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ABSTRACT

We study the importance of hydrodynamic effects on the evolution of coalescing binary neutron stars.
Using an approximate energy functional constructed from equilibrium solutions for polytropic binary configu-
rations, we incorporate hydrodynamic effects into the calculation of the orbital decay driven by gravitational
wave emission. In particular, we follow the transition between the quasi-static, secular decay of the orbit at
large separation and the rapid dynamical evolution of configurations approaching contact. We show that a
purely Newtonian hydrodynamic instability can significantly accelerate the coalescence at small separation.
Such an instability occurs in all close binary configurations containing sufficiently incompressible stars. Calcu-
lations are performed for various neutron star masses, radii, and spins. The influence of the stiffness of the
equation of state is also explored by varying the effective polytropic index. Typically, we find that the radial
infall velocity just prior to contact is about 10% of the tangential orbital velocity. Once the stability limit is
reached, the final evolution only takes another orbit. Post-Newtonian effects can move the stability limit to a
larger binary separation, and may induce an even larger radial velocity. We also consider the possibility of
mass transfer from one neutron star to the other. We show that stable mass transfer is unlikely except when
the mass of one of the components is very small (M < 0.4 M) and the viscosity is high enough to maintain
corotation. Otherwise, either the two stars come into contact or the dynamical instability sets in before a
Roche limit can be reached.

Subject headings: binaries: close — hydrodynamics — instabilities — radiation mechanisms: nonthermal —
stars: neutron — stars: rotation

1. INTRODUCTION from coalescing neutron star binaries have focused on the
signal emitted during the last few thousand orbits, as the fre-

Coalescing neutron star binaries have long been recognized
& 8 g quency sweeps upward from about 10 to 1000 Hz. The wave-

as a most promising source of gravitational radiation that . ’ ) )
could be detected by the new generation of laser interferome- forms in this regime can be calculated fairly agcurately by
ters such as LIGO (Clark 1979; Thorne 1987; Abramovici et performing high-order post-Newtonian expansions of the
al. 1992; Cutler et al. 1993). Statistical arguments based on the equations of motion for two point masses (Lincoln & Will
observed local population of binary pulsars and Type Ib super- 1990; Junker & Schafe_r 1992). Accuracy is essential hpre since
novae lead to an estimate of the rate of neutron star binary the observed signal will be matched against theorest,lcal tem-
coalescence in the universe of about 10~7 yr~! Mpc~2 plates. Since the templates must cover more than 10° orbits, a

(Narayan, Piran, & Shemi 1991; Phinney 1991). Finn & Cher- fractional error as small as 10~ 3 can prevent detection. When,
noff (1993) estimate that an advanced LIGO detector could at the end of the inspiral, the binary separation becomes com-
observe about 70 events per year. In addition to providing a parable to the stellar radii, hydrodynamic effects become
major confirmation of Einstein’s theory of general relativity, important and the character of the waveforms will be different.
the detection of gravitational waves from coalescing binaries at Special purpose narrow-band detectors that can sweep up fre-
cosmological distances could provide the first accurate mea- quency in real time will be used to try to catch the final few
surement of the universe’s Hubble constant and mean density cycles of gravitational radiation (Meers 1988; Strain & Meers
(Schutz 1986; Cutler et al. 1993). Coalescing neutron stars may 1991). In this terminal phase of the coalescence, the waveforms
also produce intense bursts of neutrinos and high energy should contain information not just about the effects of rela-
photons, and could be the source of extragalactic gamma-ray tivity, but also about the internal structure of neutron stars.
bursts (E’ichler et al. 1988 ; Paczyfski 1986, 1991). Since the masses and spins of the two stars, as well as the

Recent calculations of the gravitational radiation waveforms orbital parameters can be determined very accurately from the

lower frequency inspiral waveform, a simple determination of

the maximum frequency f;,,, reached by the signal should

. ) o provide a measurement of the neutron star radii and place

, Departments of Astronomy and Physics, Cornell University. severe constraints on nuclear equations of state (Cutler et al.
Hubble Fellow. . .

1993). Such a measurement requires theoretical knowledge

3 Department of Astronomy and Department of Physics, Cornell Uni- '
versity. about all relevant hydrodynamic processes.
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Two regimes can be distinguished in which different hydro-
dynamic processes take place. The first regime corresponds to
the 10 or so orbits preceding the moment when the surfaces of
the two stars first come into contact. In this regime, the two
stars are still approaching each other in a quasi-static manner,
but the tidal effects are very large. The second regime corre-
sponds to the subsequent merging of the two stars into a single
object. This involves very large departures from hydrostatic
equilibrium, including mass shedding and shocks, and can be
studied only by means of three-dimensional, fully hydrody-
namic computations (Nakamura & Oohara 1991, and refer-
ences therein; Rasio & Shapiro 1992). By contrast, in the first
regime, the evolution of the system can be described fairly
accurately by a sequence of near-equilibrium fluid configu-
rations. We adopt such a description in this paper. Since
neutron stars are not very compressible, the equilibrium con-
figurations are not very centrally condensed and the usual
Roche model for close binaries (e.g., Kopal 1959) does not
apply. Instead, the hydrostatic equilibrium equation must be
solved in three dimensions for the structure of the system.

In two recent papers (Lai, Rasio, & Shapiro 1993b, 1994,
hereafter LRS1 and LSR2), we have used an approximate
energy variational method to study analytically the hydrostatic
equilibrium and stability properties of Newtonian binary
systems obeying polytropic equations of state. In particular, we
have constructed the compressible generalizations of all the
classical solutions for binaries containing incompressible ellip-
soidal components (Chandrasekhar 1969). The so-called
Darwin-Riemann configurations are of special importance for
modeling neutron star binaries. They are generalizations of the
Roche-Riemann configurations originally introduced by
Aizenman (1968) to describe an incompressible star in circular
orbit around a point mass.* Kochanek (1992) first pointed out
the importance of these configurations for modeling neutron
star binaries. In Darwin-Riemann binaries of the type con-
sidered here, fluid motions with uniform vorticity parallel to
the rotation axis are present in the corotating frame of the
binary system, These configurations represent a simple model
of a close binary containing stars whose spins are not necessar-
ily synchronized with the orbital motion. Indeed, it has been
argued recently that the synchronization time of neutron star
binaries may remain very long compared to their orbital decay
timescale (Kochanek 1992; Bildsten & Cutler 1992). In the
limit where the viscosity is negligible (leading to an infinite
synchronization time), the fluid circulation is strictly conserved
and an asynchronous configuration of the Darwin-Riemann
type is expected (Miller 1974; Kochanek 1992). The value of
the circulation is determined by the initial spins of the two
neutron stars at large binary separation. If the stars spin uni-
formly at large separation, the vorticity will remain uniform.
Similarly, if the spins are initially aligned with the rotation axis
of the binary (a most likely configuration), the vorticity vector
will remain aligned as well. Detailed calculations of the proper-
ties of Darwin-Riemann binaries are presented in LRS1 (for
two identical components) and LRS2 (for nonidentical
components).

An important result found in LRS! is that Darwin-Riemann
configurations containing a sufficiently incompressible fluid can
become hydrodynamically unstable. Close binaries containing

4 A Roche-Riemann binary consists of a star and point mass, while a
Darwin-Riemann binary consists of two finite-size stars.
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neutron stars with stiff equations of state (I' 2 2) should there-
fore be particularly susceptible to these instabilities. As the
dynamical stability limit is approached, the secular orbital
decay driven by gravitational wave emission can be dramat-
ically accelerated. It is this approach toward instability that we
intend to study here. When the stability limit is reached, the
two stars plunge almost radially toward each other, and merge
together into a single object after just a few orbits. The compli-
cated three-dimensional hydrodynamics characterizing this
very short terminal phase of the evolution can only be studied
with large-scale computer simulations (Nakamura & Oohara
1991; Rasio & Shapiro 1992). In contrast, the long transition
between the very slow secular decay of the orbit at large
separation and the more rapid inspiral as the stability limit is
approached is better explored using quasi-analytic methods.
The analytic results should also prove helpful in the construc-
tion of better initial conditions for the numerical simulations.
Indeed, nonsynchronized initial conditions are particularly dif-
ficult to deal with numerically (for recent attempts, see Shibata,
Nakamura, & Oohara 1992, 1993; Davies et al. 1993).

In a previous study (Lai et al. 1993a, hereafter Paper I), we
modeled the hydrodynamic and tidal effects associated with
finite-size, spinning components by modifying the orbital evol-
ution equations for two point masses in a simple, heuristic way.
In this paper, we improve our treatment by introducing the full
binary equilibrium solutions for polytropes calculated in
LRS1. Specifically, we model a neutron star binary as a
Darwin-Riemann configuration containing two triaxial poly-
tropes. We calculate the orbital evolution of the system as the
stability limit is approached and we study how the radial infall
evolves from secular to dynamical. Because of the simplicity of
our method, we can perform a large number of calculations,
systematically surveying all relevant parameters such as the
stellar masses, radii, and spins. We also vary the polytropic
index of the fluid to mimic the mean stiffness of the nuclear
equation of state. All of these parameters can be chosen separa-
tely for each of the two companion stars. However, we focus
our attention on binaries containing two identical neutron
stars. Indeed, all the measured masses of neutron stars in our
Galaxy appear to be narrowly clustered around 14 Mg
(Thorsett et al. 1993). An important simplifying assumption
which remains in the present treatment is that at any separa-
tion the internal degrees of freedom of the two stars (surface
deformations and central densities) are calculated from the
values in circular equilibrium while we follow the orbital
decay. This approximation is reasonable whenever the orbital
timescale remains shorter than the radial infall timescale, but
longer than the internal dynamical timescale of each star. In a
future paper, we will derive and solve the generalized evolution
equations for a binary configuration in which all degrees of
freedom are allowed to vary dynamically.

In § 2 we present our Darwin-Riemann equilibrium model
for binaries containing two identical stars. We also mention
briefly Darwin-Riemann models for two stars with unequal
masses, as well as Roche-Riemann models of neutron-star-
black-hole binaries. The orbital evolution of these models is
calculated in §§ 3 and 4. General relativistic corrections to the
orbital motion are discussed in § 5. In § 6, we examine the
different types of terminal evolutions that are possible when
the two stars have different masses. In particular, we address
the possibility that stable mass transfer from one neutron star

_ to the other may occur (as first suggested by Clark & Eardley

1977). In § 7, we summarize our main results.
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2. DARWIN-RIEMANN EQUILIBRIUM MODELS FOR CLOSE
BINARIES

2.1. Basic Equations

In this section, we derive equilibrium equations for com-
pressible Darwin-Riemann binary configurations containing
two identical polytropes. We use an energy variational method
together with an ellipsoidal approximation to obtain those
equations. Under the combined effects of centrifugal and tidal
forces, each polytrope assumes a nonspherical equilibrium
configuration which we approximate by a triaxial ellipsoid. As
in the classical Darwin problem, we assume that the two ellip-
soidal figures corotate with the orbital angular velocity (i.e., we
consider only stationary tides), but, as in the classical Riemann
ellipsoids of type S, we allow for internal fluid motions with
uniform vorticity parallel to the rotation axis. More details
about the method and a number of applications to other types
of binary and isolated rotating configurations can be found in
LRS1and LRS2.

Consider a binary system containing two identical poly-
tropes of mass M and polytropic index n, in circular orbit
about each other. The density and pressure are related by

P= Kpr s (1

where the adiabatic exponent I' = 1 + 1/n. The constant K
measures the specific entropy and is the same for both stars.
We denote the central density by p. and the binary separation
by r. We make the assumption that the surfaces of constant
density within each star can be approximated by self-similar
ellipsoids. The geometry of the configuration is then completely
specified by the three principal axes of the outer surfaces, a;,
a,, and a,, with a, measured along the axis of the binary, a,
measured in the direction of the orbital motion, and a; mea-
sured along the rotation axis. In addition, we assume that the
density profile p(m), where m is the mass interior to an iso-
density surface, is identical to that of a spherical polytrope of
same volume and entropy. This assumption is satisfied exactly
for an incompressible fluid (n = 0). For compressible fluids,
detailed comparisons with three-dimensional numerical calcu-
lations (see LRS1) show that it remains satisfied to high accu-
racy even for very distorted, rapidly rotating configurations.

Under these assumptions, the total internal energy in the
system is given by

U=2fn§dm=2k1Kp}/"M, @)

and the total self-gravitational potential energy (setting G = 1)
is

30\ M2 .
=—2x <5_n> — f= =2k, M3p13f  (3)

In this expression, we have introduced the mean radius R =
(a; a, a3)'” and the dimensionless quantity

Ajal + A,a3 + Aya?
2R? ’

f= Q)
(f = 1 for spherical stars). The dimensionless coefficients A; are
defined as in Chandrasekhar (1969, § 17), and they depend only
on the axis ratios as/a; and a;/a,. The coefficients k, and k,
are dimensionless polytropic structure constants which depend

HYDRODYNAMIC INSTABILITY AND COALESCENCE 813
only onn:
n(n + 1) 3 [4n| 0 \'3
k 0 ky=—|(—
= LA 5_n< ) . 0

where 6 and ¢ are the usual Lane-Emden variables for a poly-

trope (see, e.g., Chandrasekhar 1939).
The gravitational interaction energy

stars is given, to quadrupole order, by

W, between the two

Wi=—MTZ_N3I(2111—122"133)a (6)
where
L;; =k, y—:—iz 6;; (no sum) )
and k,, is a constant depending only on n:
5 &
o = 3500, L 0"gtde , ®

so that k, = 1 for n = 0. Values of k,, k,, and «, for different n
are given in Table 1 of LRS1.

Now turn to the kinetic energy. For a synchronized binary,
the fluid is simply in uniform rotation at the orbital frequency
Qe perpendicular to the orbital plane. Here, however, we
allow for an additional internal motion of the fluid inside each
star, assumed to have uniform vorticity {e; as measured in the
corotating frame of the binary:

2 2
(=(Vxu)eg= —2T% ) )
a; a
where
u="Ax e, — 22 Ax,e, (10)
a; a

is the fluid velocity in the corotating frame. Here the origin of
the coordinates x; is at the center of mass of the star. The
quantity A is the angular frequency of the internal fluid
motions. Note that the velocity field (10) is everywhere tangent
to the ellipsoidal surfaces of constant density. For a synchro-
nized binary system, we have # = { = A = 0. The velocity field
in the inertial frame relative to the center of mass of the star is
given by

U=u+Qxx. §8))
The vorticity in the inertial frame is
(O=(Vxu?):-e3=02+/R)Q, (12)

where we have defined the ratio

fr (13)

O

It is straightforward to calculate the total kinetic energy corre-
sponding to this velocity field. We find

T=T+T,
= 2[3I(A? + Q?) — %k, Ma, a, AQ] + 3ur?Q?, (14)

where 4= M/2 is the reduced mass and I =1, +I,, =
Kk, M(a? + a2)/5 is the moment of inertia of each star. We have
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also defined the orbital kinetic energy T, = (u/2)r*Q?* and the
“spin” kinetic energy T, = T — T,. The total angular momen-
tum J can be written similarly as

J=21IQ — %k, Ma, a, A) + pr’Q . (15

Another important conserved quantity is the fluid circulation
C along the equators of the two stars. Following LRS1 we

write
1 = 1 (0)
5nlc,,M C=2 o K, M |na,a,(

= 2<IA - % K,Ma,a, Q) . (16)

€

Note that ¢ has dimensions of an angular momentum t ut is
proportional to the conserved circulation. We usually refer to
% itself as the circulation. Using equations (15) and (16), the
kinetic energy can be rewritten as

T=T+T,=T, + T + $ur’Q?, (17

where
1 2 1 202
T.=-1,Q+ A’ =—"—U+%—uw?Q>, (19
4 4],

and
I, = %Kn M(a, F a,)* = 21 /hy , (19
with I, = 2k, MR?/5and h, = 2R?*/(a; F a,)>.
The total energy of the system (not necessarily in

equilibrium) can now be written simply as the sum of expres-
sions (2), (3), (6), and (17):

E(p., Ay, Ay, t; M, 1, €)=U+ W+ W, + T, (20)
where we have chosen as independent variables the central
density p,, the binary separation r, and the two oblateness
parameters 1, = (a3/a;)*’® and A, = (as/a,)*’*. The equilibrium

structure of the binary can be determined from the four condi-
tions

—=——=——=—=0. 21

The first condition, dE/0r = 0, gives the equilibrium relation
between Q2 and r, i.e., the modified Kepler’s law for the binary:

M
Q? = 2r_3 (1 + 28) = 2ug(l + 26), (22)

where we have defined

3@y, — 1 —1I3,)
2 Mr? o MRET

M

o= T - (23)

The second condition, dE/dp, = 0, leads to the virial relation
for the binary,

3 2M?
SU+W ==
SU+ W 42T, R (24)

Vol. 420
where we have defined
R 2R
9¢EW(2111—122—133)=§75' (25)

From equations (2), (3), and (24), the equilibrium mean radius
R can be obtained as

/ 'I; 5 —n —n/(3—n)
R=rf(1-2)r- (5500 T e

where R, is the radius of a spherical polytrope with the same
mass and entropy:

(4 DK |G M\

= 210 (1 —n)/(3—n)
R, = ¢,(£1161)) I: 4 4n ’

@7

The last two conditions 0E/dA, = 0E/dA, = 0, together with
the virial relation, can be used to derive two equations deter-
mining the axis ratios in equilibrium:

2
dn ﬁRI:% a; + 2(2 +26+ M)a% + a§:|
R

HUr

= 2(afA1 - a% A3) N (28)

2
qn ﬁn[-Q—z at + (1 44520 Q)ai + a§]

R HURr

=2a3 A4, —a34;), (29)

where we have defined
2
ay a;
= — =+—A, 30
Ql a% + ag C + az ( )
2
az a,
= = ——A, 31
QZ +af + aéC al ( )

and g, = k(1 — n/5), jir = pg/(np), with p = 3M/(4na, a, as).

For any given M, J, ¢, K, and n, an equilibrium model can
be constructed from the four algebraic equations (22), (26), (28),
and (29). For specified values of fz and r/a,, we solve equations
(28) and (29) for the axis ratios a,/a, and az/a, by a Newton-
Raphson method following an initial guess. The mean radius of
the star is then obtained from equation (26). The total equi-
librium energy of the system can be written

1, M?
= - Q% - —
E., =2E;+ > ur .
2n+ 3\ M
_<_ 3 >r_3(2111 ~'122"133)» (32)

where E; is the intrinsic energy of each star:

(3 —nMm? 3—-2n\ T,
E;=————f|1- — . 33
=~ 6-ar |1 \55 ) iw 49
The total equilibrium angular momentum J. is given by equa-
tion (15), evaluated for the equilibrium solution.
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2.2. Equilibrium Sequences with Constant €

Since the circulation € is conserved in the absence of vis-
cosity, it is useful to construct sequences of equilibrium con-
figurations with fixed 4. A constant-# sequence is param-
eterized by the binary separation r or the angular momentum
J. Note that in general f varies along a constant-% sequence.
When ¥ is specified, the value of f; needs to be solved simulta-
neously with a,/a, and a;/a, to satisfy equation (16).

Of particular interest here is the irrotational Darwin-
Riemann sequence, for which the circulation € = 0 (fr = —2).
This corresponds to the case where the stars have no spin at
large separation. In Table 1 we have listed some properties of
these irrotational Darwin-Riemann configurations for n = 0,
0.5, 1, and 1.5. All sequences are terminated when the surfaces
of the two stars are in contact, i.e., r/a; = 2. Following LRSI,
we adopt units based on the radius R, of a spherical equi-
librium polytrope with same mass and entropy (eq. [27]),
defining the dimensionless quantities

Q jo_J F__E
(mp,)?” °  (MPR)V* T (M*R,)’

where p, = M/(4nR3/3). Note that R/R, > 1 for n > 0, indicat-
ing that the volume of each star increases when placed in a
binary system.

Equilibrium sequences with constant € # 0 can also be con-
structed. The value of € can be specified from the spin angular
frequency Q; of each star at large separation. Indeed, for large
r, we have a, — a,, Q? - 2M/r® and

Q= (34)

J - ur?Q — 2IA = ur’Q + 2IQ, , (35)
€ —2IAN = -2IQ,, (36)
where we have identified Q, = — A(r = o0) as the spin angular

velocity at large r (for an axisymmetric star, uniform spin and
vorticity are indistinguishable in the ellipsoidal models). Note
that when Q, is positive (i.e., the spin is in the same direction as
the orbital angular momentum), ¢ is negative. The maximum
spin that a uniformly rotating neutron star can sustain without
shedding mass from its equator is given by (Friedman, Ipser, &
Parker 1986; Cook, Shapiro, & Teukolsky 1992)

R Q,
Q= (MR <06. 37
For typical neutron stars, this maximum spin rate is not very
sensitive to the adopted equation of state. Table 2 gives the
equilibrium properties of the constant-¢ Darwin-Riemann
sequences corresponding to Q, = 0.2 and 0.4, for a polytropic
index n = 0.5 or 1. Irrotational cases, corresponding to Q, = 0,
were given in Table 1.

In Figure 1, we show the variation of the total equilibrium
energy E.(r) and angular momentum J.(r) of the binary
system, as well as the orbital angular frequency €, along
several sequences with constant € = —2IQ,, for Q, =0, 0.1,
0.2, 0.4 and polytropic index n = 0.5. Figure 2 shows the varia-
tion of the principal axes along the same sequences. In these
plots, each curve terminates at the contact solution. We see
immediately that there exists a critical separation r, where
E.((r) and J . (r) are simultaneously minimum. That E., and J .,
attain their minimum simultaneously is a consequence of the
property dE,, = QdJ., along an equilibrium sequence with

HYDRODYNAMIC INSTABILITY AND COALESCENCE 815
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F1G. 1.—Equilibrium curves of total energy, total angular momentum and
orbital angular velocity as a function of binary separation along various
sequences with n = 0.5. Here Qg = (2M/r®)/2 is the Keplerian angular veloc-
ity. (solid line) Irrotational (¢ = 0) Darwin-Riemann sequence; (dotted line)
Darwin-Riemann sequence with ¥ = —0.0652, corresponding to an initial
spin Q, = Q /(M/R3)'/? = 0.1 for both stars; (short dashed line) ¢ = —0.1304
(Q, = 0.2); (long dashed line) € = —0.2607 (Q, = 0.4); (light dotted-dashed line)
corotating (Darwin) sequence (fz = 0).

constant ¥ (LRS1, Appendix D). The minimum occurs as a
result of the strong tidal interaction between the two stars at
small separation (see Paper I for a qualitative discussion).

The minima in E.(r) and J.(r) along a constant-% sequence
indicate the onset of dynamical instability. Indeed, at r =r,,, it
becomes possible for a small dynamical perturbation of the
system (which conserves %) to cause no first-order change in
the equilibrium energy or angular momentum. Such a pertur-
bation must have eigenfrequency w? = 0, signaling the onset of
instability (see, e.g., Shapiro & Teukolsky 1983, chap. 6;
Tassoul 1978). More rigorously, it can be shown (LRS1) that
the onset of instability, determined from the condition

0*E
det (6ai oo j)m =0, i,j=1,2,... (onset of instability),

(38)

where the os are the parameters specifying the configura-
tion (in this case, r, p,, 4, and 1,), exactly coincides with the
points of minimum E_,(r) and J,(r). Binary configurations
with r < r,, are thus dynamically unstable.

The physical nature of this instability is common to all
binary interaction potentials that are sufficiently steeper than
1/r (see, e.g., Goldstein 1980, § 3.6). It is analogous to the fam-
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iliar instability of circular orbits for test particles around a
Schwarzschild black hole (see § 5). Here, however, it is the
purely Newtonian tidal effects that are responsible for the
steepening of the effective binary interaction potential and for
the destabilization of the circular orbit. From Table 1, we see
that r, is smaller for larger n. This is because tidal effects

Vol. 420

become important at smaller separation for more centrally
concentrated stars. When n 2 1.2, the minimum disappears
and all binary configurations with ¢ = 0 remain stable up to
contact. For sequences with € # 0, we see from Table 2 that,
for a given n, the minima become more shallow and ultimately
disappear as || increases. Qualitatively, this is because the

TABLE 1
COMPRESSIBLE DARWIN-RIEMANN SEQUENCES WITH % = 0?

r/a.® /Ry a,/a, as/a, TAW]| Q J E R/R,
n=0

60 ..oennnn. 6.071 0.9824 0.9828 0.945(—6) 0.1092 1.743 —1.2823 1.

50 i 5.103 0.9693 0.9705 0.492(—5) 0.1419 1.600 —1.2978 1.

45 ...l 4.628 0.9576 0.9597 0.128(—4) 0.1644 1.525 —1.3076 1.

40 ........... 4.165 0.9391 0.9430 0.374(—4) 0.1929 1.450 —1.3193 1.

35 . 3.722 0.9078 0.9160 0.126(—3) 0.2293 1.377 —1.3325 1.

32 3472 0.8783 0.8912 0.284(—3) 0.2556 1.337 —1.3408 1.

30 .0 3.317 0.8514 0.8692 0.508(—3) 0.2750 1.315 —1.3460 1.

28 el 3.173 0.8167 0.8411 0.937(-3) 0.2957 1.298 —1.3501 1.

2.582*% ....... 3.037 0.7671 0.8013 0.189(—2) 0.3191 1.291 —1.3521 1.

24 ..., 2.944 0.7142 0.7583 0.345(—2) 0.3383 1.298 —1.3500 1.

22 i 2.873 0.6429 0.6986 0.673(—2) 0.3575 1.329 —1.3406 1.

X | I 2.842 0.5586 0.6238 0.130(—1) 0.3725 1.397 —1.3190 1.
n=205

60 ........... 6.052 0.9871 0.9874 0.371(—6) 0.1097 1.740 —1.1937 1.0000

50 i, 5.075 0.9776 0.9783 0.193(-5) 0.1430 1.594 —1.2095 1.0000

40 ........... 4.120 0.9557 0.9579 0.146(—4) 0.1958 1.439 —1.2320 1.0002

35 . 3.661 0.9331 0.9378 0.492(—4) 0.2343 1.360 —1.2467 1.0004

32 3.396 09117 0.9193 0.111(-3) 0.2629 1.314 —1.2565 1.0006

X1 3.228 0.8921 0.9027 0.200(—3) 0.2846 1.286 —1.2633 1.0009

28 i 3.068 0.8664 0.8815 0.373(-3) 0.3084 1.260 —1.2698 1.0014

26 .ennn... 2.920 0.8322 0.8537 0.724(-3) 0.3340 1.240 —1.2754 1.0023

25 i 2.853 0.8111 0.8367 0.102(—2) 0.3473 1.233 —1.2775 1.0029

2.344* ... 2.759 0.7716 0.8049 0.178(—2) 0.3681 1.228 —1.2790 1.0042

22 i 2.688 0.7267 0.7685 0.302(-2) 0.3867 1.234 —1.2772 1.0062

20 ciiennns 2.623 0.6498 0.7045 0.635(—2) 0.4091 1.265 —1.2663 1.0107
n=10

60 ........... 6.037 0.9909 0.9910 0.134(—6) 0.1101 1.738 —1.0828 1.0000

50 i 5.053 0.9841 0.9844 0.695(—6) 0.1438 1.590 —1.0989 1.0001

40 ........... 4.085 0.9687 0.9698 0.524(-5) 0.1981 1.431 —1.1221 1.0002

35 i 3.613 0.9528 0.9553 0.176(—4) 0.2384 1.348 —1.1378 1.0005

32 i 3.338 0.9378 0.9419 0.399(—4) 0.2690 1.298 —1.1488 1.0008

30 ...ceene. 3.159 0.9240 0.9298 0.717(—4) 0.2926 1.265 —1.1567 1.0012

28 ........ Y 2.987 0.9058 09143 0.134(—3) 0.3190 1.234 —1.1650 1.0018

26 oo, 2.823 0.8814 0.8939 0.263(—3) 0.3485 1.205 —1.1733 1.0029

24 ...l 2.672 0.8482 0.8666 0.541(—3) 0.3806 1.181 —1.1809 1.0047

22 i, 2.539 0.8024 0.8297 0.117(-2) 0.4143 1.167 —1.1859 1.0079

2.115*% ... 2.491 0.7779 0.8100 0.164(—2) 0.4285 1.165 —1.1866 1.0100

20 cooininnns 2437 0.7396 0.7790 0.262(—-2) 0.4466 1.169 —1.1851 1.0140
n=15

60 ...l 6.025 0.9938 0.9938 0.429(—-17) 0.1104 1.736 —0.9401 1.0000

50 .. 5.036 0.9892 0.9893 0.222(—6) 0.1445 1.587 —0.9564 1.0001

40 ..ol 4.058 0.9787 0.9793 0.167(—5) 0.1999 1.426 —0.9802 1.0002

35 i 3.577 0.9680 0.9692 0.561(—5) 0.2418 1.339 —0.9966 1.0004

32 3.293 0.9578 0.9599 0.126(—4) 0.2739 1.287 —1.0084 1.0008

30 ol 3.108 0.9486 09515 0.227(—4) 0.2991 1.251 —1.0172 1.0011

2.8 i 2.926 0.9363 0.9406 0.426(—4) 0.3278 1.216 —1.0268 1.0017

2.6 ceinennnn. 2.750 0.9199 0.9263 0.836(—4) 0.3605 1.181 —1.0370 1.0027

24 ...l 2.582 0.8973 0.9071 0.173(—3) 0.3976 1.149 —1.0476 1.0043

22 i, 2.426 0.8654 0.8807 0.380(—3) 0.4386 1.121 —1.0576 1.0073

20 i 2.355 0.8447 0.8638 0.577(—3) 0.4602 1.110 —1.0619 1.0098

X | B 2.291 0.8199 0.8437 0.890(—3) 0.4819 1.102 —1.0651 1.0132

* Here Q, J, and E are defined in eq. (34); R and R, are defined by egs. (26)—(27); T, is the “spin ” kinetic

energy (see eq. [14]) and W is given in eq. (3).

b Asterisks (*) mark the dynamical stability limit.
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intrinsic oblateness of the two spinning stars causes them to where the synchronization timescale is much smaller than the
come into contact at a larger separation, where tidal effects are orbital decay timescale, the evolution of the system may be
smaller. : described approximately by a sequence of uniformly rotating

(i.e., synchronized) equilibrium configurations. This is the case

2.3. Synchronized Equilibrium Sequences for the vast majority of observed binaries, but may not be true

When viscosity is important, the circulation € is no longer for neutron star binaries (see Kochanek 1992; Bildsten &
conserved during the evolution of the binary. In the limit Cutler 1992). Nevertheless, as a limiting case, we also construct
TABLE 2

COMPRESSIBLE DARWIN-RIEMANN SEQUENCES WITH CONSTANT 4?

r/a,® /R ay/a, as/a, /Wi Q J E R/R,
n=050,=02(%=—01304)
6.146 09873 09532  0947(-2) 0.1072 1885 —1.1796  1.0039
5153 09784 09450  0.945(—2)  0.1398 1738  —1.1952  1.0039
4662 09706 09379  0943(—2) 01626  1.660  —12053  1.0040
4177 09586 09270  0.940(—2) 01919 1581  —12175  1.0040
3705 09389 09095  0936(—2) 02303 1500 —12322  1.0042
3430 09208 08937  0935—2) 02592 1452  —12424  1.0045
3253 09045 08796  0936(—2) 02814 1421  —12496  1.0047
3083 08833 08617  0941(—2) 03062 1392  —12569  1.0051
2921 08555  0.8384  0956(—2) 03336 1367 —12639  1.0058
2774 08183 08078  0993(—2) 03634 1348  —1.2696  1.0070
2654 07709 07691  0.108(—1) 03928 1341  —12719  1.0088
2555 07001 07111 0.130(—1) 04236 1354  —12670  1.0127
n=05Q =04 (%= —02607)
6423 09859 08648  0.352(—1) 01005 2056 —1.1398  1.0151
5384 09766 08578  0351(—1) 01311 1906 —1.1546  1.0152
4871 09687 08518  0350(—1) 01525 1828  —1.1643  1.0152
4363 09567 08428  0349(—1) 01802 1746  —1.1760  1.0153
3867 09377 08283  0.348(—1) 02166  1.663  —1.1902  1.0155
3.577 09206 08153  0.346(—1) 02442 1614  —12001  1.0157
3388 09055 08039  0.345(—1) 02656 1581  —1.2072  1.0160
3206  0.8862  0.7894  0.344(—1) 02897 1551  —12145 10164
3031 08612 07707  0342(—1) 03168  1.523  —12219 10170
2868 08282 07461  0.342(—1) 03468  1.500 —1.2285  1.0180
2723 07839 07131  0344(—1) 03791 1486  —12328  1.0197
2672 07620  0.6968  0.347(—1) 03923 1484  —12334  1.0207
2607 07235 0.6679  0.354(—1) 04117 1489  —1.2318  1.0228
n=1,Q, =02 (%= —0.1046)
60 ........... 6130 09909 09662  0.679(—2) 0.1077 1856  —10712  1.0069
50 ... 5130 09845 09602  0.677(—2)  0.1407 1708  —1.0871  1.0070
40 ... 4144 09702 09468  0.674(—2) 01939 1547 —1.1101  1.0071
35 . 3662 09559 09337  0.672(—2) 02338 1462  —1.1257  1.0074
32 i, 3379 09426 09217  0.671(—2) 02642 1411  —1.1367  1.0077
30 il 3195 09306 09111  0.670(—2) 02878 1377  —1.1448  1.0080
28 . 3016 09150  0.8974  0.671(—2) 03146 1344  —1.1534  1.0086
X I 2843 08944 08797  0676(—2) 03448 1313  —1.1623  1.0095
24 ... 2680 08665 08561  0.689(—2) 0378 1285 —1.1710  1.0110
22 . 2533 08282 08242  0.723(—2) 04154 1264  —1.1783  1.0137
2012% ....... 2416 07783 07834  0.806(—2) 04509 1256 —1.1814  1.0183
20 ... 2410 07746 07803  0814(—2) 04531 1256 —1.1814  1.0187
n=1,0Q,=04 (%= —02091)
6401 09903 09007  0254(—1) 0.1009 2000 —1.038  1.0270
5357 09836  0.8953  0254—1) 01319 1849  —1.0538 10270
4327 09693  0.8836  0253(—1) 01821 1685 —10758  1.0272
3.822 09553 08723  0252(—1) 02197 1599  —1.0907  1.0275
3.525 09426  0.8620  0251(—1) 02485 1546 —1.1014  1.0278
3331 09314 08529  0250(—1) 02710 1511  —1.1092  1.0282
3141 09169 08413  0249(—1) 02967 1477  —1.1177  1.0287
2957 08980  0.8263  0248(—1) 03259 1444  —1.1266  1.0295
2781 08728  0.8065  0247(—1) 03590 1413  —1.1355  1.0309
2619 08386 07798  0.248(—1) 03959 1388  —1.1437  1.0333
2478 07909  0.7430  0251(—1) 04352 1374  —1.1490  1.0377

2 Here ©, J, and E are defined in eq. (34); R and R, are defined by eqgs. (26)—(27); T, is the “spin ” kinetic
energy (see eq. [14]) and W is given in eq. (3).
b Asterisks (*) marks the dynamical stability limit.
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08— T energy to first order (see LRSI, in particular Fig. 14). In this
r paper (as in Paper I), for simplicity, we do not distinguish
o 060 between the secular and dynamical stability limits and we treat
~ r the instability at r = r,, as if it were dynamical. This is justified
e 04b because the binary separation changes very little between the
('U.. L secular and dynamical stability limits, and departures from
-~ o2k synchronization remain always small. See LRS2, however, for
C a detailed discussion of what really happens between the
0.05 Lo secular and dynamical stability limits.

c 2.4. Models of Black Hole-Neutron Star Binaries
5" oF Binary systems consisting of a pointlike object orbiting a
= _o0sk finite-size star, such as a black hole-neutron star (BH-NS)
e c binary, can be modeled as Roche-Riemann configurations. We
& —01fF have studied such configurations in detail in LRS1. Compared
= E to the equal-mass Darwin-Riemann configurations discussed
-0.15F in §§ 2.1-2.3, a prominent new feature in the Roche-Riemann
= systems is the existence of a Roche limit prior to contact for
r circular equilibrium. The Roche limit corresponds to the point
o r 7 at which the binary separation r has a minimum value below
& _oo0sF — which no equilibrium solution exists. At the Roche limit, the
= I ] slope of the E,(r) and J,(r) curves becomes infinite. Beyond
[ C i the Roche limit, there exists a second branch of equilibrium
S 01 7 solutions, with larger surface deformation, that extends all the
r ] way to contact. However, these solutions beyond the Roche
P S e e LT limit are unphysical since they have higher energies than those
‘ 25 3 35 4 45 5 along the main equilibrium branch for the same value of r (see
r/R, Figs. 10, 11, and 13 of LRS1). When the orbit of a binary

FI1G. 2.—Variation of the three principal axes a;, a,, and a, along the same
sequences shown in Fig. 1.

equilibrium sequences with uniform rotation. These represent
the compressible generalizations of the classical incompressible
Darwin configurations discussed in Chandrasekhar (1969). The
corotating configurations can be constructed as a special case
of the Darwin-Riemann solutions with f = 0 and A = 0. The
total kinetic energy (eq. [17]) in this case simply reduces to

T = 1 (ur? + 21Q% = ——ﬁ— 39)

2 2ur? +2I)°

Extensive tables and plots illustrating the properties of com-
pressible Darwin sequences are given in LRS1 and will not be
repeated here. Note that the circulation € varies along those
sequences.

As in Figure 1, it is found that E,(r) and J,(r) can attain a
minimum at a critical separation r,, before contact is reached.
This occurs for sufficiently incompressible configurations, with
n < 2. The minimum is more pronounced in this case because
of large positive contributions to the E.; and J., from the
synchronized spins.

Here the minimum marks the onset of secular instability along
the sequence. In the presence of viscosity, configurations with
r < r,, will be driven away from synchronization (see Counsel-
man 1973 and Hut 1980, for simple models of secularly
unstable binaries). The instability at r = r,, cannot be dynami-
cal because neighboring configurations along the sequence are
still in uniform rotation and therefore can only be reached on a
viscous timescale (recall that dynamical perturbations conserve
%, which varies along the corotating sequence). True dynami-
cal instability occurs a little further along the sequence (at
slightly smaller r), when neighboring configurations with the
same value of € can be reached with no change in equilibrium

decays to the Roche limit, tidal disruption or mass transfer is
unavoidable.

For Roche-Riemann equilibrium sequences with constant €,
a dynamical instability is always encountered prior to the
Roche limit. Indeed, the dynamical stability limit corresponds
to the minimum in the E, (r) curve, which must always precede
the point of infinite slope. Thus binaries at the Roche limit are
always dynamically unstable. In contrast, along a sequence of
synchronized configurations (a compressible Roche sequence),
the minimum of E,(r) only corresponds to a secular instability,
as discussed in § 2.3. Dynamical instability sets in later (at
smaller r) and the Roche limit may or may not be dynamically
unstable, depending on the mass ratio and the compressibility
of the star. For typical BH-NS binaries with moderate mass
ratios (Mgy/Mys ~ 10) and highly incompressible neutron star
matter (n >~ 0.5), we find that the dynamical instability sets in
prior to the Roche limit (see Table 10 of LRS1). Consequently,
these BH-NS binaries are always dynamically unstable at the
Roche limit. Only when the neutron star is very compressible
or when the black hole is much more massive can the Roche
limit set in prior to the dynamical stability limit. In those cases
a dynamically stable binary at the Roche limit may exist.

In the rest of this paper, we focus on NS-NS binaries, rather
than BH-NS binaries, for the following reason. The onset of
instability (secular or dynamical) along a Roche or Roche-
Riemann sequence occurs at r,, ~ 2(1 + q)'/*R, where g =
Mpgy/Mys. But the last stable circular orbit around a Schwarzs-
child black hole is at rgg ~ 6Mpgy for Mgy > Mys. Thus for a
typical BH-NS system with ¢ 2 10 and R/Mys ~ 5, we have
rgr > I'm and general relativistic corrections to the orbital
motion are expected to dominate over the Newtonian hydro-
dynamic effects discussed here. The situation is different for
NS-NS binaries with g ~ 1, where rgg < 1, typically. General
relativistic corrections to our Newtonian treatment for NS-NS
binaries are discussed in § 5.
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2.5. Equilibrium Models for Two Unequal Masses

General Darwin-Riemann models for two nonidentical stars
can be similarly constructed with our energy variational
method (see LRS2). In particular, models for two finite-size
stars with different masses, radii, polytropic indices, adiabatic
constants and spins can be constructed. Such models can be
used to describe binaries containing two nonidentical neutron
stars. As in Roche-Riemann binaries (§ 2.4), when the masses of
the two stars are sufficiently different, a Roche limit can exist
prior to contact, providing a possibility of mass transfer. Here
also, the Roche limit configuration is always secularly
unstable, but can be dynamically stable or unstable depending
on the mass ratio and compressibility. We return to these ques-
tions in § 6, where we model neutron star binaries as general
Darwin-Riemann configurations in which the effective poly-
tropic indices and radii of the two components are determined
from a realistic equation of state and are functions of mass.

3. ORBITAL EVOLUTION MODEL

We now wish to study the orbital evolution of the binary
models constructed in § 2 in the presence of gravitational wave
emission. As in § 2, we consider binaries in circular orbits. This
is probably justified for most systems at large separation since
gravitational radiation itself tends to circularize an eccentric
orbit. Near contact, however, if relativistic effects are sufficient-
ly strong, the eccentricity can actually grow again as the inspi-
ral accelerates (Lincoln & Will 1990). This would be the case
for two point masses approaching the last stable circular orbit
allowed by general relativity. For neutron stars with finite
radii, however, we expect hydrodynamic effects to become
important before this relativity-induced eccentricity can grow
significantly. We will return to this question in § 5. Here, for
simplicity, we assume that the orbit remains always circular, at
least in some average sense. We determine the evolution of the
average binary separation r as the system loses energy and
angular momentum to gravitational radiation. Such an
approach is clearly valid when the orbital decay time t, = | r/F|
is much larger than orbital period P = 27/Q. But we adopt this
approximation here even for the final phase of the orbital
decay, when we find that the two timescales can become com-
parable. By doing so, we can study the transition from the
secular orbital decay at large r to the dynamical coalescence at
small r. We also assume that the internal structures of the two
stars, and in particular, their shapes, assume the form for circu-
lar equilibrium configurations, i.e., we treat only r as a dynami-
cal variable, assigning all internal degrees of freedom (p,, 4,
A,) to their equilibrium values. This approximation is valid as
long as the internal dynamical time (the response time) ¢, , ~
(R3/M)/? of the stars remains much smaller than the orbital
decay time t,, a condition which is well satisfied at large
separation, and still marginally satisfied for two neutron stars
near contact.

3.1. Gravitational Radiation

We calculate the emission of gravitational waves in the
weak-field, slow-motion limit (see, e.g., Misner, Thorne, &
Wheeler 1970). In this approximation, the rate of energy loss is
given by the usual quadrupole formula (we set G = ¢ = 1),

dé& 1 IR
(E)Gw =752 <(zs‘) > ’ 0

HYDRODYNAMIC INSTABILITY AND COALESCENCE 819

where ¥, is the reduced quadrupole tensor of the system
fij = jp(x, xJ e %x25,~j)d3x . (41)

For a binary system containing two stars of mass M and M’
orbiting in the xy-plane, the only time-dependent components
of the quadrupole tensor are

fo=[w?+U + 1 — 1, —I13,)]
x 1 cos @ + constant , (42)
- 122 - 1,22)]
x 1 sin ® + constant , (43)
fyy = —[[U'Z + (111 + 1111 - 122 - 1,22)]
x % sin @ + constant , (44)

where p = MM'/(M + M) is the reduced mass, I;; and I}; are
the quadrupole moments of each star (see eq. [7]), and we have
defined an angle

t,=4%,= [N"z + I+ 1

t
o= 2J Qdt + constant . (45)

Expressions (40) and (41) then give

32 1 / |
(%) 96(;47'2)2[1 +—= I+ Ty — 15— 22)] )
GW Hr

dt -5
(46)

For a circular orbit, the rate of angular momentum loss is
given by (LRS1, Appendix D)

dJ 1 [dé&
(@) =2 (%) “

while the fluid circulation € is strictly conserved (Miller 1974).
In expression (46), the second term in the bracket represents
the correction to the point-mass result due to tidal effects. For
large r, this is a small correction, of the order of x,(R/r)® (Clark
1977), but it can become as much as ~40% near contact.

In the quadrupole approximation, the wave amplitude A" in
the transverse-traceless (TT) gauge is given by

2.

h" = D 1t — D), (48)
where #' is the transverse projection of the reduced quadru-
pole moment, D is the distance between source and observer,
t — D is the retarded time, and a dot indicates a time deriv-
ative. For wave propagation in the direction (6, ¢) in spherical
coordinates with orthonormal basis vectors e;, e;, and e, the
two basis polarization tensors are

e, =89®89‘—e‘;®e¢s> (49)
e, =¢;®e;+e;Qe,. (50)
In this basis, h" can be written

1 2.
KU =hie. +hoe =5 @ —Tgger + 5T, (1)

where the spherical components of the reduced quadrupole
tensor are given by (we set ¢ = 0 without loss of generality)

foo = £, 082055, o =F,05, Fop =1, c080. (52)
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Using equations (42)—(44), (51), and (52), we find the following
expressions for the waveforms

2
h, = —BQZ[urZ + (I, + I — 1, — I5,)]
x (1 + cos? 0) cos @, (53)
4
h, = _b.QZ[,u-2 + Iy + 1y — 15, —I5;)] cos 6 sin @,

(54)

Note that the above derivation neglects the contribution
from the orbital decay itself to the gravitational radiation. The
correction to the wave amplitude due to the orbital decay is of
order |7/(rQ)|, and the correction to the energy-loss rate is of
order #*/(rQ)? ~ (M/r)°. This is smaller by a factor ~(M/R,)’
than the correction due to tidal effects that we have included in
expression (46).

3.2. Orbital Evolution at Large Separation

For sufficiently large orbital separation, we expect the
orbital decay to proceed quasi-statically (i.e., along an equi-
librium sequence) with the rate of change 7 of the orbital
separation given by

. (d&\ (dE,\!
'=<E>Gw(7°‘> ‘ G3)

This expression must obviously break down when E,(r) is near
a minimum, since it would otherwise predict that 7 — oo there.
In this section we explore the effects of tidal interactions in the
limit of large r, when expression (55) applies. In particular, we
calculate analytically the deviations from the point-mass
behavior due to the finite-size effects. In § 3.3, we will develop
and implement a numerical formalism (ODE’s) to calculate the
orbital decay at smaller r, when equation (55) no longer
applies.
3.2.1. Point-Mass Results
For binaries containing two point masses M and M’ we have
E,,= —MM'/(2r) and I;; = I}; = 0 in equation (46), so that
equation (55) yields the familiar result:
64 pM?

F= 5 70 (56)

where M, = M + M'. The orbital evolution is obtained by
integration:

[r®]* = BuMXT 1), (7

where T is the time at the end of the coalescence (r = 0). The
frequency and phase of the gravitational waves are then easily
obtained as

Q 1{ 5 1 38
Jowlt) =—=— [55‘5 m:' , (58)
T—1t 8
o) = @, - 2<W> , (59)
t

where @, is a constant and we have used Q2 = M,/r3, the
Keplerian value.

Of great importance for the detection of gravitational waves
by laser interferometers is the number of orbits N, (or the

Vol. 420

number of cycles of gravitational waves Ngw = 2N,,,) in a
given interval of wave frequency or binary separation (Cutler
et al. 1993). This is obtained by integrating

Q Q (dE de\ !
_ — - === )| ==
dNorb 2n dt 2n ( dr )( dt )GW dr ’ (60)

For point masses, this reduces to
>
128nuM3/?

5 1
1927uM?P (nfow)*

dN© = — r32ar

d(In fow) - (61)

Integrating equation (61) we find the number of orbits between
riandr, <r,

NO = L w . (62)
64n MM'M}?
Any deviation from this result leading to a change 6N, = 0.06
over the detection interval (corresponding to a phase change
0® = 27n0Ngw = 4ndN,,, = 7/4) must be incorporated into
the theoretical waveform templates used for signal extraction.
We now discuss the deviations from the result (62) caused by
finite-size effects. We consider the three types of binary con-
figurations introduced in § 2: irrotational (¢ = 0) configu-
rations (§ 3.2.2), configurations with ¢ = constant # 0 (§ 3.2.3),
and synchronized configurations (§ 3.2.3). For simplicity, we
assume that M’ is a point mass (i.e., we consider only Roche
and Roche-Riemann binaries), but the generalization to two
stars of finite size is straightforward in this case: one would
simply add another contribution obtained by interchanging M
and M’ in the results given below.

3.2.2. Irrotational Configurations

For nonspinning neutron stars (¢ = 0), the correction to
N at large separation is entirely due to the tidal interaction.
Since the tidally induced ellipticity of the star is ~(R,/r)?, the
tidal corrections to Q, (d6/dt)w, and dE,,/dr are all of order
(R,/r)°. Thus from equation (60), we expect a change
8(dND) oc (R,/r)°dNQ) oc r~72dr. A detailed calculation based
on series expansions of the binary- equilibrium equations at
large r (see LRS2) gives for the total equilibrium energy

: + 3 M’? R; + --- 4 constant, (63
MM’ 3 " Ko ...
27' 2 nqn 7‘6 an > ( )

Eeq(r) = -

[recall that g, = k(1 — n/5) and «, is given by eq. (8)] and for
the orbital angular frequency

QZ

M+M’< 9
;

M’ RS
Ek”q”ﬁr_s-i’ ) (64)

The correction to (d€/dt)gw due to the quadrupole moment of
M (see eq. [46]) is

S wn

Uy —1p,) 3 M, R
,url - 2 Kndn M r5 + (65)
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Equation (60) then gives the change in N, for irrotational
configurations:®

. 3 39 M, (r7%?% —r7%?)
5Nf,3b = — g4— K q,,<7 + M>R5 IIWZT . (66)
We see clearly that this deviation from the point-mass result
does not accumulate at large r. The term proportional to
M ~2M, Y2 in expression (66) results from the change in Q and

E,, whlle the term contammg the extra factor of M,/M’ comes
from the increase in (dé&/dt)gw caused by the quadrupole
moment of the star.

3.2.3. Configurations with Constant € # 0

For neutron stars with nonzero spin, the dominant effect at
large r is the change in Q caused by the spin-induced quadru-
pole moment (Bildsten & Cutler 1992). Indeed, for sufficiently
large r, tidal effects can be ignored, and the star can be modeled
as an axisymmetric compressible MacLaurin spheroid, with
I,,=1,,>1;;. The quadrupole interaction energy is
—M'(I,, — I55)/(2r®), and we find (LRS2) that the total equi-
librium energy can be written simply as

E. (= — —I:I + iws (Iy; — I33) + constant , (67)

while the orbital angular frequency is given by

M+ M 3
3 [1 + M2 Iy — 133):] . (68)

o=

The correction factor for (d&/dt)gw is then simply [1 +
3(1,; — I53)/(2Mr?)]3. Therefore from equation (60) we have

- 133):'

3 -5/2
X[I+W(I“_133):I . (69)
At large r this gives for the change in N, due to spin:

sN©® — _ 105 Iy = Isy) (17 — 1))
ob = T 956n MEM’ M1z

3
dNorb = d t()?l))[l Mr2 (Ill

(70)

This result agrees with equation (10) of Bildsten & Cutler
(1992). Expressions for the quadrupole moments I,; and I35 of
compressible MacLaurin sphcroids can be found in LRS1.
If the spin-induced eccentricity e? = 1 — a3/a? < 1, then the
Q(e) relation for a rotatmg spheroid (e g., LRSI, eq. [3.21]) can
be expanded to give e? ~ (5¢,/2)Q2, with 92 = Q2/(M/RD).
Thus we have

2
Iy, — 133 k,4i

MR? ~— 5 R?

Kn 2 ann A2
~ 2 et~ Q. (71
et Or. (7))

Therefore equation (70) becomes

105 R? o (e =1y
= Si2n "9 apar M

1/2 /2)

5Norb = ) (()s2 < 1) .

(72)

5 The numerical coefficients in our result do not agree with those given by
Kochanek (1992; see his eq. [5.4]).
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Since NS, oc r!/2, we see that this deviation from the point
mass result, in contrast to 6N, does accumulate at large r.

orb>

3.2.4. Synchronized Configurations

For the corotating case, the dominant effect is simply the
added kinetic energy and angular momentum of the synchro-
nized spin (Kochanek 1992; Bildsten & Cutler 1992). Expand-
ing equation (32) at large r, we obtain

M+ M
MRf( :-3 > + -++ + constant .

(73)

MM 1
2r 5l

Eey(r) =

The corrections to (d&/dt)gw and Q are of higher order in R, /r,
and we find from equation (60) that for synchronized spin,

3 MIPRHZ — i)
321" MM?
This result agrees with equation (3) of Bildsten & Cutler (1992)

in the incompressible limit (where x, = 1). Here also, since
SNED oc 172, we see that the phase error accumulates at large r.

ONGR = — (74)

3.3. Approach to Dynamical Instability

Whenever E,(r) has a minimum at some r = r,,, the orbital
decay cannot remain quasi-static as r, is approached, since
equation (55) would predict that # — oo as r — r,,. This should
not be too surprising since, as discussed in § 2, the binary orbit
becomes dynamically unstable for r < r,,. As the stability limit
is approached, the radial infall velocity 7 can become much
larger than predicted for two point masses (eq. [56]). For
r < r,,, the coalescence would proceed on a dynamical time-
scale even in the absence of energy and angular momentum
losses.

Let us first estimate the separation r. > r,, where equation
(55) starts to break down. We can expand E,(r) around the
minimum atr = r,, as

M2
Ee?) = Eltn) +—(r =1+, €~ ——. (15)

m m

Equation (55) becomes invalid when the rate of increase of
infall kinetic energy, becomes comparable to the rate of change
of the equilibrium energy, i.e., r, is determined by

E
UFF ~ (d——e‘*>r , forr~r,.. (76)
dr
Using equations (55) and (75), this reduces to

2¢ dE 2e
b o | 4
wo i~ () ~ ()

where we have defined

S.=(r. —rp)frm<l. (78)
Using equations (46) and (77), we then obtain
Te—Tm rn\
0. = - ~ (M) . (79)

Even for neutron stars, we have r,, ~ 3R, so that r,/M ~ 15
and r, is not very far from r,,, typically 10% further out.
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To properly calculate the orbital evolution for r < r,, when
the kinetic energy of the radial infall becomes important, we
write the total energy of the system (not necessarily in
equilibrium), as

& = 3ui* + E(r, 0;; M, J, %), (80)

where the second term is given by equation (20), and ()
denotes the three variables (p,, 1,, 4,). In writing down equa-
tion (80), we have implicitly ignored other possible contribu-
tions to the kinetic energy such as terms like Ma? which are
related to the change of the structure of the stars as the binary
separation decreases. This is justified since the adjustment of
the stellar shape takes place on the internal dynamical time-
scale ty,, ~ (R;/M)'/? of the star, while the orbital evolution of
the binary usually takes place over a longer time t,. We also
assume that the orbit remains quasi-circular, so that equations
(46) and (47) hold. In doing so we neglect terms of order e?,
where e is the eccentricity. Since e ~ (#/Qr)?, this is valid so
long as t, > P. We find in § 4 that the combined condition
tayn < P < t, is well satisfied at large r, and remains marginally
true even when r is close to r,,.

Taking the time derivative of equation (80), and recalling
that gravitational radiation conserves %, we get

E
é= prr+QJ+%—-r+Za, &, 81)

where we have used Q = 0E/0J. We now impose the assump-
tion that the three parameters p,, 4,, 4, specifying the internal
structure of the stars take their equilibrium values. Accord-
ingly, we have

OE , ,
aT“; = 0 > fOI‘ ai = (ai)eq . (82)
Now since & = (&)gw and J = (J)gw, using equations (47) and

(82), the evolution equation (81) reduces to

OE
F+—=0. 8
uF + o 0 (83)
We now substitute expression (20) for E and find on differenti-
ating

F—Q+Q%r=0, with

2M 6
= r_5(2111—122—133)~ (84)

QZ
In the last expression, the I;; assume their equilibrium values as
a function of r. We now express Q in terms of J using equations
(15)—(16). After some algebra we get

Q—-J—+F(r) (85)
I(r)
where
46 a,a, , 2 (a? — a3)?
= = - —_. 6
F(r)= 1L 2+a I, = pr +5MKn C1a (86)

Equatlons (84)—(86), together with equations (46) and (47) for

= (dJ/dt)gw can be integrated numerically given initial con-
dlthl‘lS at any separation r; such that (r; — r,,)/r,, > .. We cast
these equations into a set of first-order ODE’s for 7, 1';, = # and

Vol. 420

J. We calculate initial values for # and # at r = r; from equation
(55) and then substitute 7 into equation (84) to obtain the initial
value of J.

Alternatively, we can eliminate J completely to obtain a
single, third-order evolution equation for r. Taking the time
derivative of equation (84) and substituting expression (47) for
J, we get

3 oee
ﬂ-’—'<1 2”")+2 (‘1F+5d—1)(n,q—n)+zr

as r I, dr 1, d I,
dE 2r (d&
Gleq .
o (dt) . ©7)

where we have used QJ = E and Q,(dJ,,/dr) = dE /dr. A
similar type of equation was derived by Lattimer & Schramm
(1976) in their study of tidal disruption by black holes. For
large r, the first three terms in equation (87) can be ignored
since the acceleration of radial infall is small [note that
Qg — Q) oc# from eq, (84)], so that equation (87) reduces
simply to #(dE.,/dr) = E, ie., equation (55).

The derivation presented above assumed constant fluid cir-
culation and is valid in the limit of zero viscosity. In the
opposite limit, when viscosity is always acting on a timescale
shorter than the orbital decay timescale, the binary remains
synchronized throughout the evolution. The energy functional
for Darwin (uniformly rotating) configurations should then be
used in equation (80). We find that the orbital evolution in this
case is still given by equations (84)—(85), but with

F=0, I, =pr?+2 =u?+ iMx,(a? +a2). (88)

We reemphasize that the assumption of uniform rotation must
break down for r < r,, since viscosity will then drive the system
toward lower energy, hence, away from, rather than towards, a
synchronized state. Nevertheless, for simplicity, we calculate
the orbital evolution in this limiting case based on the energy
of Darwin configurations, even forr < r,,,.

4. APPLICATIONS TO BINARY NEUTRON STARS

We now apply the orbital evolution model developed in § 3
to calculate the coalescence of two neutron stars. In § 4.1, we
first discuss how polytropes can best be used to approximate
the internal structure of a neutron star. In § 4.2, we examine the
effects of the spin and tidal interaction on the gravitational
waveforms at large separation, using the analytic results of
§ 3.2. We then proceed to solve the orbital evolution equations
derived in § 3.3 and study the approach to dynamical insta-
bility at small separation (§ 4.3).

4.1. Polytropic Models for Neutron Stars

The main parameter that enters the evolution equations of
§ 3 is the ratio R,/M, which for neutron stars is determined
from the nuclear equation of state (EOS). For the canonical
neutron star mass M = 1.4 M, all EOS tabulated in Arnett &
Bowers (1977) give R,/M in the range of 4-8. Small values of
R,/M correspond to a soft EOS, while large values correspond
to a stiff EOS. Observational constraints from the masses of
neutron stars in X-ray binaries (e.g., in 4U 0900 — 40, see Joss &
Rappaport 1984), as well as constraints derived from pulsar
glitches (see Alpar et al. 1993; Link, Epstein, & Van Riper
1992), appear to rule out very soft EOS, such as those based on
the Reid nucleon potential. The most recent microscopic EOS
constrained by nucleon scattering data and the binding of light
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TABLE 3 M = 1.4 M. Here we consider the representative values Q, =
POLYTROPIC MODEL FOR NEUTRON STARS® 0, 0.1, 0.2, and 0.4, corresponding to no spin or spin periods of
’ 4.8, 2.4, and 1.2 ms, respectively. We assume for simplicity that
M (M) R(km) I(10*gem?)  L/AMR?) K n both stars have the same spin.
20.7 0.527 0.403 0117 348 4.2. Orbital Evolution of Binary Neutron Stars at Large
16.5 0.595 0405 0175 308 Separation
12.4 0.903 0410 0.314 2.34
109 1.53 0.417 0448 174 The expressions derived in § 3.2 can be evaluated easily for
10.5 251 0.426 0551  1.35 neutron star binaries. For definiteness, we consider the typical
}gj 3-23 gjg g-ggé (1)'(7); case where M = M’ = 1.4 M, R,/M = 5 and n = 0.5 (the cor-
104 124 0,496 0789  0.58 responding value of k, = 0.8148). We focus on the constant-¢
103 16.4 0.527 0.830 046 evolutions and assume that both stars have the same spin. The
102 18.5 0.549 0.848 040 gravitational wave frequency fgw in real units is given by
% ke Bt e &) ()
9.40 196 0602 0869 034 Jow = 5837 M 4(5 M) (F) Hz, (89)
9.19 19.0 0.609 0.876 0.33 o
9.00 182 0.614 0876 032 where M, , = M/(1.4 M ). For these parameters, the low-

* Based on the AV14+ UVII EOS of WFF; I is the moment of inertia; I, is
the moment of inertia of a uniform relativistic sphere with the same mass M
and radius R in Schwarzschild coordinates; k, = I/I,.

nuclei are those of Wiringa, Fiks, & Fabrocini (1988, hereafter
WFF; see also Baym 1991 for a review). For M = 1.4 M, the
WFF EOS give R,/M =~ 4.7-53, corresponding to R, ~
10.4-11.2 km. In addition, the radius is almost independent of
the mass for M in the range of 0.8 Mg to 1.5 M. Thus the
value of R,/M can be somewhat larger for smaller M. In this
section we consider R,/M = 5 and R,/M = 8 as representative
values.

A polytrope is only an approximate parameterization for a
real EOS. To find the approximate polytropic index n that
mimics the structure of a real neutron star, we proceed as
follows. For given M and R,, we determine the ratio I/I,,
where I is the moment of inertia tabulated for a real EOS, and
1, is that of a uniform sphere with same M and R,. Note that
when we include general relativistic correct1ons, I, can be
larger than 2MRZ/5. We calculate I, using equations G. 8)—
(3.11) of Arnett & Bowers (1977). The resulting ratio is set
equal to k,, from which the corresponding value of n is
obtained. In Table 3, we list the results for different masses
based on the EOS AV14+UVII of WFF. For the other two
EOS given in WFF, the results are very similar. Typically, for
M ~ 14 M, we find n~ 0.5, highly incompressible. As M
decreases, n increases and the configurations become more
compressible. In the orbital evolution calculations presented
below, we consider the representative valuesn = 0.5and n = 1.
We also give some results with n = 1.5 for comparison.

When translating from dimensionless quantities to physical
quantities such as a gravitational wave frequency in Hz, the
values of both M and R,/M must be specified. The masses of
neutron stars have been determined for a number of binary
radio pulsars as well as binary X-ray pulsars (see Thorsett et al.
1993, and references therein). All the measurements are consis-
tent with a mass M = (1.35 + 0.1) M. Hence we shall focus
on this canonical value of M = 1.4 M when we quote actual
wave frequencies.

The initial neutron star spins also enter the calculation in the
zero-viscosity case (see eq. [36]). In the four neutron star
binaries known in our Galaxy, the radio pulsars have spin
periods above 30 ms, but much shorter pulsar periods ~ 1.5 ms
have been observed in other systems. The minimum spin
period corresponding to equation (37) is about 0.85 ms for

frequency band of interest to LIGO corresponds approx-
imately to binary separations between r; = 70R, (fow,; = 10
Hz) and r; = 5R, (fow,; = 522 Hz). When r < 5R,, the analy-
tic results of § 3.2 become inaccurate. The orbital evolution for
r < 5R, is calculated in § 4.3 using the method introduced in
§ 3.3. The total number of cycles of gravitational radiation
emitted by two point masses between r; and r, is N&y = 16098
(eq. [62]).

Using equation (66) we can calculate the accumulated
change in Ngw = 2N, due to tidal effects in irrotational con-
figurations,

R, \*[(R,\*"? R.\5/2
O~ _ _e =
ONow = —16 5<5M ) [( r > ( i ) ]

~ —874 x 10'6M§/2<5M> (S —f&), 90)

where fgw is the wave frequency in Hz. This result is illustrated
in Figure 3. Note that we have multiplied equation (66) by 2 to
account for the presence of two identical stars. The final
change is SNOw(r,) ~ 0.30. Note that this change accumulates
mainly at large fow (small r). For fw < 300 Hz, corresponding
to r > 7.23R,, or the first 16,065 cycles, we find SNy, < 0.1,
while between fgw = 300 Hz and fgy = 522 Hz (the remaining
33 cycles) we find SN =~ 0.2. Although these changes are
small and can probably be neglected in the construction of
theoretical low-frequency wave templates, they may neverthe-
less be detectable by advanced LIGO detectors.

Now turn to the case where the stars are spinning. We
assume that Q2 < 1 and use expression (72) (multiplied by 2 for
two stars with the same spin) to get

© 5/2’\2 ri 1/2 r 1/2
‘Ww*‘“ﬁ(mﬁ "s[(r,) -(E;) l

~ —11IM] ‘/3<5R>92(fc”3 —fawW?). (91

The total change is SNSy(r,) ~ 37.802 ~ 8.85/P2,, where P,
is the spin period in mllhseconds Clearly, this spin-induced
change accumulates mainly at large  (see Fig. 3), and this effect
can be very important for rapidly spinning neutron stars: to
get SNS(r;) 2 0.1, we need a spin period P, < 9. In agree-
ment with Bildsten & Cutler (1992), we conclude that finite-size
effects for these rapidly spinning neutron stars are potentially
very important in modeling the gravitational radiation wave-
forms, even at low frequency (large r).
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F1G. 3—Accumulated change in the number of cycles of gravitational wave
due to finite-size effects at large separation. The change is shown as a function
of wave frequency fgy (starting with zero change at fg = 10 Hz). The two
stars are assumed to be identical, with M = 1.4 M, R,/M =5, and n = 0.5.
The dotted line shows the tidal effects in irrotational configurations, SN, (eq.

90]); the dashed lines show the spin-induced change SN&}, (eq. [91]), for
. =0.1 and Q, = 0.2; the solid lines show the combined tidal and spin-
induced effects (NS, + SNSW).

For synchronized binaries, the change SN&S) calculated

from expression (74) is much larger (by about two orders of
magnitude) than either 6N&,, or IN§). However, synchro-
nized or nearly-synchronized configurations are particularly
unlikely for binary neutron stars at large r. This is because the
ratio of synchronization to orbital decay timescales increases
with r (Kochanek 1992). If viscosity plays any role at all during
the coalescence, it is much more likely to be during the final
phase.

4.3. Orbital Evolution of Binary Neutron Stars near Contact

We calculate the orbital evolution at small r by integrating
the evolution equations (84)—(86) numerically using a fourth-
order Runge-Kutta method with adaptive stepsize to ensure
accuracy. The integration is terminated at the separation r =
r, where a contact configuration is reached along the equi-
librium sequence. Note that for two identical, slowly spinning
neutron stars with mass M 2 0.7 and effective polytropic index
n < 1 (see Table 3), we always have r, <r,, where r,, is the
separation at which E,(r) is minimum (the stability limit, see
§ 2). Since most of our assumptions in both § 2 and § 3 are only
marginally valid whenr < r,,, the results forr, < r < r,, should
be considered more approximate.

Figure 4 shows the evolution of a system with n = 0.5 and
R,/M = 5. Constant-% evolutions with different values of the
initial spin are shown. The point-mass results (eqs. [56], [57],
and [61]) are also shown for comparison, as well as the results
for a corotating system. We see that, as the stability limit at
r = r,, is approached, the orbital decay rapidly accelerates and
departs from the point-mass result, with 7 reaching typically
about 10% of the orbital velocity near contact. As a result, it
takes only one more orbit to complete the final decay from r,,
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FiG. 4—Terminal evolution of selected binary models shown in Fig. 1.
Here (a) shows the infall radial velocity v, = F, (b) shows the time (contact is
reached at t = 0) and (c) shows the number of orbits, starting from r = 5R,. In
all cases the two stars are identical with n = 0.5, R /M = 5. The solid line is for
Q, = 0(% = 0), the short-dashed line is for Q, = 0.2, the long-dashed line is for

Q. =04, and the dotted-dashed line is for corotating evolution. All curves
terminate when contact is reached. For comparison, the dotted lines show the
results for two point masses.

to r;. We see also in Figure 4 that the results for € # 0 are not
very different from those for € = 0. This comes about from two
opposite effects: the initial spin tends to reduce the instability
at small r (see § 2, Table 2), while it can accelerate the orbital
decay at larger r due to the spin-induced quadrupole inter-
action (see § 3.2.3). By contrast, we see that the corotating
evolution is very different from the constant-# evolution.

Figure 5 compares the solutions for different n, all with
R,/M = 5. Clearly, for larger n (higher compressibility), the
effects of the instability tend to be smaller. This is because a
more compressible configuration is more centrally concen-
trated, and tidal effects only become important at smaller r. As
a result both r,, and r,, — r, (the “acceleration distance ) are
smaller (see Table 1).

During the evolution, the total angular momentum and
energy of the system always decrease. This is in contrast to the
equilibrium energy and angular momentum, which both
increase for r < r,,. This point is illustrated in Figure 6, where
we show both the total energy of the system during the evolu-
tion &(r) and the equilibrium energy E,(r). At large r, & ~ E
but whenr $r,, & < E,.

The rapid coalescence of the binary for r < r,, can affect very
significantly the gravitational radiation waveforms. In Figure
7, we show the wave amplitude 4, seen by an observer along
the rotation axis (§ = 0). In this case, h, differs from h, only
by a constant phase of n/2 (see egs. [53]-[54]). Here we show
the irrotational (¥ =0) and corotating evolutions, and

eq?

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994ApJ...420..811L&amp;db_key=AST

r ' -
T9va6 - J420; 18T

FiG. 5 Terminal evolution of selected binary m
all cases the two stars are identical and have R/M

infall radial velocity and (b) shows the

The solid line is for € =0,
long-dashed line for corotation and

corotation and n =

compare them
n = 1, all with R,/M
various solutions all have the
that the phase

for the corotating case (but re
lates mainly at large r in that
the number of cycles Ngw =

a function of wave frequency

with the point-mass result,
— 5. We havesett =

HYDRODYNAMI

odels with different . In

number of orbits starting fromr = 5R,.

n = 0.5, the short-dashed line for#=0,n=1, the
n = 0.5, and the dotted-dashed line for

1. The dotted line is the point-mass result.

— 5. Here (a) shows the

for both n = 0.5 and
0atr = 5R,, and the
same phase at that point. We see

and amplitude depart significantly from the

point mass result, even when & = 0. The departures are largest

C INSTABILITY AND COALESCENCE

call that the phase error accumu-

case; see § 3.2.

Fig. 6—Total energy

of the binary system 2
identical configurations with n.= 0.5 and R,/M d ling
d°the long-dashed line is for corota-

5. The solid line

0, the short-dashed line is for Q, = 0.2, an .

tion. The dotted lines are the co
shown in Fig. 1)-

rresponding equilibrium €nergy curves

4). Figure 8 shows
2N, of the grav1tationa1 wave as
during the evolution. The wave

s r decreases with time for
is for €

(as

n,D/M

(a) is for R/M =5n=
for irrotational Darwin-Riemann binaries (€ = 0)
corotating (Darwin) binal
long-dashed lines show the enve
the binary to the observer located long the binary axis (0 = 0)-

825

0 100 300

t/(R3/M)/

waveform h, just prior to contact. Here
=5,n=05 The solid lines are
the dashed lines are for
ries, and the dotted lines are for two point masses; the

{opes of the waveforms. D is the distance from

FI1G. 7.—Gravitational radiation
1, and (b) is for R,/M

frequency in real units is given by
Q

Q . Ro —-3/2
fow = - = 4130M1'4<_5_M> W Hz, 92

where Q is given by equation (85) (and remains only approx-
eq. [22])- We also see

imately equal to the equilibrium value,

20

15

1000 1200 1400 1600

800
fo, (Hz)

FiG. 8—Number of gravitational wave cycles Ngw = 2Non 85 2 function of

the wave frequency fowjust prior to contact. Here RJ/M =5 and M = 1L.4Mg.
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TABLE 4
BINARY EVOLUTION PARAMETERS?

Case n P ry Oy P fEeHz) k.  Ngw
Q=0............ 05 276 262

R/M=5 ... 0062  0.12 1302 0329 151

R/M=8 ... 0.040  0.097 653 0212 476
10 249 244

R/M=5 ... 0072 0.090 1518 0360 168

R/M=8 ........ 0044  0.063 761 0232 535
5 ... 229

R/M=5 ... 0.068 1692 0375 180

R/M=8 ........ 0.033 845 0240 577
0,=04 ... 05 267 26l

R/M=5 ... 0077  0.099 1387 0364 146

R/M=8 ........ 0051 0072 696 0235 459
L0 ... 248

R/M=5 ... 0.075 1515 0370 161

R/M=8 ... 0.043 758 0237 512
Corotation ....... 0.5 299 2.63

R/M=5 ... 0066  0.17 1261 0308  10.1

R/M=8 ... 0040  0.14 633 0.198 303
10 276 252

R/M=5 ... 0074  0.14 1391 0323 120

R/M=8 ... 0045 0.1 698 0208 369

* Here 7 = r/R,, i = v/(M/R,)"?; r,, is the point where E,(r) is minimum; r, is the separation at
contact; v,, is the value of the radial velocity at r,,, and v, is the velocity atr; f@20 = Q /r is the
3 Uy 'm r yatry; fow )
maximum frequency of the gravitational wave just prior to contact for M = 1.4 M, and h,, =

hemax M/D is the maximum wave amplitude for an observer at a distance D situated along the binary
axis; N gy is the number of cycles of gravitational wave from r = SR, tor = r,.

from Figures 6 and 7 that, for a given R,/M, finite-size effects
on the waveforms are more important for smaller n (stiffer
EOS).

In Table 4, we summarize our results for different cases. The
first two blocks in the table correspond to constant-# solutions
with Q; = 0 and Q, = 0.4. The last block corresponds to coro-
tating evolutions. For every binary model, we list values of the
stability limit r,, and the separation at contact, r,. In each
case, we give the key orbital evolution parameters when
R,/M =5 and R,/M = 8: the radial velocity at r =r,, the
radial velocity at r = r,, the maximum gravitational wave fre-
quency f&W° = fow(r =r,), the maximum wave amplitude
hoax, and the number of cycles Ngy of gravitational radiation
fromr = 5R,tor =r,.

5. GENERAL RELATIVISTIC EFFECTS

Our treatment so far has ignored post-Newtonian (PN)
effects other than the lowest-order dissipative effect corre-
sponding to the emission of gravitational radiation according
to the quadrupole formula (40). However, for the typical value
of R,/M =5, other PN effects are likely to be important and
can alter the orbits considerably.

In the case of two point masses, these PN effects can make a
circular orbit become unstable when the separation is smaller
than some critical value (“inner-most stable orbit”) rgp.
Kidder, Will, & Wiseman (1992) have recently obtained

rer = 6M, + 4y , 93)

where M, = M + M’ is the total mass.® Their method includes
PN effects up to order (v/c)* in the treatment of the two-body
interaction, but also incorporates test-particle effects in the

¢ Their original result was derived in harmonic coordinates. Here we ignore
coordinate distinctions and fit their result to eq. (93) as an approximation.

Schwarzschild geometry exactly. Indeed, for a test particle
orbiting a spherical black hole, expression (93) reduces to the
familiar Schwarzschild result rgg = 6M,. For two point masses
with M = M’, expression (93) gives the result’” rgg ~ 14M.
Since r,, ~ 3R, typically, we see that rgg and r,, are comparable
for R,/M = 5.

For a test particle orbiting a spherical black hole of mass M,,
the total energy describing the orbital motion is given by

G -(-20eim) o
u r u'r

where r is the Schwarzschild radial coordinate. The corre-
sponding equilibrium energy for stationary circular orbits is

B\ (r—2M)
() - 9

which has a minimum at r = rgg = 6M,. Although equation
(95) is very different from our purely Newtonian expression
(32), the two have one thing in common, namely the existence
of a minimum marking the onset of instability. Thus we see
that Newtonian tidal effects and relativistic effects both lead to
the same qualitative result: the existence of a critical binary
separation where a circular orbit becomes dynamically
unstable.

For two stars with comparable masses, a simple analytic
expression such as equation (95) cannot be written since sta-
tionary circular orbits do not exist for a system radiating gravi-
tational waves. Kidder, Will, and Wiseman avoided this
problem by artificially turning off the radiation reaction terms
in their PN equations of motion. In the same spirit, we adopt

7 Note that this is very different from the early estimate of Clark & Eardley
(1977), who give rgg ~ 6M.
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the following simple Ansatz for the energy of the point-mass
binary system

E(CR\2 2M, J? 2M, 4+ 4w/3 (T2
( ) =1__'+ﬁ__'t—‘u/ =) . 96)
u r uer r u

The corresponding equilibrium energy for circular orbits is
obtained by solving (0E®®/dr); » 4 = 0, which gives

(E_,‘?_’> _(r = 2M)* — (4u/3)(3r/2 — 2M))
u B r(r — 3M, — 2u) ’

and has a minimum at rgy given by equation (93). In equation
(96), the coefficient 4/3 was chosen to obtain this result. Note
that when y — 0, equations (96) and (97) reduce to the exact
results for a test particle, equations (94) and (95).

To estimate the combined effects of general relativity and the
Newtonian tidal interactions for finite-size stars, we adopt the
simple model introduced in Paper I. The equilibrium energy of
the Newtonian fluid system discussed in § 2 can be modeled
approximately as

©7)

MM 1 MM
2r 20 r* ’

ER) = - (98)
which has a minimum at r =r,. The parameters « and r,,
depend on the internal structure of the stars and the degree of
synchronization. Their values are adjusted to obtain the best
possible fit to the more accurate E,, calculated in § 2. The total
energy of the binary, not necessarily in equilibrium, is written
as

2 2 ’ 1= 1
™ _ B ﬂ J _MM__MMr,,l
=3 (dt) Y T T e P

For a stationary orbit (* =0), the equilibrium condition
(OE/0r);, pr,m» = 0 yields the equilibrium energy given by equa-
tion (98). Taking the time derivative of equation (99), we obtain
the orbital evolution equation
. J? N MM’ N MM're !

K urd r? (o0 — 2)r2*!

This equation, together with J = E/Q = (ur?/J)E, can be
solved for r(¢). Equivalently, one can also eliminate J and
derive an equation similar to equation (87):

dr  3u (dr\(d*\ 2dE 2
pLr g (dryd ) | 2dEqdr 2 (d$
dt r \dt/\dt rodr dt r\dt)gw

The solutions of equation (101) reproduce all the essential
features of the more accurate solutions obtained in § 4. For
example, for a typical case with r,, = 2.8R,, r, = 2.5R, and
a=6, we get ir,) = v,r,) = —0.059(M/R,)"* and v,(r,) =
—0.12(M/R,)"/? for R,/M = 5. These are close to the typical
values found in § 4.

We now attempt to incorporate the new relativistic effects
discussed above into the model. We simply replace the Newto-
nian point-mass term — MM’/(2r) in equation (98) by the cor-
responding GR term, expression (97):

MM

=0. (100)

(101)

E,= Ef:’ + T + Egﬁ"“ —u
1 MM'r2~1
= o —ram_ + Eg‘j"’ —U. (102)
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Of course, relativistic effects will also change the internal struc-
tures of the stars, changing the first term in the first equality of
equation (102), but this is a higher order effect. The new E,(r)
now has a minimum at some r,, which is larger than either the
Newtonian r,, or the purely relativistic rgg. For example, for
rn = 2.8R,and R /M = 5, we find r,, = 3.4R,. To calculate the
orbital evolution, we use the new E.(r) in equation (101) in
place of Ej. In the example considered above, we obtain
v(r,) = —0.048(M/R,)""* and v,(r;) = —0.25(M/R,)"/?, i.e., the
terminal velocity at contact is about a factor of 2 larger than
when only Newtonian effects are considered. For R,/M = 8§,
we have r, = 3.0R,, and the terminal velocities are v,(r;,) =
—0.028(M/R,)"* and v,(r;) = —0.13(M/R,)"/>. We see that the
general relativistic effects can be important, especially when the
value of R,/M is small.

Our treatment of general relativistic effects is admittedly
very crude. The main point we wish to emphasize here is that
the Newtonian hydrodynamic effects discussed in this paper
are likely to be at least as important as the relativistic correc-
tions to the orbital motion for the final coalescence of neutron
star binaries. When the two effects are combined, the final
coalescence is likely to be even faster, and may assume a signifi-
cant “head-on ” character.

6. POSSIBILITY OF MASS TRANSFER

Our discussion so far has assumed that there is no mass loss
from the system or mass transfer between the two stars. For
binaries containing two identical stars, equilibrium configu-
rations exist all the way down to contact (and even beyond; see
Hachisu 1986), and there is no “Roche limit” in the conven-
tional sense. When the two masses are different, however, the
equilibrium sequence terminates at a Roche limit (see §§ 2.4
and 2.5). Clark & Eardley (1977) have suggested that stable
mass transfer from the less massive neutron star to the more
massive one can then occur, lasting for hundreds of orbital
revolutions before the lighter star is tidally disrupted. This
episode of stable mass transfer is accompanied by a secular
increase of the orbital separation. Thus if stable mass transfer
indeed occurs, a characteristic “reversed chirp” would be
observed in the gravitational wave signal (Jaranowski &
Krolak 1992). The problem has been reexamined more recently
by Kochanek (1992) and Bildsten & Cutler (1992), who both
find that very large mass transfer rates and extreme mass ratios
are required for stable mass transfer between two neutron
stars, making it rather unlikely.

Our results reveal an additional problem with the Clark-
Eardley scenario. Quite independent from the stability of the
mass transfer itself, the Clark-Eardley scenario requires the
existence of a dynamically stable Roche limit configuration.
However, our studies of Roche-Riemann and Darwin-
Riemann equilibrium configurations (LRS1, LRS2) indicate
that this is almost impossible for objects as incompressible as
neutron stars. Consider again the equilibrium energy curve
E,(r) for a binary. The Roche limit at r = ry;,, when it exists,
corresponds to the point where r has a minimum possible
value for circular equilibrium prior to contact. However,
before such a limit can be reached, the binary separation must
pass through a value r,, > ry;,, where E (r) is minimum. For
equilibrium sequences with constant %, this minimum coin-
cides with the dynamical stability limit, and all binaries with
r <r, are dynamically unstable (see § 2.4). Therefore, if vis-
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cosity can be neglected in the neutron star binary evolution, no
dynamically stable Roche limit can exist, and stable mass trans-
fer can never occur.

2T (a) ]
1.5 §

o | |
= ]
>~ L 1
= 1+ -

M'/M,

SR

KRR RIITLLLREL
G IEIREEIRIRIRAKR

9 9:0.0.0.9:90:¢7¢'

F1G. 9.—Final fates of coalescing neutron star binaries. Each point in the
diagram corresponds to a sequence of binary equilibrium configurations with
different values of M and M'. The various regions indicate the possible termin-
al configurations. Neutron star models are based on the WFF equation of
state. Irrotational systems are shown in (a), corotating systems in (b). In (a),
binary equilibrium sequences in the hatched regions terminate at a contact
equilibrium configuration. In the wide-hatched region, this contact configu-
ration is dynamically unstable, while it is dynamically stable in the narrow-
hatched region. A binary sequence in the unshaded region does terminate at a
Roche limit, but the Roche limit configuration is always dynamically unstable.
In (b), binary sequences in the shaded regions inside the solid lines terminate at
a contact configuration. This contact configuration is dynamically unstable in
the wide-hatched region, while it is dynamically stable in the narrow-hatched
region. Binary sequences outside the solid lines terminate at a Roche limit. A
binary in the unshaded region encounters a dynamical instability before the
Roche limit; this instability occurs after the Roche limit (along the second,
unphysical branch ofthe equilibrium sequence, see § 2.4) in the cross-hatched
region. A binary in the blackened region encounters a Roche limit but no
dynamical instability. Only in the cross-hatched and blackened regions can a
dynamically stable binary exist at the Roche limit. Binaries in all regions in (b)
encounter a secular instability (energy minimum) prior to any other critical
point, except those in the small unshaded portion in the lower left corner.
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In the opposite limit, when viscosity is so efficient that coro-
tation can be maintained throughout the evolution, the mass
parameter range which permits the existence of a stable Roche
limit is very small. This is illustrated in Figure 9, which shows
the different types of terminal binary neutron star configu-
rations as a function of M and M'. The neutron star model is
based on the WFF equation of state AV14+ UVII, with the
effective polytropic index given in Table 3 (see § 4.1). The dia-
grams are constructed from our general Darwin-Riemann
equilibrium models allowing for two nonidentical polytropes
(see LRS2 for details and for applications to other types of
binary systems). For irrotational (¢ = 0) systems (Fig. 9a), the
existence of a Roche limit requires a mass ratio p < 0.9 or
p= 11 for M ~ 1.4 M. However, as discussed above, this
Roche limit is always dynamically unstable. For corotating
systems (Fig. 9b), the existence of a Roche limit requires a mass
ratiop <08 orp = 1.2for M ~ 1.4 M. Stable configurations
can exist at the Roche limit but only if one of the stars has a
very small mass, M < 0.4 M, and is thus more compressible
(see Table 3).

We conclude that even when the masses of the two neutron
stars are different, stable mass transfer is nearly impossible.
The final phase of the orbital decay is always a rapid
coalescence, and a “reverse chirp” in the gravitational wave
signal is not expected.

7. CONCLUSIONS

The main conclusions of this paper can be summarized as
follows:

1. Global hydrodynamic instabilities of close binary equi-
librium configurations play an essential role during the termin-
al phase of the orbital decay. Qualitatively, their effect is to
accelerate the final coalescence.

2. For neutron star binaries whose orbits are decaying by
the emission of gravitational waves, these instabilities can
affect significantly the shape of the last few cycles in the gravi-
tational radiation waveform.

3. The instabilities are caused by tidal effects and their
nature is essentially Newtonian. Their effects are stronger for
stiffer EOS.

4. Corrections to the orbital motion of two neutron stars
caused by Newtonian tidal effects are at least as important as
post-Newtonian  corrections beyond the dominant
gravitational-radiation-reaction terms.

5. Stable mass transfer from one neutron star to another
requires a dynamically stable Roche limit configuration. Such
a configuration can exist only in synchronized systems with
extreme mass ratios, which are essentially ruled out for
neutron stars.
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