1.5098 1.0567
1.539* 2.201 0.6625 0.6218 0.292(-1) 0.3747 6.759 -1.5115 1.0641
1.460%* 2.193 0.6262 0.5869 0.322(-1) 0.3775 6.770 -1.5081 1.0758
1.451%%* 2.193 0.6215 0.5824 0.326(-1) 0.3776 6.773 -1.5071 1.0774
13 2.224 0.5395 0.5054 0.393(-1) 0.3716 6.878 -1.4728 1.1096
1.0 2.676 0.3277 0.3121 0.599(-1) 0.2869 7.767 -1.2201 1.2515
p=01 n=15
5.0 5.053 0.9894 0.9857 0.103(-2) 0.1066 9.967 -0.8870 1.0021
4.0 4.082 0.9796 0.9726 0.198(-2) 0.1468 8.969 -0.9953 1.0042
3.0 3.145 0.9532 0.9385 0.448(-2) 0.2172 7.892 -1.1621 1.0102
2.5 2.708 0.9224 0.9002 0.733(-2) 0.2720 7.342 -1.2780 1.0182
2.0 2.323 0.8604 0.8276 0.128(-1) 0.3428 6.833 -1.4126 1.0373
1.8 2.198 0.8190 0.7818 0.164(-1) 0.3730 6.668 -1.4638 1.0525
1.6 2.104 0.7620 0.7214 0.212(-1) 0.3992 6.553 -1.5020 1.0771
1.464* 2.068 0.7112 0.6697 0.253(-1) 0.4105 6.524 -1.5120 1.1032
1.397*** 2.063 0.6817 0.6405 0.277(-1) 0.4127 6.533 -1.5089 1.1203
1.358%* 2.065 0.6633 0.6226 0.292(-1) 0.4125 6.547 -1.5039 1.1319
1.2 2.126 0.5748 0.5383 0.364(-1) 0.3968 6.701 -1.4498 1.1984
1.0 2.443 0.4303 0.4054 0.491(-1) 0.3257 7.308 -1.2604 1.3652
p=01 n=25

5.0 5.037 0.9958 0.9943 0.407(-3) 0.1071 9.943 -0.6602 1.0041
4.0 4.058 0.9919 0.9890 0.789(-3) 0.1481 8.930 -0.7709 1.0081
3.0 3.105 0.9811 0.9745 0.183(-2) 0.2214 7.821 -0.9452 1.0196
2.5 2.653 0.9678 0.9572 0.310(-2) 0.2803 7.239 -1.0708 1.0345
2.0 2.246 0.9395 0.9212 0.576(-2) 0.3600 6.678 -1.2253 1.0703
1.8 2.111 0.9192 0.8963 0.762(-2) 0.3954 6.484 -1.2886 1.0992
1.6 2.006 0.8894 0.8608 0.103(-1) 0.4268 6.337 -1.3409 1.1472
1.428* 1.961 0.8519 0.8180 0.136(-1) 0.4420 6.284 -1.3607 1.2182
1.398%** 1.960 0.8440 0.8092 0.143(-1) 0.4426 6.286 -1.3600 1.2347
1.194** 2.043 0.7731  0.7329 0.203(-1) 0.4170 6.455 -1.2972 1.4156
1.0 2.449 0.6681 0.6273 0.288(-1) 0.3193 7.132 -1.0828 1.8326

2 p= M/M",Q,J,and E are defined in eq. (3.26); R, is given by eq. (3.24); T, and W are the
spin kinetic energy and the self-gravitational energy of the ellipsoid.

® One asterisk marks the secular instability limit, two the dynamical instability limit, and
three the Roche limit.
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Each line in the table corresponds to a given value of the quan-
tity rp'/3/a,. This quantity varies monotonically along each
sequence, and remains well behaved as p — 0 (see § 8.3). The
tabulations are terminated when rp'/3/q, = 1.

Note that, because we use a more accurate rotation law,
equation (7.17), our numerical results for » = 0 differ from
those given in Ch69 (see his Table XVI). The differences are
largest when the separation r is smallest. For the sequence with
n = 0and p = 1, the maximum difference along the sequence is
about 10% for both the axis ratios and Q. Thus the improve-
ment resulting from our use of equation (7.17) can be quite
significant. As a check on our numerical procedure, we have
also calculated the results for n = 1 when setting 6 = 0 every-
where and have verified that the r.ambers listed in Table X VI
of Ch69 are then recovered.

Several important features of the results are immediately
apparent in Table 6. For a given separation r/R,, the more
incompressible stars (with smaller #) have a larger deforma-
tion. Clearly, this is because a more compressible star is also
more centrally concentrated, and therefore less affected by ti-
dal forces. Rotation always remains a small perturbation here,
as can be seen from the small values of the ratio 7,/| W|.
Along all equilibrium sequences, there exists a point ( marked
by a triple asterisk in Table 6) where the binary separation r
reaches a minimum.!® We identify this point with the Roche
limit of the system, and we denote the minimum value of r by
Nim - NO equilibrium configuration can exist with r < ry,,, . More-
over, we will show in § 9 that all configurations located beyond
the Roche limit (along the branch where r increases as the
deformation increases) are unstable. In Ch69 (§ 56), it is
stated that the Roche limit corresponds precisely to the point
along the sequence where Q2 reaches a maximum. This is only
because the TV treatment of Ch69 uses the Keplerian value
Q%= Q% = G(M+ M'")/r3, which obviously is maximum when
r is minimum. However, because of the deviations from
Kepler’s law in close binaries, the true Q2 reaches its maximum
slightly beyond the Roche limit (at a smaller value of r/a,).
For the sequence with p = 1 and n = 0 in Table 6, we have
included enough entries near the Roche limit to make this
result clearly apparent. The Roche limit is at r,,,/a; = 1.801
and 7,/ R, = 2.713, whereas Q 2 reaches its maximum value,
Q2.,.=0.1527,atr/a, = 1.697 and r/ R, = 2.724. By compari-
son, Table X VIII of Ch69 gives © 2,,, = 0.1413, with the maxi-
mum occurring at the Roche limit. From the other values
listed in that table, we calculate that r;,,/a, = 1.710 and r,,/
R, = 2.662.

To better illustrate some of our results, we have plotted
curves of E, J, and 22 as a function of binary separation r
along equilibrium sequences corresponding to p = 1 (Fig. 10)
and p=0.1(Fig. 11), and for polytropes withn =0, 1, 1.5, and
2.5. For convenience, we have subtracted the quantity E_ =
—[(3—n)/(5 —n)]GM?*/R,, equal to E when r > oo (cf. eq.
[7.11]). For Q2 the fractional deviation from Q% is shown.

19 Note that, to determine this minimum correctly, it is important to
measure 7 in a unit that remains constant along the sequence, as we have
done here by calculating the ratio r/R,. Other ratios, such as r/a, or
r/(aa,a;)"* do not, in general, reach a minimum at the same point, and
may even never reach a minimum at any point along the sequence.
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The Roche limit is clearly apparent in these plots, as the point
where r reaches a minimum, and where the curves of E(r) and
J(r) have infinite slope.

Most importantly, we note in Figures 10 and 11 that, before
reaching the Roche limit, all sequences must pass through a
point where both E and J are minimum. We will see in § 10 that
the existence of this minimum is neither a peculiarity of the
Roche model, nor an artifact of our (approximate) ellipsoidal
method. Indeed, this important feature is also exhibited in de-
tailed numerical models of more realistic binary systems (see
§ 10.3). As was shown in § 2.3, the existence of such a turning
point along an equilibrium sequence indicates the onset of
instability, and we will return to this interpretation in great
detail when discussing the stability properties of Roche bina-
ries in § 9. For now, we merely wish to emphasize that the
points where the equilibrium E(7) and J(r) curves have either
infinite or zero slope coincide. This is in agreement with the
general result that, for uniformly rotating configurations, dE =
QdJ all along an equilibrium sequence (see Ostriker & Gunn
1969 and Appendix D). As a check on our numerical proce-
dure, we have verified that this result holds to high numerical
accuracy not only at the Roche limit and at the minimum of E
and J, but also at various points all along the sequences that we
have calculated. In contrast, one can show that the numerical
results presented in Ch69 (§ 56) fail to satisfy dE = QdJ, and
this inconsistency can again be traced to the use of the unmodi-
fied Kepler’s law (Ch69, eq. [8.5]). As shown in Figures 10
and 11, the deviation of Q2 from the Keplerian value can be
large for small binary separation: as much as 13% near the
Roche limit of the sequence with p = 1 and n = 0 (one of the
cases studied in Ch69). Figure 12 illustrates the variation of
the axis ratios a,/a, and a;/a, along the compressible Roche
sequences. Each curve terminates at the Roche limit. Also
shown in Figure 12 are the curves obtained by setting 6 = 0 in
the equilibrium structure equations, reproducing the results of
Ché69.

In the astrophysically important limit where the mass ratio
p —> 0, the equilibrium Roche solutions exhibit an interesting
behavior which can be studied analytically. We defer our dis-
cussion of these limiting solutions until § 8.3, when the p = 0
limit of the more general Roche-Riemann solutions is ex-
plored. Note that the p — oo limit is unphysical for the Roche
problem. Indeed, as M’ — 0, the orbiting companion becomes
a test mass, and the assumption of synchronized rotation can
no longer be valid.

8. COMPRESSIBLE ROCHE-RIEMANN ELLIPSOIDS

In this section we consider a generalization of the Roche
problem to the case where the assumption of synchronized
rotation is relaxed. Specifically, we use our energy variational
method to construct the compressible analogues of the incom-
pressible “Roche-Riemann” ellipsoids of type S first explored
by Aizenman (1968).

8.1. Equilibrium Conditions

The equilibrium problem considered here is an adaptation
of the Roche problem to Riemann-S ellipsoids. As in the
Roche problem, the polytrope is in a circular orbit about a
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FiG. 10.—Equilibrium curves of total energy, total angular momen-
tum, and orbital angular frequency as a function of binary separation
along the compressible Roche sequences with p = M/M' = 1and n = 0
(solid lines), n = 1 (dotted lines), n = 1.5 (short-dashed lines),and n = 2.5
(long-dashed lines). The units for E and J are defined as before in eq.
(3.26). The quantity E_ = —(3 — n)/(5 — n) has been subtracted from FE
for convenience. For Q, the fractional deviation 802 = (Q2 — %)/ Q% from
the Keplerian value Q% = G(M + M')/r*is shown. The binary separation r
is given in units of the radius R, of a spherical polytrope with the same
mass and entropy (eq. [3.24]). For comparison, we also show the results
obtained by Ch69 using the TV method for n = 0 (dotted-dashed lines for
E and J; recall that 622 = 0 in Ch69).

point-mass companion, and its equilibrium figure is rotating at
the orbital angular frequency Q. However, the fluid itselfis not,
in general, corotating with the binary. Instead, as in the Rie-
mann-S case, internal fluid motions are allowed that have uni-
form vorticity {e,, parallel to Q. The notations and conven-
tions in this section are identical to those introduced in §§ 5
and 7.

It is straightforward to write the total energy E(p,, A, Ay, 7;
M, M, J, €)=U+ T+ W+ W, for Roche-Riemann configu-
rations. The expressions for U, W, and W, are identical to
those used for the Roche problem (egs. [3.1], [4.6], and
[7.4]). The total kinetic energy of the binary can be written
(cf. eqgs. [5.6], [5.11], and [7.2]-[7.3])

T= %I(A2 +Q?) — % K, Ma,a,AQ + %Mrﬁmﬂz(l + p)
Mr?Q?
= -0 '1
T++T_+2(l+p)’ (8.1)

o

FiG. 11.—Equilibrium curves of total energy, total angular momen-
tum, and orbital angular frequency as a function of binary separation
along compressible Roche sequences with p = M /M’ = 0.1. Conventions
are as in Fig. 10 (but the results of Ch69 are not shown).

0.8
a,/a, L

06—

0.8
a,/a, L

0.6 —

Fi1G. 12.—Variation of the axis ratios along the same compressible
Roche sequences as shown in Fig. 10. Conventions are as in Fig. 10.
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where

1
K M(a; F a,)2(Q + A)?

T*‘zo
1 Mr3Q 1?2 s/3 23
=gkl Jx € — s | M (82)

The quantities A, €, and A, were defined in § 5 (egs. [5.3],
[5.10], and [5.12]).

The equilibrium conditions are the same as in the Roche
problem (eq. [7.5]), but holding M, M’, J, and € constant.
From the condition dE/dp. = 0 we find expressions for the
virial relation and the total equilibrium energy identical to
those of § 7 (egs. [7.8] and [7.11]) but with the “spin” kinetic
energy (i.e., the kinetic energy of the star excluding its center-
of-mass motion) now defined by T, = T, + T_. The total
angular momentum of the binary is (cf. egs. [5.5] and [7.12])

J= {(lﬁﬁrp) + I]Q - % k,Ma,a,A
Mr? 1,1
=[(1+p)+1+2 1 ”fR] (8.3)

with f; defined as before by equation (5.9). As in § 7, the
equilibrium condition dE/dr = 0 gives the modified Kepler’s
law for the binary, equation (7.6) (or [7.17]). Note that in the
TV treatment of the problem (Aizenman 1968), the unmodi-
fied Kepler’s law Q2 = Q% = (1 + p)pu is used instead.

Following the notations of § 7, the two equilibrium condi-
tions dE /N, = OE/ I\, = 0 together with the virial relation can
be written in the form (cf. eq. [7.16])

Jtu + ]11(92 + 2u + 2QQ2) + IzzQ%
=My + 122(92 —r—2Q0)) + IuQ%
=My — ply
U

=—-—, | (8.4)
n

with Q, and Q, defined as in § 5 (cf. eq. [5.2]). These equa-
tions are the compressible generalizations of those given by
Aizenman'! (1968; cf. his egs. [46]-[48]), only now Q? is again
given by equation (7.17). As in the case of the Roche problem,
the conditions (8.4), together with the definition of .#; (eq.
[7.14]), can be combined to give

@+ ag]

| DG+ [24 e p1 4 0+ 208
I

=2(a} —a3)By;, (8.5)

and
2,2 Q
i ZE [ e - - 2080+ )
n
= 2(61% - a%)Bz:; ’ (8.6)

"' Note that the quantities O, and Q, are called Q,, and Q,, in Aizen-
man (1968).
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where, as before, i = u/(wGp). Taking the ratio of these last
two expressions we get an equation for the principal axes,

Ota3 + {[2+ (1 + p)(1 + 8)]u + 20,2} a? + pa3
Qzai + {[(1 + p)(1 +8) — 1]u — 20,Q} a3 + pa3
_ (ai —a3)B;;
(a5 —a3)By

(8.7)

Equation (8.7) reduces to equation (50) of Aizenman (1968)
when n = 0 and 6 = 0. It also reduces to the equation determin-
ing the axis ratios of Roche ellipsoids, equation (7.20), when
0, =0, = ¢ =0, as expected.

8.2. Constructing Equilibrium Sequences

The procedure for constructing Roche-Riemann sequences
is very similar to that described for Roche binaries (cf. § 7.2).
Here, for given f; and r/q,, the axis ratios are obtained by
solving equations (8.5) and (8.6) by iteration. The quantity A
is calculated from Q (eq. [7.17]) as A = — fgQa,a,/(a? + a?).
The “spin” kinetic energy 7T, is obtained from equation (8.2),
the total angular momentum J from equation (8.3), and the
circulation ¥ from equation (5.10). Expression (7.21) for R/
R, still applies. The Roche sequences considered in § 7 are a
particular case of the more general Roche-Riemann se-
quences, corresponding to A = fz = 0. Also of astrophysical
interest are the irrotational Roche-Riemann sequences (see,
e.g., Kochanek 1992b), for which € = 0 and f; = —2. In Table
7 we present selected results for these irrotational Roche-Rie-
mann sequences when p = 1 and 0.1, and forn =0, 1, 1.5, and
2.5. The Roche-Riemann limit along each sequence, where the
binary separation r is minimum, is indicated by a double aster-
isk. Note that, just like the irrotational Riemann-S ellipsoids,
all irrotational Roche-Riemann ellipsoids have a, > a; > a,
while Roche ellipsoids have a, > a, > as.

The results for p = 1 are illustrated in Figure 13, where we
show curves of E, J, and Q2 as a function of r along the irrota-
tional Roche-Riemann sequences for #» = 0 and 1. The corre-
sponding curves for the Roche sequences (with fr = 0) are also
shown for comparison. The Roche-Riemann limit is clearly
identified as the point where both E(r) and J(r) have infinite
slopes, and where r reaches a minimum. Similarly, the stability
limit corresponds to the point where E(r) and J(r) have zero
slope and where E and J simultaneously reach a minimum
(see § 9 for a more detailed discussion of stability). Note that,
for a given separation, the irrotational Roche-Riemann config-
urations have lower energy and angular momentum than the
corresponding Roche configurations. This is because the fluid
in a Roche-Riemann ellipsoid with € = 0 rotates far slower
than is necessary to maintain synchronization.

8.3. The Limiting Solutions for p = 0 and p - oo

Our equilibrium Roche-Riemann solutions become particu-
larly simple in the p = 0 and p = oo limits. The p = 0 limit is
of great astrophysical interest, since it corresponds to the case
of a star in orbit around a much more massive pointlike object,
such as a massive black hole. We show below that, in this limit,
the compressible Roche-Riemann sequences satisfy scaling
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relations such that we can again construct a “universal” se-
quence, independent of n, as we have done in §§ 3-5.

In the p — 0 limit, we expect the binary separation to grow
according to r oc p’” 3 > oo if  is to remain finite in the
equilibrium structure equations (see below ). Therefore we can
set & = 0 in all the results of § 8.1. In particular, we now have
Q2 = Q% = u, and equations (8.5) and (8.6) become

qn#[szRaz +(3+ 2Q2fR)a% +a3]= 2(ai — a3)Bys,

qnﬁ[QAgfﬁaf - ZQlfRa% +aj]l= 2(a3 - a3)B,;,
(8.8)

where 0, = —a?/(a?+ a2) and Q, = a3/(a3 + a3). Clearly, in
the p — 0 limit, the polytropic index # and the mass ratio p
enter the equations only through the quantity g, 4. For a given
value of g,ii = ¢,9Q2, the two axis ratios a,/a, and a,/a, are
uniquely determined. Since Q2 oc p~'(R/r)?, it is natural to
rescale the binary separation according to

Fe= r(qﬁ)”3 . (8.9)

For a given value of 7/q,, or /R, the universal variables Q2
W, and R defined in equation (3.27), as well as the axis ratios
and T,/| W|, are all determined independent of n. For Q2 =
4,9 and W, this is immediately apparent. For R, we first use
equation (7.21) to write

_ -1
- [f(xl, xz)(l -2 ) - (531,”)&] . (8.10)

and then notice that the quantity

S—n
( 3p )g‘
is independent of # for given 7/R.

The universal Roche and irrotational Roche-Riemann se-
quences in the p — 0 limit are given in Tables 8 and 9. These
tables apply to all polytropic indices. Other equilibrium quan-
tities can be calculated easily for any # using these tables and
the results of §§ 7.1 and 8.1. Note, however, that no universal
Roche limit can be defined. This is because the Roche limit
corresponds to the point where r/ R, (rather than r/ R) reaches
a minignu(r3n. ;l“herefore, it depends explicitly on » through R/
Ry = R"G™m

As noted above, in the p = 0 limit, Q is simply given by
Kepler’s law, and our results for # = 0 should be directly com-
parable to those of Ch69 or Aizenman (1968). For the Roche
limit, when p — 0 we find #,,/R = 2.455p'/3, Q@ — 0.3002,
a,/a; = 0.5114, and a;/a, — 0.4826. This agrees with the
tesult of Ch69 (see his Table X VIII) to within our numerical
accuracy, and is also very close to the result quoted in Aizen-
man (1968). For the irrotational Roche-Riemann limit we
find ryp, /R = 2.502p713, @ - 0.2917, a,/a, — 0.4819, and
as/a, = 0.5214. Note that this irrotational Roche-Riemann

Sq,,R3 oI
3 pr® «k,MR?

(8.11)
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limit is different from the type-S, Roche-Riemann limit '? stud-
ied by Aizenman (1968), which is defined in terms of the
absolute minimum binary separation (or maximum of Q =
Qg ) for all type-S Roche-Riemann binaries (i.e., forall fz ). For
this absolute Roche-Riemann limit, which we denote by r,,, we
find r,/R = 2.438p73(r,/a, = 1.548p71/3), @ - 0.3034,
a,/a; — 0.5065, and a;/a, = 0.5060, with the absolute mini-
mum occurring for the sequence with fz ~ —0.66. This also
corresponds to the minimum binary separation along an equi-
librium sequence with constant €/(GM>R)'? ~ —0.088.
These results are in very good agreement with those obtained
by Aizenman (1968).

The p — oo limit is less astrophysically relevant, since, in
this limit, the point-mass companion becomes a test particle.
For the Roche problem, as already noted in § 7.2, this limit is
unphysical because the assumption of synchronized rotation
must break down. In fact, as shown by Ch69, the Roche se-
quence tends to the combined Maclaurin-Jacobi sequence
when p - oo0. Similarly, the Roche-Riemann sequence tends
to the Riemann-S sequence in this limit (see Aizenman 1968).

9. STABILITY OF BINARY CONFIGURATIONS

In this section we study the stability properties of compress-
ible Roche and Roche-Riemann binaries, using the formalism
developed in § 2. We found in §§ 7 and 8 that the equilibrium
energy curves E,(r) exhibit a minimum along all Roche and
Roche-Riemann sequences. This minimum always occurs be-
fore the Roche limit (minimum binary separation ) is reached
and coincides with the minimum in the equilibrium J(r)
curve. According to our general turning-point condition (cf.
eq. [2.20]), such a minimum should correspond to the onset
of instability along the sequence. The existence of this instabil-
ity can have a profound effect on the evolution of a binary
system undergoing secular decay via some dissipative mecha-
nism such as the emission of gravitational radiation. The astro-
physical implications are presently being explored for the par-
ticular cases of coalescing neutron-star binaries (Lai, Rasio, &
Shapiro 1993a) and the formation of blue stragglers in globular
clusters (Rasio 1993). Here we evaluate the determinant ap-
pearing in equation (2.15), to confirm the onset of an instabil-
ity at the minimum of E,.(r), and to further elucidate its na-
ture. As demonstrated in § 6 for single star configurations, both
secular and dynamical instabilities can be identified with our
method.

9.1. Secular Instability of Roche Binaries

The energy function for the Roche problem was given in
§ 7.1. Here, for convenience when taking derivatives, we
rewrite the kinetic and gravitational interaction terms as

MriQ 1? 1 Mr3Q?
T=T.+Ty=5; [J—(H_p)]h RIETE
GMM' 1 GM's1
W;,=- PR S 9.1)

12 Also quoted as the “stationary” Roche-Riemann limit by Luminet &
Carter (1986).
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TABLE 7
COMPRESSIBLE ROCHE-RIEMANN SEQUENCES WITH € = 0*
rp*3lay® rp'®/R, a2far  azfar T.[|W] Q J E R/R,
p=1 n=0
5.0 5.103 0.9693 0.9705 0.492(-5) 0.1418 1.599 -0.6979 1.
4.0 4.165 0.9391 0.9431 0.372(-4) 0.1925 1.446 -0.7197 1.
3.5 3.722 0.9080 0.9161 0.125(-3) 0.2284 1.370 -0.7334 1.
3.0 3.315 0.8522 0.8696 0.495(-3) 0.2729 1.301 -0.7484 1.
2.7 3.104 0.7976 0.8253 0.123(-2) 0.3028 1.269 -0.7565 1.
2.5 2.985 0.7483 0.7852 0.232(-2) 0.3229 1.255 -0.7601 1.
2.361* 2.916 0.7068 0.7510 0.363(-2) 0.3362 1.252 -0.7610 1.
2.2 2.853 0.6513 0.7041 0.608(-2) 0.3500 1.257 -0.7594 1.
2.0 : 2.806 0.5716 0.6331 0.114(-1) 0.3635 1.282 -0.7517 1.
1.893** 2.799 0.5248 0.5889 0.158(-1) 0.3683 1.307 -0.7439 1.
1.5 2.950 0.3375 0.3896 0.478(-1) 0.3576 1.517 -0.6773 1.
1.0 5.362 0.0790 0.0822 0.162 0.1662 2.881 -0.3767 1.
p=1 n=1
5.0 5.053 0.9841 0.9844 0.695(-6) 0.1438 1.590 -0.5989 1.0001
4.0 4.085 0.9687 0.9698 0.524(-5) 0.1979 1.430 -0.6223 1.0002
3.0 3.159 0.9241 0.9299 0.711(-4) 0.2917 1.261 -0.6575 1.0012
2.5 2.745 0.8667 0.8816 0.367(-3) 0.3618 1.182 -0.6798 1.0036
2.2 2.536 0.8042 0.8307 0.112(-2) 0.4097 1.146 -0.6918 1.0078
2.1 2.479 0.7761 0.8079 0.165(-2) 0.4253 1.138 -0.6945 1.0103
1.958* 2.412 0.7283 0.7689 0.290(-2) 0.4456 1.134 -0.6962 1.0155
1.9 2.391 0.7061 0.7504 0.366(-2) 0.4528 1.135 -0.6959 1.0184
1.8 2.365 0.6638 0.7148 0.545(-2) 0.4630 1.141 -0.6933 1.0248
1.693** 2.355 0.6134 0.6709 0.831(-2) 0.4697 1.157 -0.6869 1.0345
1.5 2.398 0.5110 0.5755 0.173(-1) 0.4658 1.219 -0.6617 1.0633
1.0 3.766 0.2039 0.2288 0.932(-1) 0.2619 1.979 -0.4251 1.3557
p=1 n=15
5.0 5.036 0.9892 0.9893 0.222(-6) 0.1445 1.587 -0.5278 1.0001
4.0 4.058 0.9787 0.9793 0.167(-5) 0.1999 1.425 -0.5517 1.0002
3.0 3.108 0.9486 0.9515 0.226(-4) 0.2986 1.249 -0.5891 1.0011
2.5 2.664 0.9097 0.9175 0.118(-3) 0.3770 1.159 -0.6150 1.0034
2.2 2.425 0.8660 0.8810 0.372(-3) 0.4356 1.111 -0.6320 1.0073
2.0 2.289 0.8213 0.8445 0.858(-3) 0.4771 1.086 -0.6420 1.0130
1.9 2.232 0.7922 0.8209 0.133(-2) 0.4970 1.077 -0.6456 1.0177
1.767* 2.173 0.7451 0.7826 0.241(-2) 0.5203 1.072 -0.6477 1.0272
1.7 2.152 0.7173  0.7597 0.326(-2) 0.5295 1.074 -0.6470 1.0340
1.582%* 2.137 0.6612 0.7126 0.558(-2) 0.5395 1.086 -0.6415 1.0512
1.3 2.272 0.4966 0.5613 0.190(-1) 0.5069 1.196 -0.5911 1.1419
1.0 3.204 0.2906 0.3343 0.611(-1) 0.3217 1.656 -0.4283 1.4728
p=1 n=25
5.0 5.014 0.9958 0.9958 0.131(-7) 0.1454 1.583 -0.2997 1.0000
4.0 4.023 0.9918 0.9918 0.983(-7) 0.2024 1.418 -0.3243 1.0001
3.0 3.042 0.9803 0.9808 0.132(-5) 0.3079 1.234 -0.3643 1.0008
2.5 2.564 0.9657 0.9670 0.689(-5) 0.3981 1.133 -0.3947 1.0025
2.0 2.113 0.9317 0.9365 0.521(-4) 0.5329 1.031 -0.4356 1.0097
1.8 1.953 0.9054 0.9139 0.135(-3) 0.6010 0.993 -0.4541 1.0185
1.6 1.820 0.8640 0.8793 0.389(-3) 0.6701 0.963 -0.4706 1.0382
1.5 1.774 0.8346 0.8553 0.686(-3) 0.6985 0.954 -0.4758 1.0568
1.440* 1.756 0.8131 0.8379 0.977(-3) 0.7106 0.953 -0.4769 1.0732
1.379%* 1.749 0.7881 0.8176 0.141(-2) 0.7167 0.955 -0.4755 1.0956
1.2 1.842 0.6907 0.7377 0.426(-2) 0.6718 1.001 -0.4478 1.2257
1.0 2.454 0.5395 0.6032 0.143(-1) 0.4481 1.219 -0.3433 1.6879
232
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TABLE 7—Continued

p3fay® 1p'3/R, azfay aszfa; T,/|W| Q J E R/R,
p=01 n=0
5.0 5.100 0.9704 0.9710 0.252(-5) 0.1052 9.996 -1.0549 1.
4.0 4.157 0.9429 0.9450 0.180(-4) 0.1430 9.027 -1.1580 1.
3.5 3.705 0.9160 0.9202 0.570(-4) 0.1699 8.526 -1.2256 1.
3.0 3.280 0.8704 0.8791 0.209(-3) 0.2042 8.030 -1.3057 1.
2.5 2.904 0.7895 0.8081 0.894(-3) 0.2456 7.575 -1.3939 1.
2.2 2.721 0.7133 0.7414 0.228(-2) 0.2716 7.357 -1.4427 1.
2.0 2.626 0.6475 0.6827 0.429(-2) 0.2872 7.256 -1.4671 1.
1.778* 2.556 0.5596 0.6012 0.860(-2) 0.3003 7.210 -1.4788 1.
1.7 2.544 0.5253 0.5681 0.109(-1) 0.3031 7.217 -1.4769 1.
1.622%* 2.539 0.4894 0.5326 0.138(-1) 0.3047 7.239 -1.4709 1.
1.3 2.658 0.3260 0.3590 0.348(-1) 0.2888 7.605 -1.3763 1.
1.0 3.364 0.1573 0.1670 0.754(-1) 0.2083 8.991 -1.0798 1.
p=01 n=1
5.0 5.053 0.9844 0.9846 0.368(-6) 0.1066 9.948 -0.9593 1.0001
4.0 4.083 0.9698 0.9704 0.268(-5) 0.1468 8.944 -1.0683 1.0002
3.0 3.149 0.9298 0.9328 0.334(-4) 0.2168 7.859 -1.2363 1.0011
2.5 2.719 0.8820 0.8895 0.158(-3) 0.2705 7.309 -1.3516 1.0030
2.2 2.488 0.8327 0.8459 0.448(-3) 0.3094 7.001 -1.4288 1.0062
2.0 2.354 0.7857 0.8048 0.942(-3) 0.3366 6.821 -1.4790 1.0103
1.8 2.246 0.7233 0.7502 0.204(-2) 0.3619 6.682 -1.5212 1.0178
1.7 2.206 0.6853 0.7166 0.302(-2) 0.3724 6.635 -1.5360 1.0237
1.564* 2.171 0.6259 0.6630 0.516(-2) 0.3823 6.609 -1.5446 1.0354
1.485%* 2.165 0.5871 0.6271 0.702(-2) 0.3847 6.620 -1.5410 1.0450
1.3 2.210 0.4854 0.5286 0.142(-1) 0.3755 6.758 -1.4954 1.0802
1.0 2.681 0.2939 0.3229 0.409(-1) 0.2862 7.697 -1.2272 1.2230
p=01 n=15
5.0 5.036 0.9893 0.9894 0.119(-6) 0.1072 9.932 -0.8894 1.0001
4.0 4.057 0.9792 0.9795 0.874(-6) 0.1482 8.915 -1.0006 1.0002
3.0 3.103 0.9514 0.9529 0.111(-4) 0.2216 7.799 -1.1761 1.0010
2.5 2.652 0.9175 0.9215 0.541(-4) 0.2807 7.213 -1.3027 1.0030
2.2 2.401 0.8815 0.8890 0.160(-3) 0.3260 6.869 -1.3929 1.0062
2.0 2.249 0.8460 0.8575 0.350(-3) 0.3599 6.654 -1.4566 1.0105
1.8 2.118 0.7968 0.8144 0.804(-3) 0.3944 6.467 -1.5175 1.0186
1.6 2.020 0.7287 0.7550 0.192(-2) 0.4243 6.335 -1.5643 1.0345
1.458* 1.984 0.6664 0.6997 0.362(-2) 0.4370 6.300 -1.5773 1.0549
1.406** 1.981 0.6404 0.6763 0.456(-2) 0.4386 6.306 -1.5751 1.0655
1.2 2.052 0.5208 0.5637 0.113(-1) 0.4187 6.486 -1.5079 1.1363
1.0 2.379 0.3833 0.4221 0.258(-1) 0.3391 7.120 -1.3007 1.2960
p=01 n=25
5.0 5.014 0.9958 0.9958 0.716(-8) 0.1079 9.910 -0.6628 1.0000
4.0 . 4.022 0.9918 0.9919 0.530(-7) 0.1501 8.876 -0.7769 1.0001
3.0 3.041 0.9808 0.9810 0.694(-6) 0.2283 7.719 -0.9630 1.0008
2.5 2.562 0.9669 0.9677 0.350(-5) 0.2954 7.085 -1.1056 1.0024
2.0 2.106 0.9364 0.9389 0.248(-4) 0.3964 6.426 -1.3010 1.0089
1.7 1.863 0.8987 0.9044 0.100(-3) 0.4768 6.048 -1.4435 1.0227
1.5 1.733 0.8565 0.8668 0.283(-3) 0.5319 5.840 -1.5344 1.0462
1.4 1.688 0.8272 0.8410 0.494(-3) 0.5540 5.768 -1.5683 1.0681
1.291* 1.664 0.7870 0.8059 0.926(-3) 0.5667 5.735 -1.5842 1.1068
1.277** 1.663 0.7808 0.8005 0.101(-2) 0.5670 5.735 -1.5838 1.1137
1.0 1.933 0.6202 0.6579 0.540(-2) 0.4555 6.241 -1.3606 1.4336

2 p=M/M"Q, J,and E are defined in eq. (3.26); R, is given by eq. (3.24); T,and W are the
kinetic energy (excluding the center-of-mass motion) and the self-gravitational energy of the
ellipsoid.

® One asterisk marks the dynamical instability limit, two the irrotational Roche-Riemann
limit.

233

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJS...88..205L&amp;db_key=AST

JS. .88 ZZ0bL T

R

rT993A

234 LAIL RASIO, & SHAPIRO Vol. 88
LT o T Sy AL L L LR to calculate the 10 matrix elements needed to evaluate the
-0.12F K determinant in condition (2.15). Using again the results of
E 1 ] Appendix A we find
-0.14F ' = ) et
- u 3 d°E Mr
= -0.16F " = . PY (alad) IR B ST o L A
. s 3 r(&rz) ( 2-l-(1+p)1cm)T°
-018F 1 .7 = e
: .- 3 2GMM'  6GM's1
g S B I
1.8 r r
C d’E _wWi1r 1 _23_1 T,
16r ve| 5o 31\3 7 7 3 0 Twl
j - eq
14| _1(2 1\GM'sI
E 313 n r
1.2 t‘ B 8]»{,2 T
0.2 9(1+p), °*’
0.15F /
: V(ZE) 4.5 - SO
602 0.1F «a !
- 2Mr?
0.05F - h3,T,,
: (L4 D) e P
0 9°E 3GM'L
2 7
AZ( aAz ) h(22)TS + j(22)W+ _Tﬁ
2Mr?
F1G. 13.—Equilibrium curves of total energy, total angular momen- ﬁ h(z)Ts s
tum, and orbital angular frequency as a function of binary separation ( P
along irrotational Roche-Riemann sequences with p = 1 and n = 0 (thick
solid lines) and n = 1 (thick dashed lines). Also shown for comparison are d*E GM's1 8 Mr?
the corresponding Roche sequences (thinner lines). Other conventions are 90.0r == 3 - 3(1 + p)l T,
as in Fig. 10. Pc D)lem
d’E 4 Mr?
Al = - h(l)Ts
where I, = (2/5)x,MR?(eq. [3.13]) and we have defined 6] = aro\, (1 +p) e
21,, — I, — I ;. Notice that, with T written in this form, we IGM’ (94)
have E/d9Q = 0, so that all first derivatives of E can be evalu- 5 (41, + I, + I3)
ated at constant Q. Using the results of Appendix A, we find
2 2
E_ M 0, GMM 301 , (ﬂ) ___AMr T
- 2 (2)
o TVt (1 + 2M,2) o). (14D lem
3GM’
OE 1 w2 L GMBI t =5 Q2L+ 2, — 1),
dp, np, 3pc 3p, % 3p., 1 7

(9.2)

OE _h S GM
1) )
'”\1 A T, + A W+ —— 23 (41” + L, + I33),

E _hoy .  Fo GM'
+ 2D - —Iy).
iy 2, (3 + 2l = L)

The equilibrium conditions given in § 7.1 are recovered by
setting these first derivatives equal to zero.

For the second derivatives, we first write @ = J/ I, with I,
given by equation (7.3), and we calculate the four derivatives
aQ/ar, dQ2/dp., /I, and 9Q/3N,. We then use relations
like

E 0| [0E N\ 9 (OFE
ar*  or ﬂ( ar) * ( ar) Q ( 6r) 5:3)

= T, + 20w
”f"‘( 3p.IN, ) 3 T3

GM'
- W(‘”“ + I, + Is;)

4Mr?
- h,,T
30+ )l T

- w
”f"z( apcaxz) 3 It 73

GM'
+ 7(2111 + 21, — I;)
4 Mr?

BEEY )RS

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1993ApJS...88..205L&amp;db_key=AST

JS. .88 ZZ0bL T

R

rT993A

No. 1, 1993 ELLIPSOIDAL FIGURES OF EQUILIBRIUM 235
TABLE 8
COMPRESSIBLE ROCHE SEQUENCE IN THE p — 0 LiMIT®

ffax  7/R  a2fa1 a3fa; T./|W| Q2 w Rk

6.0 6.080 0.9830 0.9777 0.150(-2) 0.0770 1.000 1.0032
5.0 5.114 0.9712 0.9624 0.253(-2) 0.0998 1.000 1.0055
4.5 4640 09610 0.9495 0.341(-2) 0.1155 1.000 1.0077
40 4175 0.9456 0.9303 0.473(-2) 0.1354 1.000 1.0112
3.5 3.724 0.9214 0.9010 0.676(-2) 0.1607 0.999 1.0171
3.2 3464 09002 0.8758 0.852(-2) 0.1791 0.999 1.0228
3.0 3.296 0.8819 0.8547 0.100(-1) 0.1929 0.998 1.0281
2.8 3135 0.8593 0.8291 0.118(-1) 0.2080 0.997 1.0352
2.6 2.981 0.8311 0.7981 0.140(-1) 0.2243 0.996 1.0449
2.4 2838 0.7959 0.7603 0.168(-1) 0.2416 0.994 1.0584
2.2 2.707 0.7516 0.7143 0.201(-1) 0.2593 0.991 1.0777
2.0 2.594 0.6961 0.6585 0.242(-1) 0.2764 0.986 1.1064
1.9 2546 0.6633 0.6263 0.266(-1) 0.2842 0.983 1.1260
1.8 2507 0.6267 0.5910 0.292(-1) 0.2910 0.978 1.1506
1.7 2476 0.5859 0.5522 0.322(-1) 0.2963 0.972 1.1818
1.6 2458 0.5407 0.5098 0.355(-1) 0.2996 0.963 1.2221
1.5 2457 0.4909 0.4637 0.393(-1) 0.2999 0.952 1.2753
14 2477 04364 04136 0.436(-1) 0.2961 0.937 1.3469
1.2 2629 0.3149 0.3019 0.547(-1) 0.2708 0.885 1.5897
1.0 3.121 0.1835 0.1793 0.708(-1) 0.2094 0.779 2.1628

2 Here 7= r(p/g,)"*, with p = M/M" and g, given by eq. (4.18); ©, W, and R are
defined in eq. (3.27); T, and W are the spin kinetic energy and the self-gravita-
tional energy of the ellipsoid.

. [ 0*E did in § 6 for single stars). Instead, we evaluate the determi-
A, ESY hanTs+ I W nant numerically along the equilibrium Roche sequences (cal-
e culated as in § 7.2).
+ GM' (41, — 21 + I;) We find that the determinant is always positive at large sepa-
2r3 1 28 ration. As r decreases, the value of the determinant decreases
2 Mr? and, before the Roche limit is reached, changes sign at a certain
— T+l hiyhyTs . critical separation. We denote this critical separation by r,,
P)lem and identify it with the point of onset of secular instability. The
Here the explicit form of condition (2.15) for the onset of numerical values of r,. are given in Table 10 for several differ-
instability is too complicated to be solved analytically (as we ent values of the mass ratio p and polytropic index #n. Also
y p
TABLE 9
COMPRESSIBLE € = 0 ROCHE-RIEMANN SEQUENCE IN THE p — 0 LiMIT*
f/fay  #/R a2fax a3zfa; T.[|W]| Q w R

6.0 6.069 0.9828 0.9830 0.451(-6) 0.0772 1.000 1.0001

5.0 5100 0.9705 0.9710 0.228(-5) 0.1003 1.000 1.0004

45 4623 09598 09608 0.575(-5) 0.1162 1.000 1.0007

40 4156 09433 09452 0.161(-4) 0.1363 1.000 1.0014

35 3.703 0.9169 0.9206 0.507(-4) 0.1620 0.999 1.0030

3.2 3443 0.8930 0.8988 0.108(-3) 0.1807 0.999 1.0051

3.0 3.277 0.8722 0.8800 0.184(-3) 0.1947 0.998 1.0072

2.8 3117 0.8461 0.8567 0.322(-3) 0.2098 0.998 1.0106

2.6 2967 08132 0.8275 0.576(-3) 0.2259 0.996 1.0158

24 2829 0.7718 0.7910 0.105(-2) 0.2426 0.995 1.0241

2.2 2708 0.7200 0.7451 0.196(-2) 0.2592 0.991 1.0375

2.0 2607 06563 0.6879 0.367(-2) 0.2743 0.986 1.0598

1.9 2567 0.6197 0.6544 0.502(-2) 0.2808 0.982 1.0762

1.8 2535 0.5800 0.6172 0.685(-2) 0.2861 0.976 1.0977

1.7 2513 05373 0.5763 0.929(-2) 0.2899  0.969 1.1260

1.6 2503 0.4918 0.5313 0.125(-1) 0.2917 0.960 1.1637

1.5 2.508 0.4437 0.4823 0.168(-1) 0.2908 0.948 1.2145

14 2533 0.3933 0.4292 0.223(-1) 0.2864 0.932 1.2844

1.2 2687 0.2862 0.3112 0.382(-1) 0.2622 0.879 1.5267

1.0 3165 0.1726 0.1827 0.621(-1) 0.2050 0.775 2.1076

2 Here 7 = r(p/q,)"*, with p = M/M’ and g, given by eq. (4.18); @, W, and R
are defined in eq. (3.27); T, and W are the kinetic energy (excluding the center-
of-mass motion) and the self-gravitational energy of the ellipsoid.
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TABLE 10
CRITICAL POINTS ALONG THE ROCHE SEQUENCES*
p? #/a, #/Ro azfa;  asfar  T,/|W| 1} J E R/Ro
n=20

100. 10.980 10.983 1.0000 0.9990 0.252(-3) 0.0317 0.044  -0.6003
1.4551 1.6859  0.9641 0.6668 0.993(-1) 0.5502 0.260  -0.5362

1.3195 1.6402 0.8937 0.5825 0.123 0.5888  0.297  -0.5180

10. 3.5981 3.6478  0.9925 0.9669 0.702(-2) 0.1659  0.244  -0.6090
1.5709 1.8579  0.8708 0.6941 0.701(-1) 0.4753 0.340  -0.5783

1.3298 1.7823  0.7365 0.5639 0.985(-1) 0.5275  0.394  -0.5548

5. 2.6935 2.8080 0.9667 0.9130 0.160(-1) 0.2464 0.406  -0.6235
1.6117 1.9495 0.8229 0.6866 0.606(-1) 0.4423 0.462 -0.6053

1.3461 1.8704 0.6778 0.5500 0.869(-1) 0.4907 0.519  -0.5819

2. 2.0746 2.3547  0.8662 0.7895 0.299(-1) 0.3248  0.808  -0.6716
1.6580 2.0963  0.7507 0.6591 0.496(-1) 0.3960 0.830  -0.6646

1.3869 2.0249 0.6089 0.5277 0.702(-1) 0.4317 0.888  -0.6434

1. 1.8887 2.3144 0.7715 0.7044 0.341(-1) 0.3358 1375  -0.7432
1.6764 2.2088  0.6960 0.6281 0.436(-1) 0.3648 1.386  -0.7399

1.4292 2.1532  0.5708 0.5123 0.588(-1) 0.3886 1.441 -0.7218

0.5 1.7927 2.3488  0.6944 0.6403 0.349(-1) 0.3286 2.322  -0.8607
1.6742 2.3026  0.6468 0.5943 0.398(-1) 0.3408  2.328  -0.8590

1.4708 2.2659  0.5459 0.5010 0.503(-1) 0.3545 2.375  -0.8447

0.2 1.7088 2.4002 0.6222 0.5799 0.351(-1) 0.3166  4.497 -1.1311
1.6464 2.3835  0.5948 0.5541 0.375(-1) 0.3208  4.500 -1.1302

1.5103 2.3670  0.5279 0.4920 0.435(-1) 0.3263 4.534  -1.1207

0.1 1.6606 2.4251  0.5855 0.5484 0.355(-1) 0.3103 7.260  -1.4799
1.6183 2.4171  0.5661 0.5302 0.371(-1) 0.3122 7.262  -1.4793

1.5266 2.4095 0.5209 0.4883 0.409(-1) 0.3147 7.286  -1.4727

0.01  1.5725 2.4523  0.5289 0.4985 0.369(-1) 0.3019 33.927 -4.9214
1.5520 2.4514 0.5188 0.4891 0.377(-1) 0.3021 33.930  -4.9207

1.5404 2.4513  0.5130 0.4837 0.381(-1) 0.3022 33.934 -4.9196

O I T e e i e e el e N T R e T N R Y

0. 1.5400 2.4552 0.5114 0.4826 0.377(-1) 0.3002 oo -00
1.5244 2.4554  0.5035 0.4753 0.383(-1) 0.3001 oo -00
1.5400 2.4552 0.5114 0.4826 0.377(-1) 0.3002 oo -00

n=1

100. 8.8799 8.8850  1.0000 0.9990 0.249(-3) 0.0436 0.040  -0.5004 1.0002
1.1730 1.5281  0.9643 0.6673 0.992(-1) 0.6377  0.249  -0.4203 1.1247

1.1348 1.5249  0.9508 0.6397 0.108 0.6443  0.264  -0.4123 1.1386

10. 2.9466 3.0057  0.9928 0.9685 0.669(-2) 0.2218  0.220  -0.5110 1.0068
1.2710 1.6280  0.8731 0.6971 0.694(-1) 0.5792 0.318  -0.4708 1.0855

1.1679 1.6110  0.8180 0.6344 0.837(-1) 0.5990 0.346  -0.4568 1.1085

5. 2.2389 2.3615  0.9698 0.9201 0.146(-1) 0.3194 0.368  -0.5284 1.0155
1.3098 1.6958  0.8281 0.6925 0.594(-1) 0.5445 0.429  -0.5030 1.0756

1.1927 1.6761  0.7639 0.6254 0.726(-1)  0.5644 0.458  -0.4891 1.0986

2. 1.7629 2.0283  0.8852 0.8143 0.262(-1) 0.4050 0.739  -0.5850 1.0316
1.3631 1.8169  0.7639 0.6726 0.475(-1) 0.4894 0.767 -0.5735 1.0676

1.2451 1.7991  0.7003 0.6098 0.572(-1) 0.5041 0.795 -0.5615 1.0882

1. 1.6247 2.0087 0.8063 0.7420 0.295(-1) 0.4131 1.264 -0.6683 1.0418
1.3967 1.9182  0.7189 0.6506 0.407(-1) 0.4490 1.281  -0.6617 1.0661

1.2950 1.9057  0.6656 0.5990 0.473(-1) 0.4579 1.305  -0.6522 1.0831

0.5 1.5628 2.0496  0.7438 0.6898 0.298(-1) 0.4008 2.143  -0.8040 1.0499
1.4168 2.0077  0.6815 0.6277 0.362(-1) 0.4166  2.156  -0.7997 1.0677

1.3424 2.0012  0.6433 0.5911 0.401(-1) 0.4209 2.174  -0.7930 1.0800

0.2 1.5167 2.1055 0.6888 0.6442 0.293(-1) 0.3833  4.173  -1.1139 1.0588
1.4214 2.0893  0.6450 0.6017 0.331(-1) 0.3892 4.183  -1.1105 1.0722

1.3866 2.0879  0.6275 0.5849 0.347(-1) 0.3901 4.192  -1.1073 1.0781
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p° #/ay #/Ro az/a1 a3 /a1 T,/|W| ] J E R/Ro
n=1
0.1 1.4912 2.1325 0.6625 0.6219 0.292(-1) 0.3747 6.759 -1.5115 1.0641

1.4147 2.1248 0.6262 0.5869 0.322(-1) 0.3775 6.770 -1.5081 1.0758
1.4053 2.1247 0.6214 0.5824 0.326(-1) 0.3776 6.773 -1.5071 1.0774
0.01  1.4426 2.1619 0.6247 0.5887 0.297(-1) 0.3643 31.787  -5.4179 1.0737
1.3881 2.1628 0.5973 0.5626 0.318(-1) 0.3642 31.813  -5.4097 1.0833
1.4227 2.1614 0.6150 0.5793 0.305(-1) 0.3644 31.791 -5.4169 1.0770

0. 1.4235 2.1651 0.6137 0.5786 0.302(-1) 0.3625 0o -00 1.0770

1.3744 2.1680 0.5885 0.5547 0.320(-1) 0.3617 0o -00 1.0861

1.4235 2.1651 0.6137 0.5786 0.302(-1) 0.3625 0o -00 1.0770
n=15

100. 7.8597 7.8661 1.0000 0.9991 0.246(-3) 0.0523 0.037 -0.4290 1.0005
1.0345 1.5150 0.9644 0.6676 0.991(-1) 0.6462 0.250 -0.3379 1.2646

1.1024 1.5038 0.9783 0.7162 0.833(-1) 0.6466 0.221 -0.3539 1.2116

10. 2.6381 2.7061 0.9932 0.9699 0.639(-2) 0.2596 0.208 -0.4409 1.0130
1.1245 1.5579 0.8750 0.6995 0.688(-1) 0.6185 0.312 -0.3932 1.1763

1.1172 1.5578 0.8716 0.6950 0.699(-1) 0.6193 0.314 -0.3920 1.1798

5. 2.0294 2.1618 0.9723 0.9261 0.135(-1) 0.3645 0.349 -0.4601 1.0286
1.1631 1.6086 0.8323 0.6973 0.585(-1) 0.5889 0.417 -0.4284 1.1536

1.1393 1.6076 0.8201 0.6834 0.612(-1) 0.5914 0.424 -0.4251 1.1634

2. 1.6244 1.8891 0.8990 0.8332 0.234(-1) 0.4496 0.704 -0.5213 1.0561
1.2214 1.7112 0.7742 0.6832 0.459(-1) 0.5344 0.741 -0.5052 1.1331

1.1908 1.7098 0.7581 0.6666 0.485(-1) 0.5370 0.748 -0.5016 1.1437

1. 1.5095 1.8790 0.8310 0.7697 0.262(-1) 0.4551 1.210 -0.6110 1.0725
1.2635 1.8032 0.7358 0.6674 0.386(-1) 0.4913 1.235 -0.6007 1.1259

1.2412 1.8025 0.7243 0.6559 0.401(-1) 0.4926 1.240 -0.5983 1.1331

0.5 1.4633 1.9211 0.7775 0.7249 0.262(-1) 0.4401 2.058 -0.7567 1.0845
1.2945 1.8872 0.7054 0.6511 0.338(-1) 0.4558 2.078 -0.7490 1.1248

1.2892 1.8872 0.7027 0.6485 0.340(-1) 0.4560 2.080 -0.7484 1.1265

0.2 1.4339 1.9766 0.7320 0.6873 0.256(-1) 0.4201 4.020 -1.0879 1.0964
1.3136 1.9656 0.6773 0.6329 0.303(-1) 0.4254 4.040 -1.0808 1.1282

1.3340 1.9650 0.6874 0.6428 0.295(-1) 0.4253 4.033 -1.0832 1.1219

0.1 1.4182 2.0033 0.7112 0.6698 0.253(-1) 0.4105 6.524 -1.5120 1.1032
1.3160 2.0001 0.6633 0.6226 0.292(-1) 0.4125 6.547 -1.5039 1.1318

1.3531 1.9982 0.6816 0.6405 0.277(-1) 0.4127 6.533 -1.5089 1.1203

0.01 1.3862 2.0320 0.6825 0.6446 0.255(-1) 0.3995 30.784 -5.6696 1.1149
1.3050 2.0377 0.6427 0.6059 0.284(-1) 0.3980 30.851 -5.6462 1.1402

1.3714 2.0317 0.6756 0.6379 0.260(-1) 0.3996 30.786 -5.6689 1.1190

0. 1.3727 2.0351 0.6746 0.6373 0.257(-1) 0.3977 oo -00 1.1190

1.2965 2.0431 0.6366 0.6004 0.285(-1) 0.3954 [ -00 1.1436

1.3726 2.0351 0.6746 0.6373 0.258(-1) 0.3977 0o -00 1.1190
n=25

100.  5.8318  5.8473  1.0000  0.9991  0.235(-3)  0.0817  0.032  -0.2006  1.0024
(0.7577)  (2.8191) (0.9650) (0.6689) (0.987(-1)) (0.2547) (0.347) (-0.0875) (3.2154)

11793 1.6345  0.9962  0.8982  0.276(-1)  0.5559  0.116  -0.1692 13355

10. 21043  2.2333  0.9948  0.9767  0.493(-2)  0.3462  0.182  -0.2157  1.0511
(0.8351) (2.1234) (0.8829) (0.7102) (0.664(-1)) (0.3880) (0.363) (-0.1396) (2.1764)

1.1805  1.6502  0.9674  0.8796  0.264(-1)  0.5491  0.226  -0.1965  1.3247

5. L7158 1.9235  0.9823  0.9509  0.889(-2)  0.4336 0313  -0.2380  1.0959
(0.8784) (1.9893) (0.8499) (0.7184) (0.543(-1)) (0.4264) (0.457) (-0.1758) (1.9212)

11881  1.6685  0.9444  0.8655  0.251(-1)  0.5408  0.343  -0.2246 13131

2. 1.4659 17891  0.9455  0.9026  0.134(-1)  0.4846  0.653  -0.3048  1.1577

0.9582  1.9013  0.8141  0.7268  0.393(-1)  0.4527  0.762  -0.2579  1.6658

1.2179  1.7164  0.9062  0.8433  0.219(-1)  0.5187  0.669  -0.2978  1.2885
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TABLE 10—Continued
P #/ay #/Ro  az2/a1 asfa; T./|W| Q J E R/ R,
n=2.5

1. 1.3991 1.7959 0.9112 0.8685 0.146(-1) 0.4825 1.140 -0.4009 1.1873
1.0267 1.8971 0.7966 0.7312 0.308(-1) 0.4510 1.238 -0.3605 1.5432
1.2560 1.7691 0.8804 0.8289 0.192(-1) 0.4951 1.150 -0.3969 1.2681

0.5 1.3822 1.8329 0.8836 0.8444 0.144(-1) 0.4678 1.958 -0.5570 1.2027
1.0861 1.9218 0.7856 0.7334 0.253(-1) 0.4396 2.058 -0.5174 1.4724
1.2964 1.8227 0.8623 0.8190 0.169(-1) 0.4725 1.964 -0.5546 1.2521

0.2 1.3821 1.8785 0.8612 0.8258 0.139(-1) 0.4502 3.856 -0.9103 1.2132
1.1372  1.9592 0.7770 0.7337 0.216(-1) 0.4246 3.982 -0.8624 1.4286
1.3365 1.8755 0.8490 0.8118 0.150(-1) 0.4515 3.859  -0.9091 1.2396

0.1 1.3829 1.9001 0.8519 0.8180 0.136(-1) 0.4420 6.284 -1.3607 1.2182
1.1570  1.9792 0.7731 0.7329 0.202(-1) 0.4170 6.455 -1.2972 1.4155
1.3543 1.8989 0.8440 0.8092 0.143(-1) 0.4426 6.286 -1.3600 1.2348

0.01 1.3786 1.9233 0.8409 0.8084 0.134(-1) 0.4332 29.868 -5.7593 1.2267
1.1732  2.0036 0.7676 0.7303 0.191(-1) 0.4076 30.524 -5.5205 1.4082
1.3723 1.9232 0.8391 0.8065 0.135(—]) 0.4332 29.869 -5.7591 1.2304

0. 1.3742 19259 0.8385 0.8061 0.135(-1) 0.4320 oo -00 1.2299
1.1727 2.0083 0.7659 0.7290 0.190(-1) 0.4057 oo -00 1.4102
1.3742  1.9259 0.8385 0.8061 0.135(-1) 0.4320 oo -00 1.2299

2 Here 7= r/(1 + 1/p)"? with p = M/M"; Q, J, and E are defined in eq. (3.26); R, is given by eq.
(3.24); T, and W are the spin kinetic energy and the self-gravitational energy of the ellipsoid.

® For each value of p, the first line gives the secular instability limit, the second line the dynami-
cal instability limit, and the third line the Roche limit. Data in parentheses indicate that the two

stars overlap.

given in the table are the dynamical instability limits (see § 9.2
below) and the Roche limits (cf. § 7.2). The approximate
scaling r. oc (1 + 1/p)!/3 (see below) has been factored out
for convenience. In Table 6 we have also marked by an asterisk
the point of onset of secular instability along the equilibrium
sequences. As expected from the general results of § 2.3, we
find that, to within our numerical accuracy, the point where
the equilibrium energy curve E,,(r) has a minimum coincides
with 7 = 7.

The identification of a turning point prior to the Roche limit
along a binary equilibrium sequence is one of the most signifi-
cant results to be revealed by our energy variational approach.
The consequences are very important for the final orbital evo-
lution of any close binary system. All configurations with bi-
nary separation r < r are secularly unstable. In the presence
of internal viscous dissipation (but with no loss of angular
momentum from the system), the orbit of an unstable configu-
ration at r,,. will decay on the viscous dissipation timescale.
Although orbital angular momentum is continually trans-
ferred to spin angular momentum during the evolution, the
configuration will evolve more and more out of synchroniza-
tion. Eventually, merging of the two components must occur.

It is surprising that this important instability was not identi-
fied in the TV treatment of the problem by Ch69 (§§ 57-59).
There it is found that the Roche solutions remain stable (both
secularly and dynamically) all the way to the Roche limit, and
that they become secularly unstable precisely at the Roche
limit. This appears to be in conflict with the existence of a
minimum of F and Jbefore the Roche limit in the TV equilib-
rium solutions themselves (see Fig. 10). The secular instability
has been identified in other studies of close binary configura-
tions such as those of van’t Veer (1979), based on the Roche
model, and Hachisu & Eriguchi (1984a, b), using a fully nu-
merical solution.

The secular instability can also affect drastically the orbital
decay of a system losing energy and angular momentum, for
example, because of gravitational radiation. This can be seen
as follows. Even if the energy loss rate E were infinitesimally
small, one would naively predict that the secular rate of change
of the binary separation 7 = E/(dE.,/dr)—> coasr—>r,..Ina
forthcoming paper we will show how the orbital decay actually
proceeds through r = r,.., and discuss some of the astrophysical
implications of the instability for coalescing binaries (Lai et al.

-1993a).

The limiting behavior of the secular instability limit 7. as
p = 0 or p— oo can be understood easily. When p — 0, we see
from Table 10 that r, oc p~'/3, in agreement with our discus-
sion of § 8.3. The constant of proportionality for various poly-
tropic indices can be read off the table. Using expressions (9.4)
in the p = oo limit, one can show that, in this limit, 7 ./a, =
Two/ Ry = Dp'/?, where the proportionality constant D is close
to unity (D = 1.0954 forn = 0, D = 0.8855forn =1, D =
0.7834 for n = 1.5, and D = 0.5791 for n = 2.5). The limiting
scaling 7., oc p'/? can be understood as follows. As M’ — 0,
tidal forces become negligible, and the minimum of E,, = E,,/
(GM?/R,) is determined from a balance between the orbital
energy of two point masses E,, = —(R,/r)/(2p) o< (rp)~",
and the spin kinetic energy T, = (1/2)IQ%/(GM?*/R,) o r~3.
Therefore, in the p = co limit, we have dE, /dr = 0 at r =
Fee ¢ P'/2. Recall, however, that the Roche problem in this
limit is somewhat unphysical because of the assumption of
synchronized rotation (cf. § 8.3).

9.2. Dynamical Instability of Roche Binaries

Motivated by the results of § 6.3 for Maclaurin spheroids, we
can tentatively identify the onset of dynamical instability by
considering perturbations which not only conserve M and J,
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but also conserve ¥. That is, we now substitute the energy
function of Roche-Riemann binaries (§ 8.1) in the determi-
nant of condition (2.15) before evaluating it along the equilib-
rium Roche sequence (where A = fz = { = 0).

As in § 9.1, we rewrite the kinetic energy term

1 Mr*Q?

T=T,+T,= T+T+—2—(1+) (9.5)
where
1 MriQ 12
Tt_4ls Ji(g—m h,, (9.6)

so that dE/93Q = 0. The first derivatives can then be evaluated
at constant Q, giving

EYRY +F N TN
2613{1 (41, + I, + I3)
(9.7)
R
%W ZGM' + 21, — I3) ,

while the expressions for dE/dr and dE/dp, are identical to
those obtained in § 9.1. Setting these first derivatives equal to
zero again yields the equilibrium conditions for a general
Roche-Riemann binary (§ 8.1).
Now turn to the second derivatives. From the relation
Mr*Q

I
Ji(g—m=-}z(ﬂiA) (9.8)

(cf. egs. [3.13], [5.12], [8.2] and [9.6]), we get
(J+ E)h, +(J— €)h_

Q= 2L (9.9)
where we have defined
M 2
I,_,=Is+m(h +h). (9.10)

Asin § 9.1, we first evaluate the partial derivatives of Q, using
expression (9.9), and then use the relations like equation (9.3)
as well as the results of Appendix A to calculate the second
derivatives of E. We find

d’E 4 Mr?
2 |y I
r(arz)eq [2+(l+ )I(h +h)]
_2GMM' _ 6GM'51
r r¥

QE\ _ Wl _1)_,(2_1) T,
”‘(apc)eq‘3[(3 n) (3 n);W|]
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1(2, 1\GMSI 8L,
3 n 0>

3 r’ 91,

,(2E\ 7w
A 6>\2 = h+(11)T+ + h—(u)T— +Jan
eq

_sGML,  ILMP

r’ 4(1 + p)I,

2 azE —
A2 »)_" hen T + hogny T+ I oy W

3GM' L, LMP
r 41 + p)l,

( azE) GM'sI 81,
b =T -5 T,
eq

dp.Or r 3[
’E I, Mr?
=——QF
’A‘(arax,) (1 +p)
3GM’
41,,+ L, + I33) ,
— (41, 2+ I33) (9.11)
d%’E IMr?
e R Y o) )
”‘2( 6r8)\2)°q (1+p)l, 2
3GM’
+ =5 21, + 21, — I33),
d’E 2 g
.%M(m)eq = 3 (h+(1)T+ + h—(l)T—) + _g(u w
GM'
T35 (41, + Iy + I3)
I Mr?
T 3(1+p)l, 02,
9’FE 2 54
Pc)\z(a—p‘ca_)\z‘)cq = 5 (h+(2)T+ + h—(z)T—) + ‘% w
GM'
+ 7 (2111 + 2122 - 133)
LMy
3(1 +p)l,
d%’E B
)‘1>\2 m - h+(12)T+ + h-—(lZ)T— + j(lZ)W
eq
GM'
+ 55 (41, — 21 + I3)
IMr?
C4(1+p)l, %122
where we have introduced
Ei = h+(,)(Q + A) + h_(l)(Q - A), i = 1, 2 . (9.12)
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We then evaluate the matrix coefficients along an equilibrium
Roche sequence, and calculate the determinant of condition
(2.15) as a function of r. )

When n < 3 (I' > 4/3), and for sufficiently large r, we find
that the determinant remains always positive. As r decreases,
the value of the determinant decreases, and a change of sign
occurs at a certain critical separation r,,, which we tentatively
identify as the point of onset of dynamical instability. The
values of 7, for different mass ratios and polytropic indices
are listed in Table 10, and the corresponding points are also
noted by a double asterisk in the sequences of Table 6. In the
limit where p = 0, we have ry,, oc p~'/3 (cf. § 8.3). For some
equilibrium sequences, the dynamical instability limit is
reached only when r,,/a, < 1. These configurations are
clearly unphysical since the point-mass companion would be
located inside the star. The corresponding entries in Table 10
(those with n = 2.5 and p = 5) have been placed in parentheses.
When n 2 1.7, the configurations remain dynamically stable
all the way to the Roche limit. For n < 1.7, the dynamical
stability limit is reached before the Roche limit when p exceeds
a minimum value, p,;,. In particular, for n = 0, we find p,;, ~
4 X 1073; for n = 1, ppin =~ 0.07; and for n = 1.5, p;, ~ 0.4.
Note that the point 7 = r,y, does not correspond to any mini-
mum (or maximum) of the equilibrium energy curve E,(r)
for Roche binaries (see Fig. 14). The reason is that the pertur-
bations considered here allow for internal motions of the fluid
body (a new degree of freedom) so as to maintain the conserva-
tion of €. These perturbations do not take one equilibrium
Roche configuration into a neighboring Roche configuration
since they do not preserve the synchronized rotation state of
the binary.

Does a dynamical instability really set in at 7 = 74, as deter-
mined here? The answer to that question may be of little astro-
physical relevance since the secular instability limit is always
encountered first along the sequence (see Tables 6 and 10, and
Fig. 14). As discussed in § 9.1, the system must evolve out of

_0.72_1 r T I T T T I T T T I T T T ]

N ]

-0.725 | ]

- .

-0.73 | 7

E o ]

~0.735F | -

—0.74F =

_0745 _|_ 1 | 1 | L 1 1 | 1 1 1 -
2.8 3 3.2 3.4

r/R,

FIG. 14.—Secular instability limit ( filled circle) and dynamical instabil-
ity limit ( filled square) along the equilibrium Roche sequence with p = 1
and n = 0 (solid line). The dynamical instability limit is also the point
where the total equilibrium energy E is minimum along a Roche-Riemann
sequence with constant € /(GM3R,)"/? = —0.15268 (dashed line). See
text for discussion (§ 9.3).

Vol. 88
0 _l LA LI I L L '|—-| ;_n —n_n l_f |_—| |_
L - ]
L ~ .
—0.001 - 7]
Fcrit._4/3 : i
=-0.002 - —
~0.003[ -
Eoo b vy v v b v by o by a4
0.5 1 1.5 2 2.5 3

r/R,

F1G. 15.—Variation of the critical adiabatic exponent for the onset of
radial instability in a compressible Roche ellipsoid as a function of binary
separation. The solid line is for p = 1, the dashed line for p = 0.1.

synchronization as r — r,,, even if the dissipation is infinitesi-
mally small. Synchronized configurations that are dynami-
cally unstable may therefore never be encountered (the situa-
tion is different for nonsynchronized binaries, see § 9.3).
Nevertheless, we reemphasize here that conservation of M, J,
and % is a necessary but not sufficient condition for the exis-
tence of physically realizable dynamical perturbations.

As we showed analytically in § 6.2 for Maclaurin spheroids,
condition (2.15) can also become realized at any separation r
when the adiabatic index T falls below a certain critical value
T.... Motivated by the results of § 6.3, we identify this as the
onset of radial collapse. Because of the complexity of equa-
tions (9.4), it is not possible to obtain a closed-form expression
of T';, for compressible Roche ellipsoids. Instead, we have eval-
uated T ;, numerically as a function of r for two selected values
of the mass ratio. The results are shown in Figure 15. We see
that T, < 4/3 everywhere for all mass ratios. Indeed, we can
use a simple argument to show that tidal effects, just like rota-
tion, tend to stabilize the star against radial collapse. Using the
virial relation (eq. [7.8]), we find that for Roche ellipsoids (cf.
eq. [3.22]):

M(p:; J)

Ts 5—n -3/2
= Moo o (1 - 255 ) = (35,7 )]

(9.13)

where g, is given by equation (7.22) and M(p,; 0) is the mass of
an unperturbed spherical polytrope, given by expression
(2.13). For Roche ellipsoids, we have g, > 0 since a, > a, > a;.
Recall that an isolated spherical polytrope of index n = 3 is
marginally stable against radial collapse. For a given K, M, =
(k,K/k;)%? is the only mass at which an # = 3 equilibrium
configuration can exist (cf. eq. [2.13]). But if we evaluate
equation (9.13) for the same value of K and n = 3, we see that
the equilibrium mass actually increases above M,,. Hence, tidal
forces, just like rotation, increase the maximum allowable
mass of the star, that is, both rotation and tidal forces have a
stabilizing effect with respect to radial collapse.
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9.3. Stability of Roche-Riemann Binaries

It is straightforward to extend the results of the previous
section to study the stability properties of Roche-Riemann bi-
naries. In Figure 13 we see that the equilibrium energy curve
E,(r) for the irrotational (% = 0, f = —2) Roche-Riemann
sequence also exhibits a minimum before the Roche-Riemann
limit is reached. According to our conventions (§ 2.4), since
the equilibrium model allows for nonuniform rotation and €
is fixed along this sequence, we refer to the corresponding insta-
bility as dynamical. As before, we can locate the minimum of
Ee, at r = r,4y, by calculating the determinant of condition
(2.15). The matrix elements have already been written in
§9.2, expressions (9.11). Here we evaluate the determinant
along an irrotational Roche-Riemann equilibrium sequence,
calculated as in § 8.2. The values of r,, for sequences with
different p and # are listed in Table 11, together with the corre-
sponding irrotational Roche-Riemann limits. The instability
points are also noted by an asterisk in the sequences of Table 7.

Similarly, one can locate the onset of instability along any
Roche-Riemann sequence with constant € # 0. Note, how-
ever, that a minimum of £, (r) along a sequence with constant
Jr does not indicate the onset of instability except when f; = 0
or fz = —2. For fz = 0, the Roche sequence is recovered, and
the minimum corresponds to the onset of secular instability
(cf. §9.1), while for fg = —2, € = 0 is fixed along the sequence,
and the minimum corresponds to the onset of dynamical insta-
bility as discussed above.

It is interesting to note that the point r = r4, along the Roche
sequence (§ 9.2) also corresponds to the minimum of the equi-
librium energy curve for an appropriate Roche-Riemann se-
quence of constant €, with the value of € calculated at r = ry,
for the Roche ellipsoid. This is illustrated in Figure 14, where
we show a blowup of the E_ (r) curve for the n = 0 Roche
sequence near the location of the secular and dynamical insta-
bility points. The value of € at the dynamical instability point
is given by € /(GM?>R,)'/? = —0.15268. We have constructed
a Roche-Riemann sequence corresponding to that particular
value of €. The resulting energy curve is also shown in Figure
14. Clearly this curve has a minimum located precisely at its
point of intersection with the Roche energy curve, which coin-
cides with r = r,y, as determined in § 9.2.

9.4. Dependence on the Mass Ratio

The variation of the critical separations 7., rq,, and ry,
along Roche and irrotational Roche-Riemann sequences is
plotted in Figure 16 as a function of the mass ratio. When p <
1, we see that all three critical separations are approximately
equal and scale like (1 + 1/p)!/3, asexpected from simple tidal
breakup considerations, and in agreement with the discussion
of § 8.3. More precisely, for Roche binaries, one can show that
[7sec — Tiim| = O but rgy, = 1y, as p — 0 (see Table 10). For
irrotational Roche-Riemann binaries, |74y, — #im| = 0 asp —
0 (see Table 11). In the (less important) p — oo limit, r;,, and
Tsy approach constant values, while r,,. for Roche binaries
increases as p'/? (see § 9.1).

In the limit of very high compressibility (large #), where our
ellipsoidal approximation is expected to be poor, the Roche
limit may be better determined from standard Roche lobe con-
siderations (Kopal 1959; Paczyfiski 1971). In Figure 164, we
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show this approximate limiting behavior of the Roche limit, as
predicted by setting the mean radius of the Roche lobe equal to
the spherical equilibrium radius R,. Here we have used Eggle-
ton’s (1983) fitting formula for the mean Roche lobe radius
Ry,

2/3
EC O M— (9.14)
r  0.6p*°+1In(1+p'’°)

We emphasize that no direct comparison between the two ap-
proaches is possible since they are expected to be valid in oppo-
site limits. However, we see clearly from Figure 16 that the
Roche lobe theory should not be trusted when applied to con-
figurations with small polytropic indices.

10. COMPRESSIBLE DARWIN ELLIPSOIDS

The classical Darwin problem treats a binary system consist-
ing of two identical incompressible stars in circular orbit about
each other, where the mutual tidal interactions are incorpo-
rated to quadrupole order. We now use our energy variational
method to solve this problem for two identical compressible
configurations. Note, however, that our method can also be
used to construct more general binaries containing two poly-
tropes of different masses and entropies. Other generalizations,
such as the construction of ‘“Darwin-Riemann” configura-
tions, where both stars have internal fluid motions of uniform
vorticity, are also possible (see § 10.4).

10.1. Equilibrium Conditions

Consider two identical polytropes, each of mass M, in circu-
lar orbit about each other. The system is assumed to be rotat-
ing uniformly with angular velocity Q. The notations and defi-
nitions of § 4 and § 7 are used throughout this section.

Here we write the total energy per star in the binary system
as E(p., A\, Ay, 13 M, J)=U+ T+ W+ W;, where Wis the
gravitational potential self-energy of one star, and W, is one-
half of the gravitational interaction energy of the binary. Both
U and W retain the same form they had for isolated configura-
tions (§ 4). The kinetic energy per star is given by equation
(7.2) with now

Ip=Mr2 +1

1 ) M5/3p;2/3
M ki n)

(10.1)

The gravitational potential energy is obtained from equation
(B7) with M = M,

1 GM
W, = __*———73"(2111 — Iy —1;;) (10.2)

(where we have divided eq. [B7] by 2 to obtain the energy per
star).

Asin § 7, the equilibrium condition, dE/dr = dT/dr + W,/
dr = 0, provides the modified Kepler’s law for the binary. Us-
ing equations (7.2) and ( 10.1) for Tand (10.2) for W;, we find
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TABLE 11
CRITICAL POINTS ALONG THE € = 0 ROCHE-RIEMANN SEQUENCES®
p?t #/a1 #/Ro a2/a1 a3far T.[/|W| 1] J E R/Ro
n=20

100. 1.8098 1.8408 0.9687 0.9811 0.545(-4) 0.4644 0.014 -0.6026 1.
1.6270 1.7647 0.8551 0.9165 0.156(-2) 0.5043 0.018  -0.6009 1.
10. 1.8755 2.0121 0.8835 0.9165 0.656(-3) 0.4107 0.142 -0.6228 1.
1.5053 1.8889 0.6642 0.7620 0.957(-2) 0.4710 0.169 -0.6120 1.
5. 1.8896 2.0948 0.8374 0.8764 0.122(-2) 0.3883  0.282  -0.6422 1.
1.4813 19661 0.6091 0.7021 0.129(-1) 0.4467  0.321 -0.6277 1.
2. 1.8917 2.2210 0.7646 0.8082 0.241(-2) 0.3573 0.676  -0.6921 1.
1.4809 2.1045 0.5530 0.6301 0.155(-1) 0.4030 0.727 -0.6746 1.
1. 1.8737 23141 0.7068 0.7510 0.363(-2) 0.3362 1.252  -0.7610 1.
1.5021 2.2217 0.5248 0.5889 0.158(-1) 0.3683 1307 -0.7439 1.
0.5 1.8373 2.3893 0.6528 0.6965 0.506(-2) 0.3198 2.214  -0.8743 1.
1.5300 2.3260 0.5071 0.5613 0.152(-1) 0.3395 2.266  -0.8594 1.
0.2 1.7720 2.4517 0.5936 0.6360 0.711(-2) 0.3061  4.417 -1.1375 1.
1.5592 2.4203 0.4944 0.5407 0.143(-1) 0.3149  4.456 -1.1267 1.
0.1 1.7223 2.4763 0.5596 0.6012 0.860(-2) 0.3003  7.210  -1.4788 1.
1.5715 2.4600 0.4894 0.5326 0.138(-1) 0.3047 7.239  -1.4709 1.
0.01 1.6191 2.5001 0.5016 0.5416 0.119(-1) 0.2932 34.137 -4.8541 1.
1.5805 2.4989 0.4834 0.5234 0.134(-1) 0.2935 34.145 -4.8520 1.
0. 1.5790 2.5023 0.4819 0.5214 0.133(-1) 0.2917 oo -00 1.
1.5790 2.5023 0.4819 0.5214 0.133(-1) 0.2917 oo -00 1.

n=1

100. 1.4584 1.4834 0.9689 0.9811 0.541(-4) 0.6420 0.012  -0.5033 1.0001
1.3247 1.4249 0.8721 0.9268 0.119(-2) 0.6931  0.015 -0.5016 1.0019

10. 1.5150 1.6269 0.8853 0.9176 0.632(-3) 0.5648  0.127  -0.5282 1.0020
1.2778 1.5445 0.7254 0.8090 0.566(-2) 0.6287  0.141  -0.5209 1.0120

5. 1.5315 1.7002 0.8416 0.8793 0.114(-2) 0.5308 0.254  -0.5522 1.0041
1.2789 1.6204 0.6813 0.7618 0.731(-2) 0.5875  0.272  -0.5429 1.0182

2. 1.5484 1.8194 0.7762 0.8171 0.209(-2) 0.4811 0.610 -0.6130 1.0095
1.3064 1.7555 0.6357 0.7039 0.841(-2) 0.5198 0.633  -0.6029 1.0279

1. 1.5540 1.9145 0.7283 0.7689 0.290(-2) 0.4456 1.134  -0.6962 1.0155
1.3437 1.8689 0.6134 0.6709 0.831(-2) 0.4697 1.157  -0.6869 1.0345

0.5 1.5504 1.9972 0.6875 0.7267 0.368(-2) 0.4170  2.013  -0.8316 1.0222
1.3832 1.9690 0.5999 0.6491 0.784(-2) 0.4303 2.033 -0.8240 1.0395

0.2 1.5327 2.0716 0.6471 0.6848 0.459(-2) 0.3927 4.035 -1.1431 1.0304
1.4219 2.0592 0.5906 0.6332 0.727(-2) 0.3979  4.050 -1.1379 1.0434

0.1 1.5152 2.1033 0.6259 0.6630 0.516(-2) 0.3823  6.609 -1.5446 1.0354
1.4386 2.0974 0.5871 0.6272 0.702(-2) 0.3847 6.620 -1.5410 1.0450

0.01 1.4730 2.1360 0.5928 0.6297 0.628(-2) 0.3709 31.492 -5.4965 1.0441
1.4542 2.1356 0.5833 0.6207 0.675(-2) 0.3710 31.495 -5.4956 1.0467

0. 1.4547 21395 0.5824 0.6195 0.673(-2) 0.3690 oo -00 1.0470
1.4547 2.1395 0.5824 0.6195 0.673(-2) 0.3690 oo -00 1.0470
n=15

100. 1.2859 1.3080 0.9690 0.9812 0.536(-4) 0.7754 0.012  -0.4323 1.0002
1.1756 1.2583 0.8827 0.9330 0.982(-3) 0.8338  0.014  -0.4307 1.0033

10. 1.3390 1.4391 0.8869 0.9187 0.610(-3) 0.6787 0.120  -0.4605 1.0038
1.1574 1.3758 0.7564 0.8315 0.417(-2) 0.7434  0.129  -0.4547 1.0184

5. 1.3577 1.5091 0.8454 0.8820 0.107(-2) 0.6344 0.239  -0.4875 1.0079
1.1693 1.4509 0.7185 0.7907 0.522(-2) 0.6883  0.251  -0.4805 1.0277

2. 1.3841 1.6272 0.7860 0.8246 0.184(-2) 0.5681  0.575  -0.5555 1.0174
1.2100 1.5845 0.6797 0.7407 0.579(-2) 0.6014  0.589  -0.5484 1.0417

1. 1.4026 1.7244 0.7451 0.7827 0.241(-2) 0.5202 1.072  -0.6477 1.0272
1.2553 1.6958 0.6612 0.7126 0.558(-2) 0.5395 1.086  -0.6415 1.0512
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p? #/ay #/Ro az/ay asz/a; T,/|W] Q J E R/Ro
n=15

0.5 1.4148 1.8102 0.7123 0.7480 0.287(-2) 0.4822 1.909 -0.7969 1.0373
1.3004 1.7936 0.6503 0.6943 0.518(-2) 0.4920 1.920 -0.7920 1.0581

0.2 1.4176 1.8883 0.6817 0.7156 0.334(-2) 0.4502 3.839 -1.1383 1.0486
1.3437 1.8815 0.6431 0.6812 0.475(-2) 0.4538 3.848 -1.1351 1.0634

0.1 1.4128 1.9218 0.6665 0.6998 0.362(-2) 0.4370 6.300 -1.5773 1.0549
1.3624 1.9186 0.6404 0.6763 0.456(-2) 0.4386 6.306 -1.5751 1.0655

0.01 1.3927 1.9563 0.6438 0.6769 0.414(-2) 0.4229  30.114 -5.8918 1.0650
1.3806 1.9561 0.6376 0.6712 0.437(-2) 0.4230 30.115 -5.8913 1.0677

0. 1.3820 1.9602 0.6370 0.6703 0.435(-2) 0.4207 oo -00 1.0681
1.3820 1.9602 0.6370 0.6703 0.435(-2) 0.4207 oo -00 1.0681

n=25

100.  (0.9411) (0.9579) (0.9695) (0.9815) (0.516(-4)) (1.2373) (0.010) (-0.2050) (1.0011)
(0.8786) (0.9281) (0.9146) (0.9514) (0.491(-3)) (1.3094) (0.011) (-0.2041) (1.0085)

10. 0.9951 1.0761 0.8967 0.9250 0.485(-3) 1.0483 0.103 -0.2430 1.0161
(0.9160) (1.0520) (0.8372) (0.8865) (0.152(-2)) (1.0956) (0.105) (-0.2408) (1.0398)

5. 1.0268 1.1504 0.8664 0.8966 0.725(-3) 0.9504 0.207 -0.2783 1.0299
.9524 1.1326 0.8158 0.8614 0.169(-2) 0.9809 0.210 -0.2761 1.0573

2. 1.0882 1.2835 0.8317 0.8597 0.939(-3) 0.8062 0.505 -0.3641 1.0547
1.0270 1.2738 0.7961 0.8325 0.161(-2) 0.8195 0.508 -0.3623 1.0813

1. 1.1429 1.3939 0.8131 0.8379 0.976(-3) 0.7106 0.953 -0.4769 1.0732
1.0948 1.3886 0.7881 0.8177 0.141(-2) 0.7167 0.955 -0.4755 1.0955

0.5 1.1917 1.4899 0.8009 0.8228 0.960(-3) 0.6411 1.713 -0.6562 1.0880
1.1564 1.4872 0.7840 0.8086 0.122(-2) 0.6436 1.714 -0.6553 1.1048

0.2 1.2343 1.5754 0.7912 0.8110 0.934(-3) 0.5874 3.478 -1.0629 1.1009
1.2128 1.5745 0.7816 0.8026 0.107(-2) 0.5882 3.479 -1.0624 1.1114

0.1 1.2511 1.6116 0.7870 0.8059 0.926(-3) 0.5666 5.735 -1.5842 1.1068
1.2368 1.6112 0.7808 0.8005 0.101(-2) 0.5670 5.735 -1.5838 1.1138

0.01 1.2646 1.6485 0.7814 0.7997 0.933(-3) 0.5461 27.599 -6.7014 1.1145
1.2613 1.6485 0.7800 0.7984 0.952(-3) 0.5461 27.599 -6.7013 1.1161

0. 1.2641 1.6528 0.7799 0.7982 0.944(-3) 0.5434 oo -00 1.1164
1.2641 1.6528 0.7799 0.7982 0.944(-3) 0.5434 [e 3] -00 1.1164

2 Here 7= r/(1 + 1/p)"”* with p = M/M"; Q, J, and E are defined in eq. (3.26); R, is given by eq. (3.24); T,
and W are the kinetic energy (excluding the center-of-mass motion) and the self-gravitational energy of the

ellipsoid.

® For each value of p, the first line gives the dynamical instability limit and the second line gives the
irrotational Roche-Riemann limit. Data in parentheses indicate that the stars overlap.

Qz=i(l%)

M\r or
— 2GM (2111 — 122 — 133)

o3 Bty

2GM
=—5 (1+20), (10.3)

with 6 defined by equation (7.7). As already observed for
Roche binaries, our result does not agree with the expression
for Q2 used in the standard TV treatment of Ch69. In that
treatment, Q2 is determined by the requirement that certain
terms linear in the coordinates disappear from the fluid equa-
tion of motion, to lowest order (Ch69, § 61). This requirement
leads to the following expression for Q2 (cf. Ch69, eq. [8.111])

where we have expanded the result to quadrupole order, using
equation (B5) for . The gradient of the gravitational poten-
tial appears in expression ( 10.4), whereas the gradient of the
potential energy appears in our result, equation (10.3). Ex-
pression (10.4) ignores the fact that the tidal potential is not
constant over the interior of the stars and contains a factor of 2
error in the (leading-order) quadrupole correction to Kepler’s
law.'* The energy variational method is clearly superior here,
in that it provides naturally a self-consistent equilibrium rota-
tion law (but see Appendix C).

As before the condition dE/dp, = 0 leads to the virial rela-
tion (7.8), where now

1 GM? 1 GM
02 — g2 292 Wi=Wits——=-5—75 QLi~Lh~Iy). (105)
T or
_2GM[ 3 2Ly~ Iy~ Iy)
r} 2 Mr?
2GM 13 Note that instead of expanding expression (10.4) to quadrupole
- (1+59) (10.4) order, as we have done, Ch69 proceeds to evaluate &,,, exactly for a homo-
r3 i ) geneous ellipsoid. This does not, of course, remove the discrepancy.
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F1G. 16.—Plots of the instability and Roche limits as a function of the
mass ratio p = M/ M’ for Roche (a) and Roche-Riemann () systems with
n =0, 1, and 1.5. The critical binary separations are given in terms of the
reduced quantity 7 = r/(1 + 1/p)'/3, as in Tables 10 and 11. In (a) the
solid lines show the secular instability limits 7., the dotted lines show the
dynamical instability limits 7, , and the short-dashed lines give the Roche
limits 7;,. Also shown (long-dashed line) is the Roche limit calculated
from a simple Roche-lobe-type argument (cf. eq. [9.14]). In (b) the solid
lines show the dynamical instability limits 7,,,, and the dotted lines show
the Roche-Riemann limits 7.

The total equilibrium energy per star can be written

3—n 3-2n T 1
_ w _ s 0o 202
E, 3 ( —3—n|W|)+8MrQ
1 GM? 2n+3 M
—ET—T?(zlu_Izz_Iss), (10-6)

and the total angular momentum per star is given by J = 1, Q
with I, obtained from equation (10.1).
Following Ch69 (§ 61), we now introduce the quantities

n=90-27(P), (10.7)
Bn=0%—-2%(P), (10.8)
13 =—25(P)=eN(P) +25(P).  (10.9)

After manipulations similar to those described in § 4.1, the two
equilibrium conditions dE/d\, = dE/dN, = 0 can be written

0=.#4, _%'/”22_%'/”33‘*‘ Bl
=(le2)

1
- %ﬁzzlzz — 3833053

(10.10)
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where .4 ; are the components of the potential-energy tensor,
defined by equation (7.14). Together with the virial relation
(7.8), these two conditions can be rewritten in the symmetric
form

Moyt By = Moy A+ By,

U
=M33+B33I33=—;. (10.11)

These equations are the compressible equivalents of the condi-
tions (8.118) of Ch69. To proceed further and still follow Ch69
(§ 62) we must also introduce the quantities

1 1
& =5 OT(P) = 4 O,
(10.12)

1 1
=3 BH(P), as=7 PHP).

However, to be consistent with our form of Kepler’s law, equa-
tion (10.3), we must replace «, by

1 (oW,\ 1
(XTE—‘(T)-_——Qz.

1 (10.13)

To quadrupole order, we have «, = a3 = GM/(2r?). Using the
definitions (10.12) and (10.13) we can rewrite the first two
conditions (10.11) in the form

A,ai — 4a3
(2 + ay/af)ai + (af + ad) s/ af

~k
qnoy =

2
_ 4,03 — 4,3
(2 — ay/af)as + ajas/af”’

where &f = af/(7wGp). Equation (10.14) reduces to equation
(8.143) of Ch69 for n = 0 only when we replace af by «;.

(10.14)

10.2. Constructing Equilibrium Sequences

All equilibrium equations obtained for Roche ellipsoids in
§ 7.1 can be used to calculate Darwin ellipsoids as well, except
that now we use Q% = (1 + p)u(1 + 26) instead of equation
(7.17), and replace 6 in equations (7.18)-(7.20) by 2. We
also let the mass ratio p = 1 everywhere. The numerical proce-
dure for calculating sequences of Darwin binaries is then iden-
tical to that used in § 7.2 for Roche binaries. Alternatively, we
can use equation ( 10.14) explicitly, as done by Ch69. We have
verified that the numerical results of Ch69 (cf. his Table XXV)
are recovered exactly when we replace of by «, in equation
(10.14) and use his expression (8.136) for «; (this is equivalent
to using the exact form of ®,,, for a homogeneous ellipsoid in
the definitions [10.12]). As an additional check, we have also
verified that the relation dE = QdJ (cf. Appendix D) is satis-
fied to high numerical accuracy along all our calculated equilib-
rium sequences (but only when we use of and not when we
use ;).

Representative results are given in Table 12 forn =0, 1, 1.5,
and 2.5. No “Roche limit” is ever reached along the compress-
ible Darwin sequences. Instead, all sequences terminate when
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TABLE 12
COMPRESSIBLE DARWIN SEQUENCES®
r/a;®  r/R  a2fa1 azfar T./|W| Q J E R/Ro
n=20

6.0 6.092 0.9829 0.9722 0.299(-2) 0.1087 1.823 -1.2784 1.

5.0 5131 09707 0.9532 0.507(-2) 0.1408 1.704 -1.2911 1.

4.5 4.661 0.9602 0.9373 0.683(-2) 0.1628 1.647 -1.2985 1.

4.0 4.202 0.9441 0.9137 0.948(—2) 0.1906 1.595 -1.3065 1.

3.8 4.023 0.9352 0.9011 0.109(-1) 0.2037 1.576 -1.3098 1.

3.5 3.761 0.9183 0.8777 0.136(-1) 0.2260 1.551 -1.3144 1.

3.2 3.510 0.8951 0.8469 0.172(-1) 0.2519 1.532 -1.3182 1.

3.0 3.350 0.8747 0.8210 0.203(-1) 0.2713 1.525 -1.3199 1.
2.859* 3.242 0.8573 0.7995 0.229(-1) 0.2861 1.523 -1.3203 1.

2.7 3.128 0.8338 0.7716 0.264(-1) 0.3037 1.526 -1.3196 1.
2.324** 2.895 0.7556 0.6853 0.374(-1) 0.3488 1.560 -1.3098 1.

2.0 2.769 0.6494 0.5802 0.519(-1) 0.3860 1.646 -1.2822 1.

n=1
6.0 6.058 0.9910 0.9852 0.159(-2) 0.1095 1.791 -1.0801 1.0016
5.0 5.083 0.9845 0.9748 0.271(-2) 0.1426 1.661 -1.0942 1.0028
4.0 4.130 0.9701 0.9523 0.517(-2) 0.1950 1.531 -1.1129 1.0055
3.5 3.669 0.9559 0.9310 0.754(-2) 0.2332 1.470 -1.1241 1.0082
3.2 3.401 0.9429 0.9121 0.966(-2) 0.2617 1.437 -1.1311 1.0108
3.0 3.229 09314 0.8958 0.115(-1) 0.2835 1.418 -1.1356 1.0132
2.8 3.062 09166 0.8755 0.139(-1) 0.3077 1.403 -1.1396 1.0163
2.6 2.904 0.8975 0.8501 0.168(-1) 0.3345 1.392 -1.1426 1.0205
2.5 2.828 0.8858 0.8350 0.186(-1) 0.3489 1.389 -1.1436 1.0231
2.405* 2.760 0.8731 0.8190 0.205(-1) 0.3629 1.388 -1.1439 1.0260
2.2 2.624 0.8387 0.7774 0.256(-1) 0.3948 1.394 -1.1419 1.0344
2.0 2.516 0.7932 0.7256 0.322(-1) 0.4258 1.416 -1.1341 1.0463
n=15
6.0 6.046 0.9938 0.9898 0.109(-2) 0.1099 1.778 -0.9379 1.0022
5.0 5.067 0.9894 0.9825 0.187(-2) 0.1432 1.644 -0.9526 1.0038
4.0 4.104 09794 0.9667 0.359(-2) 0.1966 1.506 -0.9726 1.0075
3.5 3.636 0.9695 0.9513 0.528(-2) 0.2360 1.439 -0.9851 1.0113
3.2 3.363 0.9604 0.9376 0.680(-2) 0.2656 1.400 -0.9934 1.0148
3.0 3.185 0.9522 0.9255 0.815(-2) 0.2884 1.377 -0.9990 1.0180
2.8 3.013 0.9417 0.9103 0.986(-2) 0.3140 1.356 -1.0045 1.0223
2.6 2.847 0.9280 0.8911 0.121(-1) 0.3425 1.338 -1.0096 1.0280
24 2.691 0.9099 0.8664 0.149(-1) 0.3740 1.325 -1.0135 1.0358
2.3 2.618 0.8985 0.8514 0.167(-1) 0.3908 1.322 -1.0147 1.0409
2.200* 2.548 0.8854 0.8344 0.187(-1) 0.4080 1.320 -1.0152 1.0470
2.0 2.425 0.8515 0.7925 0.238(-1) 0.4431 1.327 -1.0126 1.0634
n=25

6.0 6.039 0.9976 0.9960 0.429(-3) 0.1100 1.759 -0.4818 1.0043
5.0 5.056 0.9958 0.9931 0.740(-3) 0.1436 1.618 -0.4971 1.0075
4.0 4.088 0.9919 0.9866 0.143(-2) 0.1976 1.470 -0.5188 1.0147
3.0 3.159  0.9809 0.9691 0.333(-2) 0.2912 1.319 -0.5500 1.0352
2.8 2.983 0.9766 0.9623 0.407(-2) 0.3173 1.291 -0.5574 1.0436
2.6 2.814 0.9709 0.9535 0.504(-2) 0.3466 1.265 -0.5650 1.0548
2.4 2.653 0.9632 0.9419 0.632(-2) 0.3788 1.241 -0.5723 1.0703
2.3 2.578 0.9584 0.9346 0.713(-2) 0.3959 1.231 -0.5757 1.0803
2.2 2.506 0.9527 0.9262 0.807(-2) 0.4134 1.223 -0.5786 1.0924
2.1 2.439 09459 0.9163 0.918(-2) 0.4310 1.216 -0.5810 1.1072
2.0 2.377 09378 0.9047 0.105(-1) 0.4483 1.212 -0.5825 1.1253

2Here p = 1, Q, J, and E are defined in eq. (3.26); R, is given by eq. (3.24); J and E are the
total angular momentum and total equilibrium energy (2 times eq. [10.6]) of the system.
b One asterisk marks the secular instability limit, two the dynamical instability limit.
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—0.08¢ stars are in contact. For comparison, Figure 17 also shows the
—0.1F curves obtained for n = 0 when Q2 = QZ, (eq. [10.4]) is used
_0.12 3 (this repljoduces the results of Ch69). We note that the result-
_F T ing equilibria do not exactly satisfy the relation dE = QdJ. In
= -0.14 particular, the minima of the equilibrium J(r) and E(r)
~0.16F curves do not coincide when Q2 = QZ,.
-0.18- 10.3. Comparison with Other Work
= Recent numerical calculations involving polytropes in syn-
1.6 = chronized circular binaries have been performed by Hachisu
_15F R (1986b), wusing a three-dimensional self-consistent-field
14 N — ::;‘:'i - method, and by Rasio & Shapiro (1992, 1993), using SPH. To
E - - - 3 assess the accuracy of our approximations, we have made
13 7777 _—— E some detailed comparisons of these numerical treatments with
12 = — — | | 3 the results of § 10.2. o
— — —— — In Figure 18 we show our predicted variation of £, Jand Q2
F 3 as a function of r near the end (point of contact) of the n = 1
0.15F = sequence, compared to the results of SPH simulations. Figure
- ] 19 shows equilibrium curves of 2 versus F and J for n = 0 and
502 0.1 E B 0.5, compared to the numerical results of Hachisu (1986b). In
0.05 = e both cases the agreement is clearly excellent. Most impor-
E 3 tantly, both numerical treatments, which make no simplifying
0F 5 assumptions concerning the internal structure of the stars or

F1G. 17.—Equilibrium curves of total energy (2 X eq. [10.6]), total
angular momentum, and orbital angular frequency as a function of binary
separation along the compressible Darwin sequences with n = 0 (solid
lines), n = 1 (dotted lines), n = 1.5 (short-dashed lines), and n = 2.5
(long-dashed lines). The units for E and J are defined in eq. (3.26). The
quantity E_ = —2(3 — n)/(5 — n) has been subtracted from F for conve-
nience. For Q, the fractional deviation 6Q2 = (2 — Q%)/Q% from the
Keplerian value Q% = 2GM/r® is shown. The binary separation r is given
in units of the radius R, of a spherical polytrope with the same mass and
entropy (eq. [3.24]). For comparison, we also show the results obtained by
Ch69 using the TV method for n = 0 (dotted-dashed lines).

the surfaces of the two stars are in contact. The last entry for
each sequence in Table 12 corresponds to this point of con-
tact.!* As in the cases of Roche and Roche-Riemann binaries,
we see that, for a given separation r, more compressible stars
have a smaller deformation.

Figure 17 shows the variation of E, J, and 2 along several
Darwin sequences. The curves terminate at the point where
the stellar surfaces are in contact. In contrast to the results of
§§ 7.2 and 8.2 for Roche and Roche-Riemann binaries, we
note here that not all equilibrium E(r) and J(r) curves exhibit
a minimum. There exists a critical polytropic index ng;, ~ 2.0
such that the minimum coincides with the point of contact
(see § 10.4). As a consequence (cf. §§ 9 and 10.4), when n >
Nee (1€, for sufficiently high compressibility, with T' < 2,
stable Darwin configurations can exist all the way until the

14 If we formally extend our results past this point, they become incor-
rect, since expression (10.2) for W; was written for a detached configura-
tion (cf. Appendix B). However, it is physically possible to construct equi-
librium configurations for two overlapping stars and to extend the Darwin
sequence smoothly past the point of contact (see Hachisu 1986b).

the gravitational field, confirm the existence of a minimum of
E(r) and J(r). This provides reassurance that the minimum
identified here is real, and not the result of our use of the
ellipsoidal approximation, or the quadrupole approximation.
However, we note that the minimum occurs slightly earlier
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F1G. 18.—Comparison of our predicted equilibrium curves (solid
lines) for the n = 1 Darwin sequence with the results of SPH calculations
(dots). All quantities are defined as in Fig. 17.
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FI1G. 19.—Comparison of our predicted equilibrium curves for the n = 0 (solid lines) and n = 0.5 (dashed lines) Darwin sequences with the numerical
results of Hachisu ( 1986b) for n = 0 ( filled circles) and n = 0.5 ( filled squares). Here units based on the mean radius R (rather than R, ) have been used, as in
Fig. 8, and we have subtracted £, = —2(3 — n)/(5 — n) from E for convenience.

along the sequence in the numerical solutions. This is because
the quadrupole approximation underestimates the magnitude
of the gravitational interaction energy when the stars are near
contact (cf. eq. [10.6]).

10.4. Stability of Darwin Binaries

The secular stability of compressible Darwin binaries can be
studied exactly as we did in § 9.1 for Roche binaries. As ex-
pected from our discussion in § 2.3, we find that the point of
onset of secular instability along a Darwin sequence corre-
sponds to the minimum of E,,(r) identified in § 10.2. We can
also identify the onset of dynamical instability along a Darwin

sequence by using the energy function of a “Darwin-Rie-
mann” ellipsoid (the analogue of the Roche-Riemann ellip-
soids considered in §§ 8 and 9.2) in condition (2.15). The
details will be given elsewhere (Lai, Rasio, & Shapiro 1993b).
As in the case of Roche binaries, we find that, when both insta-
bilities occur along a compressible Darwin sequence, 7, >
Tayn- The values of r.. and ryy,, as well as the corresponding
equilibrium parameters, are listed in Table 13. In Table 14 we
also give the values of r,y, for the irrotational (€ = 0) Darwin-
Riemann sequences.

As already noted in § 10.2, there exists a critical polytropic
index 7., =~ 2.0 such that the secular instability of Darwin
binaries disappears when n > n;,. For comparison here, the

TABLE 13
STABILITY LIMITS ALONG THE DARWIN SEQUENCES*
nt r/ay r/Ro a2/ay a3/ay T./|W| Q J E R/Ro
Secular Stability Limits

0.0 2.8586 3.2422 0.8573 0.7995 0.229(-1) 0.2861 1.523 -1.3203 1.

0.1 2.8104 3.1905 0.8585 0.8010 0.227(-1) 0.2930 1.510 -1.3061 1.0020
0.5 2.6250 2.9922 0.8641 0.8078 0.219(-1) 0.3221 1.455 -1.2425 1.0112
0.7 2.5357 2.8973 0.8674 0.8119 0.214(-1) 0.3379 1.428 -1.2059 1.0166
0.8 2.4918 2.8508 0.8692 0.8142 0.211(-1) 0.3460 1.415 -1.1863 1.0195
1.0 2.4055 2.7600 0.8731 0.8190 0.205(-1) 0.3629 1.388 -1.1439 1.0260
1.5 2.2004 2.5484 0.8854 0.8344 0.187(-1) 0.4080 1.320 -1.0152 1.0470
2.0 2.0228 2.3782 0.9029 0.8571 0.160(-1) 0.4509 1.256 -0.8397 1.0794
(21) (1.9938) (2.3540) (0.9074) (0.8631) (0.153(-1)) (0.4575) (1.244) (-0.7965)  (1.0883)

Dynamical Stability Limits

0.0 2.3245 2.8946 0.7556 0.6853 0.374(-1) 0.3488 1.560 -1.3098 1.

0.1 2.2816 2.8495 0.7566 0.6863 0.373(-1) 0.3570 1.547 -1.2953 1.0038
0.5 2.1146 2.6772 0.7609 0.6909 0.367(-1) 0.3916 1.495 -1.2298 1.0218
0.7 2.0329 2.5953 0.7635 0.6936 0.363(-1) 0.4099 1.470 -1.1921 1.0329
(0.8) (1.9925) (2.5556) (0.7650) (0.6951) (0.361(-1)) (0.4194) (1.457) (-1.1717)  (1.0391)

2 0, J,and E are defined in eq. (3.26); R, is given by eq. (3.24); J and E are the total angular momentum and total
equilibrium energy (2 times eq. [10.6]) of the system.
b Data in parentheses indicate that the stars overlap.
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TABLE 14
STABILITY LIMITS ALONG THE € = 0 DARWIN-RIEMANN SEQUENCES®

nt r/a r/Ro az/a; a3/a; T./|IW| Q J E R/Ro
0.0 2.5820 3.0368 0.7671 0.8013 0.189(-2) 0.3191 1.291 -1.3521 1.

0.1 2.5334 2.9802 0.7678 0.8019 0.187(-2) 0.3282 1.278 -1.3387 1.0008
0.5 2.3441 2.7592 0.7716  0.8049 0.178(-2) 0.3681 1.228  -1.2790 1.0042
0.7 2.2515 2.6511 0.7738 0.8067 0.173(-2) 0.3907 1.203 -1.2447 1.0063
0.8 2.2056 2.5975 0.7751 0.8077 0.170(-2) 0.4027 1190  -1.2263 1.0075
1.0 2.1146 2.4913 0.7779 0.8100 0.164(-2) 0.4285 1.165 -1.1866 1.0100
1.2 2.0244 2.3862 0.7812 0.8126 0.157(-2) 0.4569 1.139 -1.1425 1.0130
(1.3) (1.9798) (2.3342) (0.7830) (0.8141) (0.153(-2)) (0.4721) (1.126) (-1.1186) (1.0147)

2 Q, J, and E are defined in eq. (3.26); R, is given by eq. (3.24); J and E are the total angular momentum and total

equilibrium energy of the system.
b Data in parentheses indicate that the stars overlap.

numerical results of Hachisu (1986b) appear to indicate that
Mo =~ 1.5 (see his Fig. 10). Similarly, we find that the dynami-
cal instability of Darwin binaries disappears for sufficiently
compressible configurations with 7 > n4, ~ 0.7. This is in
agreement with the results of recent three-dimensional hydro-
dynamic simulations of polytropes in binaries using SPH (Ra-
sio & Shapiro 1993), which indicate that 1y, =~ 1. Forn =0,
our result 74,/ Ry = 2.8946 (Table 13) is also in remarkable
agreement with that of Tassoul (1975), who finds 74,/ R, =
2.8956 using a TV treatment.!® This is in contrast to the case of
Roche binaries (§ 9), where our result for the dynamical stabil-
ity limit along an n = 0 sequence differs fundamentally from

!5 Tassoul (1975) pointed out an error in the original calculation by
Ch69, which was corrected in the revised (1987) Dover edition of his work;
see also Chandrasekhar (1975).

that of Ch69. For the irrotational (4 = 0) Darwin-Riemann
sequences, we find that the dynamical instability does not exist
when n 2 1.2 (see Table 14).
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APPENDIX A
SOME USEFUL EXPRESSIONS

Here, for convenience, we give some useful expressions needed to evaluate the determinant appearing in the stability condi-
tion (2.15). These are the derivatives of 4 (eq. [4.10]), A. (eq. [5.12]), and .# (eq. [4.2]) with respect to X\, = (a;/a,)*? and

A= (as/az)2/3~
Consider first

_2R* 2\ _ 13
h = a% T ag = )\? T )\% > R = (aa,a5)'" . (Al)
Defining
A oh NN 9%h
hay h oN,’° ha h NN’ (A2)
we have
P 33 =2a%—a§
= N+X at+al’
_ 2a5—ai
hey = al+a?’

N = TNAH NS

(A3)

at— T1a%a3 + a3

hany = hay =2

ON3NS
hazy = hayhoy + 2

(M +0)?

N+ M)

(at+a3)* ~
2,2
9aia;

hayhoy t ——35= -
e G+ a3y
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Next, consider
2R? 2
@ T e ARG Ad
We define
\; 0h NN, 9%k
=t = iy = — = A5
b h. O\’ By h. O\ O\ (AS)
and obtain
_2a,ta,
heay = a,Fa’
B = 2a, * a,
=D 4, Fa
(A6)
L _h _4a} + 19a,a, + 4a3
+(11) — TPx(22) T 2(01 = 02)2 s
b _q _6(a; £ ay/2)(xa, + a,/2)
=02 (a, ¥ a;)’ '
Finally, consider
Defining
\; 0. NN 9%F
J(’) N2 (9)\1 > @) Y3 a)\‘ a)\j H (AS)
we have
— 1 2
Fay= z‘i(?’alAl -F),
1 2
j(z) = Z_j (3az4, — #),
3
Fay = Y2 (—9a31B,, + a34, + a34,), (A9)

3
L2 = Y2 (=9a3By, + aid, + a34,),

1
F = YY3 (9a%a2A4,, — 2a%A4, — 2a%4, + a%4;) .
To derive expressions (A9), various relations between the index symbols 4;, A;, and B given in chapter 3 of Ch69 have been used.

APPENDIX B
INTERACTION ENERGY

Consider a binary system consisting of two ellipsoidal stars with masses M and M'. By definition their gravitational interaction
energy is given by

1
I’Vi =_f p<I>’°’“a'3x+lf p"I’ede?’X’, (Bl)
2J, 2J,
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where & and ®'°* are the gravitational potentials due to M and M’. Momentarily focus on the star of mass M and introduce two
coordinate systems: (x; ), centered on that star, and (X;) centered on its companion. Both x, and X, are measured along the axis of
the binary, increasing from M’ toward M, while x; and X; are along the rotation axis. To quadrupole order, and denoting by P the
center of mass of M, at X = (r, 0, 0), we have

qyext(x) — (I,rext(P) + (Xl _ r)‘P'C’“(P) + (Xl _ r)zd)lexl(P) + lXZq)’ext(P) + leq,/ext(P) s (BZ)

where we are indicating derivatives with respect to X; by a comma. A similar expression can be written for °**(X"'). Insertion
into equation (B1) then gives

_ qu),ext(P) +1 (plem(P)L-j + %MI@C)Q(PI) + 1 q)ext(P/)IU , (B3)
where
I;= f px; x;d>x = %K"(I%M&-j (no summation) (B4)
14

is the quadrupole tensor of M (cf. eq. [4.8], where I = I, + I,,), and a similar expression gives I ;; for M". Here, in evaluating
expression (B1), we have made explicit use of the triplanar symmetry of the two ellipsoidal conﬁguratlons We now expand
F(X), ®(X’) and their derivatives to quadrupole order,

GMI 1 , XXm
q)rext(X) ——r———G(3I Ikkalm)—:rs (BS)

q)’ext( X)= GM

- r?y), (B6)

and similar expressions for (X ') and ®'g(X’). Evaluating these expressions at X = (r, 0, 0) we obtain from equation
(B3),

GMM' 1 GM’ l GM I
r - 2 (2111 122 133) 3 (21 22 33)- (B7)

I/]’/’i=_

The dependence of W, on p., p., and A, A,, A}, A\, can be made explicit by writing, in analogy with equations (4.7)-(4.9),

- hj(xla A2)

L=~ M, (B8)
where
hls)\%z, hZE—;\—%‘, hy =X\, (B9)
and similar expressions for I'; and /4.
APPENDIX C

ROTATION LAW IN THE TENSOR VIRIAL METHOD

In our energy variational method, the orbital angular velocity of a binary system is naturally given by equation (7.6), that is,

1+ p\ oW,
2 (T E) 9
& (Mr) or ’ (C1)

where p = M /M’ is the mass ratio, r is the binary separation, and W, is the gravitational interaction energy, equation (B1). This
result is physically intuitive: it states that the centrifugal force acting on the center of mass of M is the gradient of the interaction
energy between M and M'. However, Q given by equation (C1) is different from the value usually assumed in the tensor virial (TV)
treatment (see, e.g., Ch69, § 55, where the Keplerian value is used for the Roche problem). Here we show that, with appropriate
application of the TV equations, expression (C1) can also be derived.
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Consider the fundamental hydrostatic equilibrium equation governing the fluid elements of M in a rotating coordinate frame
centered on M. The component of this equation along the x-axis, pointing from M to M’, is given by

_ 9% 0 s e+ Lloix—r )
0= - tp | =B =&+ 0 (x )’ (C2)

where ® and ¥ are the gravitational potentials due to M and M’, respectively, and r_,, = r/(1 + p) is the distance from the center of
mass of the binary to the center of mass of M. Equation (C2) is the x-component of equation (8.1) in Ch69, where we have set the
internal velocity in the rotating frame u# = 0 in seeking a stationary state. In applying the TV method, the self-consistent value of Q
should be determined from the virial equation of the first order (Ch69, eq. [2.42]), which is obtained by simply integrating the
above equation over the volume occupied by the fluid. Since

aP a9
3y — =0 = 3xp —
fdxax 0 dep i’ (C3)

we have

Mr@? _f3 0

(1 ) Xxp ol (C4)

—f AxpQ*(x — rom) = Mr,Q> =

But the last expression in equation (C4) may be rewritten as

fd3XP(x)—fd3 e f‘” f‘” R (C5)

|x — x—rl |lx —x'—r| Or

where p(x) and p'(x’) are the density profiles in M and M’, respectively, and r is the separation vector from the center of M to the
center of M. Equating (C4) and (C5) we thus recover equation (C1 ) within the TV approach. For a single star, the virial equation of
the first order simply gives the uniform motion of the center of mass; for a binary, it is the equation from which Q should be
determined self-consistently. The analysis given in Ch69 (§§ 55 and 61) does not take advantage of this point. We note that the use
of expression (C1) for Q does not affect the form of the virial equations of the second order, from which the equilibrium configura-
tion is determined: “unwanted” (linear) terms in the equilibrium equation of motion due to the use of expression (C1) vanish when
integrated to obtain the second-order virial equations. Thus the structure equations given in Ch69 for incompressible Roche and
Darwin ellipsoids are unchanged, except that expression (C1) should be used for Q in these equations.

Recalling equation (B1) or (B7) for W;, we note that expression (C1) for Q is symmetric with respect to exchange of M and M’
This symmetry guarantees the existence of solutions to the Darwin problem for arbitrary values of the mass ratio p (in § 10 we solve
the Darwin problem for the special case p = 1). By contrast, the expression for @ = Q, adopted in the standard TV analysis (eq.
[10.4]) is only symmetric when p = 1 and in the limiting case where p — 0. Only for these special cases will the Darwin problem
yield consistent solutions if Q@ = Q,, as pointed out by Ché69.

APPENDIX D
RELATION BETWEEN E, J, AND ¥ ALONG EQUILIBRIUM SEQUENCES
Here we show how the general result (Ostriker & Gunn 1969)
dE = QdJ (D1)

along an equilibrium sequence of uniformly rotating configurations of fixed mass and entropy can be generalized to Riemann-S and
Roche-Riemann ellipsoidal configurations. Following Ostriker & Gunn (1969), we write

dE=E dJ+—
aJ e

oE
€

dg+3 3L day, (D2)
a;,J

k aak ajtoy,J,€

where (o;) denotes the independent variables, (A, A,, R) or (A, \,, p.). Along an equilibrium sequence we have (3E/de;) = 0 so
that the last term in expression (D2) vanishes. For Riemann-S ellipsoids we recall (§ 5.1) that the kinetic energy can be written 7' =
T, + T_ with (cf. egs. [5.6] and [5.11])

(J+ €)?

Y 7B D3
2k M(ay F a,)* (D3)

T, =
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and

J+ € =1k, M(a, F ) (2 £ A). (D4)

Therefore we have

GE| _oT| _ 2T, 2T
aJ s aJ . J+€) (J-%)
1 1
_§(Q+A)+5(Q—A)
=Q, (D5)
and
OE _oT _2r., 2T
0¢|, , o€¢| , (J+€) (J-9)
1 1
—5(Q+A)—§(Q—A)
=A, (D6)
Substituting into equation (D2) then gives the desired result,
dE = QdJ + Ad€ (D7)

along a Riemann-S sequence. Using equations (8.1) and (8.2) it is straightforward to show that the same result holds along

Roche-Riemann binary sequences.
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