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ABSTRACT

Motivated by suggestions that binaries with almost equal-mass components (“twins”) play an im-
portant role in the formation of double neutron stars and may be rather abundant among binaries,
we study the stability of synchronized close and contact binaries with identical components in circular
orbits. In particular, we investigate the dependency of the innermost stable circular orbit on the core
mass, and we study the coalescence of the binary that occurs at smaller separations. For twin binaries
composed of convective main-sequence stars, subgiants, or giants with low mass cores (Mc . 0.15M ,
where M is the mass of a component), a secular instability is reached during the contact phase, accom-
panied by a dynamical mass transfer instability at the same or at a slightly smaller orbital separation.
Binaries that come inside this instability limit transfer mass gradually from one component to the
other and then coalesce quickly as mass is lost through the outer Lagrangian points. For twin giant
binaries with moderate to massive cores (Mc & 0.15M), we find that stable contact configurations
exist at all separations down to the Roche limit, when mass shedding through the outer Lagrangian
points triggers a coalescence of the envelopes and leaves the cores orbiting in a central tight binary.
We discuss the implications of our results to the formation of binary neutron stars.
Subject headings: binaries: close — binaries: general — hydrodynamics — instabilies — methods:

numerical — stars: general

1. INTRODUCTION AND MOTIVATION

The evolutionary history and formation of close bina-
ries with two neutron stars similar to the Hulse-Taylor
pulsar B1913+16 (Hulse & Taylor 1975) and the double
pulsar J0737-3039 (Burgay et al. 2003) is a topic of in-
tense current interest. Most recent studies of the known
double neutron stars focus on the stages going back to
the time of the second supernova explosion and the for-
mation of the youngest of the two neutron stars (Dewi &
van den Heuvel 2004; Willems & Kalogera 2004; Willems
et al. 2004; Piran & Shaviv 2005; Stairs et al. 2006;Wang,
Lai, & Han 2006; Wong, Willems, & Kalogera 2010, and
references therein). Although these studies provide very
interesting constraints on the properties of the stellar
progenitor of the second neutron star, they do not probe
the earlier evolutionary history. That part remains un-
certain and more difficult to constrain empirically based
on the measured properties of observed systems.
Since the discovery of the Hulse-Taylor binary, the ori-

gin of double neutron stars has been naturally connected
to the evolution of massive binaries, with stellar com-
ponents that are massive enough to form two neutron
stars at the end of their lifetime. Over the years, a qual-
itative consensus of understanding for the formation of
double neutron stars developed (see, e.g., Bhattacharya
& van den Heuvel 1991): massive binaries experience a
phase of stable mass transfer when the primary over-
flows its Roche lobe revealing its helium core; this core
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ends its lifetime in a supernova forming the first neu-
tron star in the system; the binary becomes a high-mass
X-ray binary until the massive secondary fills its Roche
lobe and the binary enters a dynamically unstable phase
of mass transfer leading to inspiral in a common enve-
lope that engulfs the neutron star; during this phase the
neutron star is thought to be spun up through recycling
and, if the binary avoids a merger in the inspiral, the
helium core of the secondary is revealed after the enve-
lope ejection; this core explodes in a supernova, forming
the second neutron star in the system, and the double
neutron star further evolves through orbital contraction
and gravitational-wave emission. Variations of this evo-
lutionary sequence have been shown to be realized by
theoretical binary population studies (e.g., Belczynski et
al. 2002).
Brown (1995) argued that the inspiral of the neutron

star during the common envelope phase in the standard
model is problematic: the neutron star is expected to ex-
perience hypercritical accretion (Chevalier 1993) at rates
many orders of magnitude above the photon Eddington
limit through a neutrino-cooled accretion flow (see also
Fryer et al. 1996). Such a rapid accretion phase along
with the adoption of a low maximum neutron star mass
(∼1.5M⊙ derived for a soft equation of state for neutron
star matter with kaon condensation) led Brown to con-
clude that all neutron stars in common envelope phases
will accrete enough matter to collapse into a black hole.
Consequently, he argued that the “standard” evolution-
ary sequence described above aborts the formation of
double neutron stars and instead leads to the formation
of binaries with low-mass black holes and neutron star
companions. We note however that, even with the same
treatment of hypercritical accretion, a maximum neu-
tron star mass of ∼ 2M⊙ (corresponding to a more reg-
ular stiff equation of state) does prevent a good fraction
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of neutron stars from being transformed into low-mass
black holes (Belczynski et al. 2002).
Brown (1995) also noted how the masses measured in

known double neutron stars are very close to being equal
(Nice et al. 1996; Thorsett & Chakrabarty 1999; Stairs
et al. 2002; Weisberg & Taylor 2005; Jacoby et al. 2006;
Kramer et al. 2006, and references therein). Motivated
by these two points, he proposed a different formation
channel for double neutron stars. Brown suggested that
double neutron stars form from massive binaries with
component masses that are within ∼4% of one another.
Consequently the red giant phases of the two compo-
nents coincide in time and when mass transfer ensues
from the primary, both components have deep convective
envelopes and well developed helium cores, so that a dou-
ble core phase develops, where the two helium cores orbit
within the combined envelopes of the two massive stars.
Provided that there is enough orbital energy, the com-
mon envelope is ejected before the two cores merge, and
a tight binary with two helium cores is formed. These
two cores differ very little in mass and reach core col-
lapse one very soon after the other (∼ 103 yr based on
helium-star models, Habets 1986; Pols 1994), forming a
close double neutron star.
The advantages of this hypothesized evolutionary

channel are (i) a neutron star never experiences com-
mon envelope spiral-in and hypercritical accretion, and
(ii) the two stellar components have so similar masses
that they naturally form neutron stars of almost equal
mass as observed (Bethe & Brown 1998; Bethe, Brown,
& Lee 2007). On the other hand, this channel (i) re-
quires that mass transfer between the red giant progeni-
tors will indeed lead to the inspiral of the two cores in a
common envelope and (ii) requires fine-tuning the condi-
tions for recycling the first neutron star, as this spin up
must occur during the very short interval between the
two supernovae through the stellar wind or possibly dur-
ing the brief Roche-lobe overflow from the lower-mass
helium star (Dewi et al. 2006). A potential additional
disadvantage is that this channel is very restrictive in
that it requires progenitors that are at most only ∼ 4%
apart in mass: however, in their study of protobinary
stars, Krumholz & Thompson (2007) find that for a wide
range of initial conditions Roche lobe overflow tends to
equalize the masses of the binary components.
The double neutron star formation channel suggested

by Brown (1995) has attracted renewed attention be-
cause of the reported abundance of “twins,” massive bi-
naries with mass ratios very close to unity (within 5%)
by Pinsonneault & Stanek (2006). Specifically they ana-
lyze data for 21 detached eclipsing binaries in the Small
Magellanic Cloud and find that the data are consistent
with a flat mass function containing 55% of the systems
and “twins” with mass ratios greater than 0.95 contain-
ing the remaining 45% of the population. However, it is
important to note that there are severe selection effects
against the discovery of binaries with small mass ratios
(typically . 0.5, Hogeveen 1992a,b,c); therefore the con-
tribution of twins may not be as significant as implied by
the most recent observations. Quantitative modeling of
the associated selection effects is required to derive more
reliable statistical conclusions.
Apart from uncertainties with the initial properties of

the binary population, a number of physical processes

related to these formation channels make it hard to as-
sess their relative contribution to double neutron star
formation. The physics of common envelopes and hyper-
critical accretion, as well as of neutron star equations of
state and their maximum mass, is not well understood
(but see Lee, Park, & Brown 2007). Also, the develop-
ment of a dynamical instability and subsequent common
envelope phase with the inspiral of the two cores is as-
sumed, but has not been investigated before in any de-
tail. In this study, we attempt to understand better one
of the aspects related to the formation channel suggested
by Brown (1995): the fate of mass transfer between two
stars of almost equal mass.
Most of the classical work on close binaries was done

in the limit of a self-gravitating incompressible fluid (see
Chandrasekhar 1969, and references therein). An essen-
tial result found in the incompressible case is that the hy-
drostatic equilibrium solutions for sufficiently close bina-
ries can become globally unstable (Chandrasekhar 1975;
Tassoul 1975). The classical analytic studies for bina-
ries were extended to polytropes in the work of Lai et
al. (1993a,b, 1994a,b,c). In their approach, the stars
are modeled as self-gravitating compressible ellipsoids,
and an energy variational principle is used to construct
approximate equilibrium configurations and study their
stability. These treatments, along with complementary
numerical hydrodynamic calculations (Rasio & Shapiro
1992, 1994, 1995), demonstrate that dynamical instabil-
ities persist in the compressible regime and can cause a
binary to coalesce to form a rapidly rotating spheroidal
object. Such a dynamical instability can trigger a merger
in just a few orbital periods (Rasio & Shapiro 1992) or
an episode of mass transfer that lasts many orbits (Motl
et al. 2002; D’Souza et al. 2006; Frank 2008; Dan et al.
2009; Lorén-Aguilar et al. 2009).
The evolution of a close binary system can also be af-

fected by another type of global instability. It has been
referred to by various names, such as the secular instabil-
ity (Lai et al. 1993a,b, 1994a,b,c), tidal instability (Coun-
selman 1973; Hut 1980), gravogyro instability (Hachisu
& Eriguchi 1984), and Darwin instability (Levine et al.
1993). Its physical origin is easy to understand (Lai et al.
1993a, 1994b; Rasio 1994; Webbink 2006). There exists
a minimum value of the total angular momentum J for
a synchronized close binary. This is simply because the
spin angular momentum, which increases as the separa-
tion r decreases for a synchronized system, can become
comparable to the orbital angular momentum for suffi-
ciently small r. A system that reaches the minimum of
J cannot evolve further by angular momentum loss and
remain synchronized. Instead, the combined action of
tidal forces and viscous dissipation will drive the system
out of synchronization and cause rapid orbital decay as
angular momentum is continually transferred from the
orbit to the spins. The orbital decay then proceeds on
a timescale comparable to the synchronization time of a
stable binary.
In this paper, we pay particular attention to the onset

of orbital instabilities, including those characterized by
mass transfer, as well as the subsequent inspiral of the
cores. We extend previous hydrodynamic studies of close
binary systems to cases that involve identical giants, that
is, to twin stars with dense stellar cores and extended en-
velopes. So that our results can be scaled to stars of any
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size or mass, we approximate the stars as condensed poly-
tropes, that is, as a point mass surrounded by a constant
entropy fluid of adiabatic index Γ = 5/3. Such a model
is appropriate for a fully convective monatomic ideal gas
surrounding a compact core. We consider fractional core
masses mc ≡ Mc/M that cover the entire range of the-
oretical possibilities. Zero core mass models correspond
to normal (or “complete”) n = 1.5 polytropes, which
are most appropriate for low mass main-sequence stars
and non-relativistic white dwarfs. At the other extreme,
when mc = 1, there is no mass in the gaseous enve-
lope, and the binary is simply that of two point masses.
By varying the core mass between these extremes, we
are able to study in a systematic way the full param-
eter space of twin binaries and determine under what
conditions mass transfer develops or an innermost stable
circular orbits exists.
For typical compositions, the subgiant phase begins

when the core mass grows to ∼ 10% of the total mass,
the so-called Schönberg-Chandrasekhar limit (Schönberg
& Chandrasekhar 1942). By the time the star reaches the
base of the red giant branch, the core mass has increased
by a few more percent of the total mass. Roughly speak-
ing then, our models with mc . 0.1, 0.1 . mc . 0.15,
and mc & 0.15 correspond to main sequence, subgiant,
and giant stars, respectively. The assumption that the
stellar envelope has constant specific entropy makes our
models most relevant to stars that are fully convective
(as with low mass main sequence stars) or that have deep
convective envelopes (as in many red giants).
The use of condensed polytropes as a model of red

giants has a rich history, including seminal work by
Chandrasekhar (1939), Osterbrock (1953), and Härm &
Schwarzschild (1955). Mass transfer in close binary sys-
tems has been modeled with the help of condensed poly-
tropes as well: the response of the donor due to mass loss
is considered, with its resulting contraction, or expan-
sion, compared against that of its Roche lobe (Paczyiński
& Sienkiewicz 1972; Hjellming & Webbink 1987). If at
the onset of mass transfer the star contracts less rapidly
than its Roche lobe (or expands more rapidly than it),
then the mass exchange is dynamically unstable, and
the binary will evolve rapidly toward a new, often qual-
itatively different, equilibrium. Hjellming & Webbink
(1987) find that equal mass condensed polytrope con-
tact binaries with fractional core masses mc . 0.46 ex-
perience stable mass transfer. More recently, Krumholz
& Thompson (2007) have used condensed polytropes to
study the formation of twin star systems.
Although essential for a qualitative understanding of

mass transfer, such treatments of close binaries do, how-
ever, make several simplifying approximations: most im-
portantly, (i) the dynamics of the orbit and size of the
Roche lobe are treated in the point mass approximation,
(ii) the response of the binary components to mass loss
or gain is modeled as if each star were spherical and in
isolation, and (iii) mass that overflows a Roche lobe is
considered to leave that star. These approximations are
quite reasonable for semidetached binaries, but their va-
lidity can be questioned for contact binaries. In such
cases, a common envelope persists in equilibrium out-
side of the Roche lobes (the inner Lagrangian surface)
so that the pressure and density on the Roche lobes are
non-zero: mass that overflows a Roche lobe is not neces-

sarily transferred to the other star but rather can persist
in equilibrium inside the outer Lagrangian surface. A
primary goal of this paper is therefore to relax the ap-
proximations of previous works by using accurate hydro-
dynamical calculations to study contact binary systems.
Our paper is organized as follows. In §2 we review

our numerical method and general conventions. In §3 we
present our results for the equilibrium and stability prop-
erties of twin binary systems. The dynamical evolution
to complete coalescence is followed for several unstable
systems. The implications of our results are discussed in
§4.

2. NUMERICAL METHODS AND ASSUMPTIONS

2.1. The SPH code

To generate our models, we use a modified version of
the SPH code originally developed by Rasio (1991) that
has been updated to include the variational equations
of motion derived in Gaburov et al. (2010). SPH is a
Lagrangian particle method, meaning that the fluid is
represented by a finite number of fluid elements or “par-
ticles.” Associated with each particle i are, for example,
its position ri, velocity vi, and mass mi. Each particle
also carries a purely numerical smoothing length hi that
determines the local spatial resolution and is used in the
calculation of fluid properties such as acceleration and
density. Details of our SPH code, such as the particular
form of the artificial viscosity Πij and smoothing kernel
Wij implemented, are described in Gaburov et al. (2010).
See Rasio & Lombardi (1999) and Rosswog (2009) for re-
views of SPH.
Because the gas in our stellar models is of constant

entropy, we find it convenient to integrate the so-called
entropic variable Ai of each particle i. The entropic vari-
able is simply the proportionality constant in the poly-
tropic equation of state p = AρΓ, where p is pressure and
ρ is density. The entropic variable is so named because of
its close connection to entropy: both quantities are con-
served in reversible processes and strictly increase oth-
erwise. We therefore use dAi/dt = 0 in the relaxations
of our single star models and in the calculations of our
binary equilibrium sequences. For our dynamical calcu-
lations of merger scenarios (see §2.4 and §3.2), we evolve
Ai according to the discretized SPH version of the first
law of thermodynamics:

dAi

d t
=

Γ− 1

2ρΓ−1
i

∑

j

mjΠij (vi − vj) · ∇iWij(hi) . (1)

To calculate the gravitational accelerations and po-
tentials, we use direct summation on NVIDIA graphics
cards, softening with the usual SPH kernel as in Hern-
quist & Katz (1989). The use of such a softening with
finite extent (as opposed, for example, to Plummer soft-
ening) increases the accuracy and stability of our SPH
models, consistent with the studies of Athanassoula et
al. (2000) and Dehnen (2001). The gravity of core points
in our models is similarly softened, applying a constant
smoothing length comparable to the minimum smooth-
ing length in the system.

2.2. Single Star Models

In this section we present our procedure for modeling
the stars that are used in the binary simulations of §3.
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Hydrodynamically, a subgiant or giant can be treated
as a two-component system: a high-density, degenerate
core, surrounded by an extended envelope. The very
large density contrast between the core and the envelope,
along with the small core radius, justifies the use of a sin-
gle point mass to represent the core. Because the giants
we wish to model mostly have deep convective envelopes
with an equation of state dominated by monatomic ideal
gas pressure, we treat their gas as a constant entropy
fluid with an adiabatic index Γ = 5/3.
Specifically, our stellar models are the so-called con-

densed polytropes, namely, constant entropy fluid sur-
rounding a point mass core (Chandrasekhar 1939; Härm
& Schwarzschild 1955), which we parameterize by the
core mass mc. Each of the condensed polytropes in our
family of models has total massM = 1 and radius R = 1.
The unit system is completed by choosing Newton’s grav-
itational constant G = 1. Condensed polytrope models
have not only the advantage of reproducibility but also of
scalability to any stellar mass and radius: although our
focus here is on stars massive enough ultimately to yield a
neutron star, the same calculations are also valid for low
mass systems. In the limiting scenarios of mc = 0 and
mc = 1, we recover the well-studied cases of a n = 3/2
polytrope and a point mass, respectively.
Figure 1 shows the pressure and density profiles as a

function of radius for condensed polytropes with core
masses 0, 0.125, and 0.5. For comparison, we also dis-
play the profiles of red giant stars computed using the
TWIN stellar evolution code (Eggleton 1971; Glebbeek,
Pols, & Hurley 2008) from the MUSE software environ-
ment5 (Portegies Zwart et al. 2009): we evolve 10 and
25 M⊙ stars with initial helium abundance Y = 0.28
and metallicity Z = 0.02 until they obtain core masses
of approximately mc = 0.16 and 0.27, respectively. This
corresponds to our initially 10 M⊙ star being at the very
tip of the red giant branch and the initially 25 M⊙ star
being on the upper part of the branch. The profiles of the
simple condensed polytrope models follow the same gen-
eral trend as those of the red giants, indicating that our
simple models can indeed help provide an understanding
of real red giant binaries.
Table 1 presents the models used in this paper. Col-

umn (1) gives the core massmc, while column (2) lists the
corresponding EO value: this is the parameter E in the
original notation of Osterbrock (1953), as well as in the
notation of Härm & Schwarzschild (1955) and Hjellming
& Webbink (1987). (We prefer to reserve the variable E
for energy.) The value of EO controls the shape of the
density profile: to lowest order near the surface (r ≈ R),
ρ(r) ≈ (2/5)3/2EO(1 − r/R)3/2M/(4πR3). In practice,
we adjust EO to achieve the desired core mass mc.
We begin by making an SPH model of a single star

in isolation. Unless stated otherwise, we use N =
19938 SPH particles initially placed on a hexagonal close
packed lattice with a lattice spacing constant a1 =
0.0542, with particles extending out to a radius that is
between one and two smoothing lengths less than the
full stellar radius. We model the stellar core as a point
mass that interacts gravitationally, but not hydrodynam-
ically, with the rest of the system, as suggested by Rasio

5 http://muse.li

Fig. 1.— The solid curves show the quasi-analytic radial profiles
of the pressure p and density ρ formc = 0, 0.125, and 0.5 condensed
polytropes; for comparison, the dashed and dotted curves represent
red giants, as modeled by the TWIN stellar evolution code, with
initial masses respectively of 10 and 25 M⊙. For the condensed
polytropes, curves associated with larger mc are higher on the left
edge of the figure and lower on the right edge. Units are such that
G = M = R = 1.

TABLE 1
Parent Star Characteristics

mc EO
(1) (2)
0 45.4808

0.05 39.9250
0.1 35.2403

0.125 33.1661
0.15 31.2407
0.175 29.4461
0.2 27.7673
0.25 24.7072
0.3 21.9782
0.4 17.2861
0.5 13.3582
0.6 9.9904
0.7 7.0496
0.8 4.4443
0.9 2.1092
0.99 0.1984

& Shapiro (1991) and others. The gravitational influ-
ence of these core points are softened according to the
SPH kernel with h = 0.0498. Particle masses are appor-
tioned according to the desired density profile, and then
slightly rescaled before relaxation begins to ensure that
the correct total mass M = 1 is precisely achieved. The
entropic variable Ai of each SPH particle is set to the
desired polytropic constant K, which is determined from
the mass-radius relation for n = 3/2 condensed poly-
tropes (Osterbrock 1953):

R = (4π)−2/3G−1KE
2/3
O M−1/3. (2)

After the initial parameters of the particles have been
assigned, we relax the SPH fluid into hydrostatic equi-
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Fig. 2.— Properties of the model with core mass mc = 0.25 as a
function of radius, after relaxation for 500 time units. The frames
in the left column compare calculated pressure p and density ρ pro-
files of the star (dashed curves) against particle data from our SPH
model (dots). The right column provides additional SPH particle
data: individual SPH particle mass m, smoothing length h, num-
ber of neighbors NN , and radial component of the hydrodynamic
acceleration ahydro (upper data) and gravitational acceleration g

(lower data).

librium. This relaxation is effected by including the arti-
ficial viscosity contribution in the acceleration equation
(with α = 1 and β = 2), while still keeping Ai constant
for all particles. In this way, the entropy of the system is
preserved while the system approaches equilibrium. The
total energy typically decreases by less than a percent in
the process, indicating that our initial assignment of par-
ticle properties was indeed very close to an equilibrium
state.
This approach allows us to model the desired profiles

very accurately. An example is presented in Figure 2,
where we plot desired profiles and SPH particle data for
our relaxed mc = 0.25 star. Although the core and sur-
face of the star of course cannot be resolved on the length
scale of a smoothing length (typically 0.05 to 0.08 length
units), the thermodynamic profiles of the SPH model
nicely reproduce the quasi-analytic curves. Indeed, the
SPH data in the left column of Figure 2 are difficult to
distinguish from the desired pressure and density pro-
files throughout most of the star. We also note that the
hydrodynamic and gravitational accelerations are very
nearly equal in magnitude and opposite in direction, as
necessary for hydrostatic equilibrium.

2.3. Binary Equilibrium Configurations

2.3.1. SPH Calculations

The ability of our code to model close and contact bi-
nary systems for thousands of orbits or longer is pre-
sented in Gaburov et al. (2010). Here we present our
methods for modeling equilibrium sequences of twin bi-
naries, that is, binaries that consist of two identical stars

in synchronized orbit. First, we place identical relaxed
stellar models along the x axis with their centers of mass
separated by r. While the relaxation of the binary takes
place, the entropic variable particle values are held con-
stant. The center of mass of the entire system is fixed at
the origin. In addition, the positions of the particles are
continuously adjusted (by a simple uniform translation
along the binary axis), so that the separation between
the centers of mass equals the desired separation r.
The orbit is chosen to occur in the xy plane. The an-

gular velocity Ωorb defining the corotating frame is up-
dated at every timestep so that the centrifugal and iner-
tial accelerations acting on the fluid cancel. In particu-
lar, we wish to find configurations in which Ω2

orb(xix̂ +
yiŷ) = −(v̇x,ix̂ + v̇y,iŷ), where the velocity derivatives
on the right hand side are components of acceleration
in the inertial frame. By taking the dot product with
mi(xix̂ + yiŷ) and then summing over all particles, we
obtain

Ω2
orb =

−
∑

i mi(xiv̇x,i + yiv̇y,i)∑
i mi(x2

i + y2i )
. (3)

We also include a drag force that opposes the veloc-
ity and provides a contribution to the acceleration of
−vi/trelax. We use trelax = 3, approximately the funda-
mental period of oscillation for our parent models. We
do not include any artificial viscosity contribution when
finding binary equilibrium configurations.
In order to find equilibrium configurations for a pre-

cisely equal mass binary, even for configurations unsta-
ble to mass transfer, we enforce a symmetry in particle
properties: for each particle i in star 1, there is a part-
ner particle j in star 2 at xj = −xi and yj = −yi with
velocity components vx,j = −vx,i, vy,j = −vy,i and with
acceleration components v̇x,j = −v̇x,i, v̇y,j = −v̇y,i. All
other properties are identical for any such pair of parti-
cles.
The separation r between the centers of mass can be

allowed to drift slowly so that an equilibrium sequence
is constructed: a so-called “scanning run.” In practice,
we start runs that will scan over separations by hold-
ing the centers of mass fixed at an initial separation
r(0) for 40 time units, allowing the system to approach
a tidally bulged equilibrium configuration. At an addi-
tional amount of time t, the separation is set according

to r(t) = r(0) [r(tscan)/r(0)]
t/tscan . This form for r(t) al-

lows the change in r to occur at a decreasing rate as the
stars approach and interact more strongly, although the
exact form is not critical to our results. We typically use
tscan = 300, r(0) = 3.3, and r(tscan) = 2.1.

2.3.2. Data Reduction Methods

Once an SPH binary calculation has completed, we
analyze the system at various separations along the se-
quence. To this end, a useful quantity to consider is the
effective potential, calculated as

Φe(x, y, z) = Φ(x, y, z)−
1

2
Ω2

orb(x
2 + y2), (4)

where Φ is the gravitational potential, the coordinate
y measures perpendicular to the binary axis in the or-
bital plane, and z measures parallel to the rotation axis.
Along the binary axis (y = z = 0), the effective potential
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has a local maximum Φ
(i)
e at x = 0 (the inner Lagrangian

point) and global maxima Φ
(o)
e at |x| = xo (the outer La-

grangian points). There are two minima at |x| = xc, cor-
responding to the cores of the two components.6 In equi-
librium, the fluid will fill up the effective potential well

to some maximum, constant level Φ
(s)
e . Borrowing the

terminology from models of W UMa binaries (Rucinski
1992, and references therein), we follow Rasio & Shapiro
(1995) and define the degree of contact η as

η ≡
Φ

(s)
e − Φ

(i)
e

Φ
(o)
e − Φ

(i)
e

. (5)

Clearly, we have η < 0 for detached configurations: that
is, none of the fluid has a large enough effective potential
energy to exceed the effective potential energy barrier at
the inner Lagrangian point. For 0 < η < 1, the effec-
tive potential of the fluid near x = 0 does exceed the
barrier, and the system is classified as a contact binary.
For η > 1, the envelopes overflow beyond the outer La-
grangian surface, and no dynamical equilibrium configu-
ration can be achieved; that is, the system has exceeded
the Roche limit. Calculations in which we slowly scan
to smaller separations can therefore determine position
of first contact (η = 0), the secular stability limit (at
the minimum energy and angular momentum along the
sequence), and the Roche limit (η = 1).
It is important to realize that the equilibrium sequence

of a twin binary passes smoothly from detached to con-
tact configurations as the separation r decreases. This
is in contrast to all binary equilibrium sequences with
mass ratio q 6= 1, which terminate at a Roche limit cor-
responding to the onset of mass transfer through the in-
ner Lagrangian point (that is, once one of the binary
components overflows its Roche lobe). For twin binaries,
however, the Roche limit, which we still define as the last
equilibrium configuration along a sequence with decreas-
ing r, corresponds to the onset of mass shedding though
the outer Lagrangian points: as an example, note that
several particles have been shed to the far left and far
right of the r = 2.22 frame in Fig. 3.

We estimate Φ
(s)
e from our SPH models by finding the

maximum effective potential of the points along the x-
axis that are within one smoothing length of the cen-
ter of an SPH particle. Thus, even if the centers of all
SPH particles are within the outer Lagrangian surface,
we may still consider the system as having reached the
Roche limit when some smoothing kernels extend sub-
stantially beyond the outer Lagrangian surface. Such an
estimate accounts for the fact that an SPH particle is
not a point mass but instead represents a parcel of fluid
with a density profile described by the smoothing kernel.

Our means of estimating Φ
(s)
e allow our critical separa-

tion results to converge quickly to a steady value as the
resolution is increased up to the resolution presented in
this paper (see §3.1).

2.4. Dynamical Calculations

6 Note that in general r 6= 2xc, because we define the binary
separation r as the distance between the centers of mass of the
two components.

We generate initial conditions for our dynamical runs
by taking a configuration at the desired separation r from
a scanning run and then relaxing for an additional 200
time units. If a particle escapes past an outer Lagrangian
point during this time interval, then we end the relax-
ation stage and begin following the dynamics immedi-
ately. During dynamical calculations, we include no drag
force and move the particles according to their velocities
in the usual way (for details, see Gaburov et al. 2010).
Particles are again treated independently so that mass
transfer events can be followed; that is, unlike the scans
described in §2.3, no symmetry constraints are applied
to particle motion. Artificial viscosity is implemented
in both the acceleration and the entropy equations. To
minimize the spurious effects of artificial viscosity (Lom-
bardi et al. 1999), our dynamical calculations are done
in a rotating frame, with the the angular velocity Ωorb

calculated once at the beginning of the dynamical evolu-
tion and thereafter held constant when applying Coriolis
and centrifugal forces.
All other particles are assigned to the ejecta. For more

details, see Gaburov et al. (2010).

3. RESULTS

Using the methods described above, we construct twin
binary sequences for 16 different core masses mc listed in
Table 1 and covering the range from 0 to 0.99. In §3.1,
we create an equilibrium sequence for each core mass
by slowly scanning over the binary separation, thereby
identifying the separations of first contact, of the secular
instability (if it exists), and of the Roche limit. In §3.2,
separate dynamical calculations of various initial separa-
tion r then allow us to test the dynamical stability of the
contact configurations and to follow any mass transfer
and the merger in unstable systems.

3.1. Equilibrium Sequences

Representative snapshots along the mc = 0.1 equilib-
rium sequence are presented in Figure 3. The structure
of these solutions is shown both in projection onto the
orbital plane (the xy plane) and in terms of the effective
potential Φe. The thick solid curves in Figure 3 are the
surfaces of constant effective potential Φe that mark the
inner and outer Lagrangian surfaces. For fixed x, Φe is
minimum on the binary axis (y = z = 0), and this min-
imum value is given as a dashed curve in Figure 3. In
hydrostatic equilibrium, the fluid fills up to a constant

level Φ
(s)
e that is independent of x.

Referring to Figure 3 we see that at the initial separa-
tion in our scan, r = 3.30, the system is tidally bulged
and the binary is detached: the fluid does not extend out
to the inner Lagrangian surface (also known as the Roche
lobe). At a separation r = 2.71, the binary stars fill the
inner Lagrangian surface and make first contact through
the L1 point, located at the origin. Once the separation
decreases to r = 2.42, the binary reaches the secular in-
stability limit, as marked by a minimum in the energy
E and angular momentum J along this equilibrium se-
quence (see below). The critical separation r = 2.37
at which mass transfer commences is identified with dy-
namical calculations described in §3.2; in this and other
scans through equilibrium configurations, however, we
suppress the mass transfer by enforcing symmetry in par-
ticle properties (see §2.3.1). At a separation r = 2.24, the
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Fig. 3.— Sequence of binary equilibrium configurations for two
identical condensed polytropes of core mass mc = 0.1. Projections
onto the orbital plane (the xy plane) are shown at six different
binary separations for those SPH particles with |z| < 0.06. The
thick solid curves represent two surfaces of constant effective po-
tential Φe (see eq. [4]): namely, the inner and outer Lagrangian
surfaces passing through the points L1 and L2. Shown beneath
each configuration are corresponding projections onto the (x,Φe)
plane for the same particles. The dashed curves give the variation
of Φe along the binary axis (y = z = 0). Contact configurations
are obtained when the binary separation r . 2.71 (in units where
an isolated binary component has radius R = 1). For r . 2.24,
mass shedding through the outer Lagrangian points occurs, and
no equilibrium configuration exists.

fluid extends out to the outer Lagrangian surface, mark-
ing the Roche limit. At even smaller separations, for
example at the separation r = 2.22 shown in the figure,
no equilibrium configurations exist and the stars shed
mass through the outer Lagrangian surface near the L2
point. The variation of critical effective potentials and
the degree of contact η along this mc = 0.1 equilibrium
sequence is illustrated in Figure 4. For future reference,
we note the approximately linear dependence of η on the
separation r.
From Figure 5, we note that as mc increases toward 1,

our results approach the Keplerian solution of two orbit-
ing point masses. As expected, deviations from the point
mass result increase as a given binary becomes more
deeply in contact or as we consider a binary associated
with a smaller core mass. From the bottom frame of Fig-
ure 5, we note that smaller core masses (corresponding
to stars with less centrally concentrated density profiles)
have a smaller orbital period at any given separation. For
mc < 1, tidal interactions between the two stars make
the effective potential stronger than 1/r and shorten the
rotation period compared to a point mass system. For
mc = 0.1, for example, the deviation of the orbital pe-
riod from the point mass result is approximately 1% at
first contact, 2% at the secular instability limit, and 3%
at the Roche limit.
As in Rasio & Shapiro (1995), we determine the secu-

lar stability limit along the equilibrium sequence by lo-

Fig. 4.— Variation of critical effective potentials along the equi-
librium sequence presented in Fig. 3. Values of the effective poten-
tial at the outer Lagrangian surface (solid curve o), the inner La-
grangian surface (solid curve i), and the fluid surface (long dashed
curve s) are shown as a function of binary separation r in the top
frame. The degree of contact η (eq. [5]) is shown in the bottom
frame as the long dashed curve. The short dashed curves give the
positions of first contact (η = 0) and of the Roche limit (η = 1).

cating where both the total energy E and total angular
momentum J are minimum in curves such as those of
Figure 5. Our numerical results provide an accurate de-
termination of this point for a close binary system, as the
separate minima in E and J coincide to high numerical
accuracy. This is in accord with the general property
that dE = Ωorb dJ along any sequence of uniformly ro-
tating fluid equilibria (Ostriker & Gunn 1969).
For the mc = 0 binary, secular instability occurs soon

after contact along this sequence and therefore stable,
long-lived equilibrium configurations can exist only in
shallow contact, η . 0.2. In contrast, the sequences with
non-zero core masses permit much deeper contact before
the secular instability is reached. For example, a binary
with core masses of 0.125 does not reach the secular in-
stability until nearly η = 0.9. For core masses mc & 0.15,
the stars will reach the Roche limit before the secular in-
stability limit. Tables 2, 3, and 4 respectively present
system properties at first contact (η = 0), the secular
instability limit (where E and J are minima), and at the
Roche limit (η = 1) for our sequences of various core
mass mc. Additional runs at varying resolution indicate
that the results in our tables have converged to within
∼ 1% (e.g. see Fig. 6).
These results for critical separations are summarized

in Figure 7. Due to tidal effects, the volume of each star
is typically 1-2% larger at first contact than it is for that
star in isolation. The separation rfc at first contact is
only weakly dependent on mc, being within 2% of 2.7
for any core mass. For comparison, we note that the
standard simple treatment of twin binaries would imply
a first contact separation of 1/0.3799 = 2.63, where the
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Fig. 5.— Variation of the system energy E (relative to the total
self-energy E∞ of the binary components at infinity), angular mo-
mentum J , and orbital period P along the equilibrium sequence
for twin binaries with mc = 0, 0.1, 0.25, 0.5, and 1. In the E and
J frames, higher curves correspond to smaller core mass, while in
the P frame higher curves correspond to larger core mass. The
orbital period P is normalized to the analytic point mass result
PKepler = 21/2πr3/2. The curves are from SPH scans of the equi-
librium sequence, except for the mc = 1 curve which is the analytic
result for two point masses. The mc = 0 and 0.1 curves exhibit a
minimum in E and J , marking the position of the secular instabil-
ity limit. The curves from the SPH scans terminate at the Roche
limit, where mass shedding through the outer Lagrangian point
commences. The individual data points are from relaxing for an
additional 200 time units at the given separation r. The agreement
between these points and their corresponding scan helps to confirm
that our scans are indeed producing equilibrium sequences.

TABLE 2
FIRST CONTACT ALONG THE EQUILIBRIUM

SEQUENCES OF TWIN BINARIESa

mc r P E − E∞ J
0.000 2.75 20.1 -0.154 1.33
0.050 2.73 19.8 -0.159 1.31
0.100 2.72 19.7 -0.162 1.29
0.125 2.72 19.8 -0.163 1.29
0.150 2.71 19.7 -0.165 1.28
0.175 2.69 19.5 -0.167 1.27
0.200 2.69 19.5 -0.168 1.27
0.250 2.69 19.5 -0.170 1.25
0.300 2.70 19.6 -0.171 1.25
0.400 2.68 19.4 -0.175 1.23
0.500 2.66 19.3 -0.178 1.21
0.600 2.67 19.3 -0.180 1.20
0.700 2.66 19.2 -0.183 1.18
0.800 2.67 19.4 -0.184 1.17
0.900 2.67 19.4 -0.186 1.16
0.990 2.70 19.7 -0.185 1.16
aUnits are defined such that G = M = R = 1, mc is the core

mass of each component, r is the binary separation, η is the degree
of contact (eq. [5]), P is the orbital period, and E − E∞ and J
are the orbital energy and angular momentum, respectively; the
energy E∞ is the total equilibrium energy at infinite separation
(that is, twice the energy of a single component in isolation).

TABLE 3
SECULAR INSTABILITY ALONG THE EQUILIBRIUM

SEQUENCES OF TWIN BINARIESb

mc r η P E − E∞ J
0.000 2.67 0.17 19.1 -0.155 1.33
0.050 2.55 0.40 17.7 -0.161 1.30
0.100 2.42 0.64 16.4 -0.167 1.28
0.125 2.29 0.86 15.1 -0.171 1.26
0.150 2.22 1.0 14.3 -0.175 1.25
bIn twin binary sequences with core masses mc & 0.15, the Roche
limit is reached before the secular limit. Units and column headings
are as in Table 2, footnote a; the degree of contact η is defined by
eq. 5.

TABLE 4
ROCHE LIMITc ALONG THE EQUILIBRIUM SEQUENCES

OF TWIN BINARIESd

mc r P E − E∞ J
0.000 2.34 15.2 -0.135 1.38
0.050 2.28 14.7 -0.153 1.32
0.100 2.24 14.5 -0.166 1.28
0.125 2.22 14.3 -0.171 1.27
0.150 2.21 14.3 -0.175 1.25
0.175 2.20 14.2 -0.179 1.24
0.200 2.19 14.1 -0.183 1.22
0.250 2.17 14.0 -0.189 1.20
0.300 2.16 13.9 -0.195 1.18
0.400 2.14 13.8 -0.204 1.15
0.500 2.13 13.7 -0.212 1.12
0.600 2.12 13.6 -0.219 1.10
0.700 2.12 13.6 -0.224 1.08
0.800 2.10 13.5 -0.231 1.05
0.900 2.10 13.5 -0.235 1.04
0.990 2.12 13.7 -0.236 1.03
cDefined as the equilibrium configuration with the minimum bi-

nary separation.
dUnit and column definitions are identical to those in Table 2,
footnote a.

factor 0.3799 comes from numerical integration of Roche
lobe volumes around identical point masses (e.g., Eggle-
ton 1983) and any change in the volumes of the stars due
to tidal effects is neglected. We see therefore that finite
size effects act to increase the separation of first contact.
All three of the critical separations considered (first

contact, secular instability, and Roche limit) tend to de-
crease as the core mass increases. It is straightforward to
find fitted formulas for the critical separations that are
accurate to within ∼ 1% for any core mass mc: for first
contact

rfc ≈ 2.66 + 0.08(1−mc)
4 (6)

and for the secular instability limit

rsec ≈ 2.69− 3mc. (7)

We note that the 1−mc in equation (6) equals the enve-
lope mass (in units where the total stellar mass M = 1).
We give our fit for the Roche limit separations in the
next subsection, where we can determine these data with
slightly better accuracy. We have not fit for the slight
increase in the first contact data as the core mass is in-
creased from mc = 0.9 to 0.99, as this feature is a numer-
ical artifact due to our mc = 0.99 single star equilibrium
model settling to a radius a few percent larger than 1.
The critical core mass mc ≈ 0.15, for which the secular

instability and Roche limits coincide, can be determined
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Fig. 6.— Critical separation r, energy E − E∞, angular mo-
mentum J , and orbital period P at first contact (squares), secular
instability (triangles), and the Roche limit (circles) versus total
particle number N for several mc = 0.1 equilibrium scans. Note
the convergence of results for N & 104. Most of the binary calcu-
lations in this paper employ N ≈ 4× 104 particles.

graphically from Figure 7 by extrapolating the line con-
necting the secular instability data down to the Roche
limit curve. This intersection is important because it im-
plies that all of our equal mass binaries with mc & 0.15
can stably exist in deep contact, at separations all the
way down to the Roche limit. Thus, essentially all twin
red giant binaries will coalesce only due to mass shed-
ding through the outer Lagrangian points. In contrast,
twin binaries with mc . 0.15, corresponding primarily
to main-sequence stars and subgiants, reach the secular
instability limit at a larger separation than that of the
Roche limit. As we will see in the next subsection, the
secular instability limit is usually accompanied by dy-
namical mass transfer at the same or a slightly smaller
separation. Therefore, main sequence and subgiant twin
binaries, as contrasted to red giant twins, will start coa-
lescing (a) when in more shallow contact and (b) through
mass transfer across the inner Lagrangian point.

3.2. Dynamical Integrations

We now study the stability of binary configurations
with fully dynamical SPH integrations (see §2.4 for de-
tails of the setup). Figure 8 summarizes the results of
nearly 100 dynamical simulations with various mc and
initial r values. We find the Roche limit to be very
nearly at the separations determined from the equilib-
rium scans, and the additional relaxation that we per-
form before beginning a dynamical calculation allows us
to determine these separations even more accurately. In
addition, we find that most systems that are secularly
unstable are also dynamically unstable to mass transfer
and then merger, as discussed below.
The time evolution of the separation of mc = 0.05

twin binaries is illustrated in Figure 9 for several dif-

Fig. 7.— Separation at first contact (squares), the onset of sec-
ular instability (stars), and the Roche limit (circles) versus core
mass mc. The data points are determined from SPH scans of an
equilibrium sequence, and the lines are simply to help guide the
eye.

Fig. 8.— Results of dynamical integrations: stable binaries (open
squares), dynamical unstable binaries (stars), and configurations
with no equilibrium (filled squares). The curves represent the crit-
ical separations as determined by scanning runs, as in Fig. 7. The
agreement between the results of the equilibrium sequences and
dynamical calculations is excellent.

ferent initial separations. This figure also indicates the
secular instability limit rsec = 2.547, as determined by
the energy and angular momentum minima in the equi-
librium sequence of these binaries (see §3.1). Systems
with separations r & rsec are clearly dynamically stable,
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Fig. 9.— Top plot: Separation r versus time in several different
dynamical SPH calculations for the core mass mc = 0.05 twin
binaries. The initial separations are r = 2.64, 2.62, 2.56, 2.54,
2.40, 2.30 and 2.28. Bottom plot: Zoomed in view of the r = 2.56
and 2.54 cases, which straddle the instability limit. In both plots,
the horizontal dotted line represents the secular instability limit at
r = 2.547, as identified by an equilibrium scan.

while those with r . rsec are dynamically unstable. That
is, the secular and dynamical stability limits coincide or
very nearly coincide, at least at this core mass.
The bottom plot of Figure 9 shows the dynamical evo-

lution of two cases that straddle the instability limit. For
the r = 2.56 case, an epicyclic period of 350 time units
is clearly evident, much larger than the orbital period
of 17.9 time units. The large difference in these periods
is an indication of how close the system is to an insta-
bility limit (Rasio & Shapiro 1994). Indeed, if r were

precisely at the dynamical stability limit, the period of
small epicyclic oscillations would formally be infinite.
Figure 10 presents projected particle positions (top)

and column density plots (bottom) at six different times
in the mc = 0.05, r = 2.54 dynamical calculation, a
case just inside the instability limit. Colors in the parti-
cle plot are used to indicate from which component the
particles originated. The coordinate system used here ro-
tates counterclockwise with a period of 17.64 time units,
which equals the orbital period of this binary at early
times, before significant mass transfer has occurred. The
instability initially manifests itself in the form of a nar-
row arm of gas that begins in the outer layers of one star,
gradually flows across the neck surrounding the inner La-
grangian point, and then creeps around the other star
(see the t = 746 and 771 particle plot frames). The mass
transfer drives the binary components closer, trigger-
ing the excretion of mass through the outer Lagrangian
points (t = 771) and accelerating the inspiral of the two
cores. By t = 784, the mass transfered from one star
has completely engulfed the other. At later times, the
merger product approaches a rapidly rotating, axisym-
metric configuration centered on the two cores orbiting
in a tight binary (see the t = 792 and 961 frames).
Figure 11 shows the evolution of binary separation for

mc = 0.2 cases. Recall from §3.1 that there is no sec-
ular instability limit at this core mass. Instead, stable
equilibrium models exist all the way to the Roche limit.
A binary at an initial separation r = 2.22 (or larger)
orbits stably. In contrast, a binary at r = 2.20 grad-
ually loses mass through the outer Lagrangian points,
triggering a stage of rapid coalescence. The period of
mass loss persists for several orbital periods: each of the
oscillations superposed on the decreasing r = 2.20 curve
in the bottom plot of Fig.11 corresponds to one orbital
period. These dynamical calculations indicate that the
Roche limit for a mc = 0.2 twin binary indeed occurs
near r = 2.2, in excellent agreement with the r = 2.19
critical value estimated from the equilibrium scan.
Figure 12 presents both particle positions and column

density plots at six different times in the mc = 0.2,
r = 2.20 dynamical calculation, a case just inside the
Roche limit. The coordinate system used here rotates
counterclockwise with a period of 14.22 time units, which
equals the orbital period of this binary at early times.
Gas is excreted almost immediately, with each parcel
of gas carrying a specific angular momentum essentially
equal to that of the outer Lagrangian points. In contrast
to mergers with mc . 0.15, the excreted gas originates
equally from both binary components and flows past the
outer Lagrangian points symmetrically. As the outer La-
grangian points are the outermost positions at which gas
can be in static equilibrium, they are also the positions of
largest possible specific angular momentum in rigidly ro-
tating equilibrium twin binaries. Consequently, the mass
loss necessarily decreases the average angular momentum
per unit mass of the gas remaining within the outer La-
grangian surface, causing the binary components, along
with their cores, to inspiral: see the appendix of Webbink
(1976) for a rigorous analysis of the angular momentum
budget during mass excretion. As the components get
closer, the excretion rate increases, and in addition the
resulting arms become more tightly wound (compare the
t = 202 frame to later ones). By t = 233, the central re-
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Fig. 10.— Top frames: Projection of SPH particles onto the orbital plane at six different times in the merger of a mc = 0.05 binary with
initial separation r = 2.54. Particles are colored according to the star in which they originated. Bottom frames: Column density plots at
the same six moments, with the asterisks representing the positions of the compact cores.

gions of the binary components have effectively merged.
At later times, the merger product approaches a rapidly
rotating, axisymmetric configuration (see Fig. 13).
Figure 14 shows energies versus time for the mc = 0.2,

r = 2.20 calculation. The kinetic energy T gradually
increases as the binary components inspiral, until the
cores approach closely at t ≈ 230. The ensuing shocks
cause the gas to expand, causing an overall decrease in
the internal energy U and increase in the gravitational
potential energy W . The rapid variations in T and W
at late times are due to the eccentric orbit of the central
double core. The total energy E is well conserved in this
simulation, varying by only 0.4% from its minimum to
maximum values over the entire time interval shown in
Figure 14. Energy conservation in other runs is typically
at least this good and often even much better. In our
simulations, most of the small non-conservation in energy
occurs at late times once the core particles have entered

a tight orbit.
In all our merger simulations of twin binaries with frac-

tional core masses of 0.15 or larger, each star loses mass
through an outer Lagrangian point. Most of this mass
ultimately ends up in a circumbinary envelope gravita-
tionally bound to the central binary of cores. The mass
ejected varies from ∼ 0.5% (for mc = 0.15) up to ∼ 6.5%
(for mc = 0.8) of the total system mass. A trend evi-
dent from the simulations is that more massive cores ul-
timately remain farther separated, after inspiraling, than
less massive cores. The top frame of Figure 15 provides
a closer look at how the separation of the cores evolves
in several dynamical simulations that begin just inside
the Roche limit. For very large fractional core masses
(mc & 0.9), the gas is simply not massive enough to affect
significantly the dynamics of the cores: although they
inspiral, they stay separated at distances on the order
of the stellar radius. For moderately large core masses
(0.5 . mc . 0.9), the cores inspiral to a fraction of a
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Fig. 11.— Like Fig. 9, but for twin binaries with core mass
mc = 0.2. At this core mass, there is no secular instability limit:
instead, the system become unstable only once it reaches the Roche
limit at r ≈ 2.2. The initial separations shown in the top plot are
r = 2.60, 2.40, 2.22, 2.20, while a zoomed in view of the r = 2.22
and 2.20 curves are shown in the bottom plot.

stellar radius, although the process halts at separations
large enough still to be resolved by our simulations. For
core masses in the range 0.15 . mc . 0.5), which cor-
responds to most red giants in nature, the cores rapidly
inspiral to separations less than 0.1. Although our code
has no mechanism for merging the cores, we do not ex-
pect such an effect to be relevant here: the size of a core
relative to the stellar radius is typically only ∼ 10−4 or
less for a giant, so that a tremendous amount of angular
momentum would have to be removed from the double
core before they could merge.

The bottom frame of Figure 15 concerns fractional core
masses less than 0.15, namely those cases that reach the
secular instability limit before the Roche limit. The
cores in these merger simulations inspiral to a separa-
tion . 0.01, considerably less than the spatial resolution.
Whether or not the cores would merge in such circum-
stances will likely depend on the details of the parent star
structure, with simulations that resolve the cores neces-
sary to address the issue fully. We find that less than
0.5% of the system mass is ejected whenever the merger
is triggered by mass transfer.
Like the critical separations for first contact and sec-

ular instability, the Roche limit separation tends to de-
crease as the core mass increases. A fitted formula con-
sistent with our dynamical integrations to within ∼ 1%
for any core mass mc is

rRoche ≈ 2.11 + 0.25(1−mc)
4. (8)

Because the degree of contact η varies nearly linearly
with separation r (for two examples, see Fig. 5 of this pa-
per and Fig. 2 of Rasio & Shapiro (1995)), this formula,
along with others from §3.1, allows us also to estimate
the degree of contact η at the secular instability limit:
ηsec ≈ (rfc − rsec)/(rfc − rRoche).

4. DISCUSSION AND FUTURE WORK

We have determined equilibrium sequences and per-
formed dynamical calculations of twin binaries, focusing
primarily on configurations in which the stars are in con-
tact. Our equilibrium sequences of §3.1 allow us to de-
termine the binary separation at first contact and at the
innermost stable circular orbit as a function of the frac-
tional core massmc. Formc . 0.15, the innermost stable
orbit occurs at the secular instability limit (marked by
a minimum in energy and angular momentum along the
equilibrium sequence); for mc & 0.15, the innermost sta-
ble orbit occurs at the Roche limit (defined as the min-
imum separation for which an equilibrium configuration
exists). Our dynamical calculations of §3.2 confirm these
critical separations and also reveal how the components
inspiral once a binary passes the innermost stable orbit.
Figure 16 summarizes graphically our most basic re-

sults. Recall that the separation r on the vertical axis
is scaled to the unperturbed stellar radius R, while the
core mass mc on the horizontal mass is scaled to the stel-
lar mass M . Thus, as the components in a twin binary
expand and gradually increase their core masses due to
stellar evolution, the corresponding position in the pa-
rameter space of Figure 16 will shift down and slightly to
the right. When this position drops below the top curve,
which marks first contact, the binary enters in the stable
contact phase. When the position drops into either the
unstable or no equilibrium portions of parameters space,
the components merge.
The curves shown in Figure 16 are given by equations

(6), (7), and (8); population modelers can use these fitted
formulae in treatments of twin binaries. Consider, for
example, such a binary with a given orbital separation
a. The stellar evolution of each component gives the
time dependence of the stellar radius R, the stellar mass
M , and the core mass Mc. The dimensionless separation
r = a/R and the fractional core mass mc = Mc/M are
thus known functions of time, and the evolutionary track
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Fig. 12.— Like Fig. 10, but for the mc = 0.2 dynamical calculation starting at r = 2.20, just inside the Roche limit.

can be placed in the theoretical r versus mc diagram
(Figure 16) to determine the final fate of the system.
We note that the volume of parameter space where

real binaries would ultimately end up in the stable con-
tact region, without crossing the instability limit or the
Roche limit, is small. Such a situation would require a
fine tuning of the initial semimajor axis a. For exam-
ple, a star with an initial mass of 8M⊙ will expand to
R ≈ 370R⊙ and reach a fraction core mass of mc ≈ 0.2
as it ascends the asymptotic giant branch, according to
calculations by the TWIN stellar evolution code. For
this core mass, rfc ≈ 2.7 and rRoche ≈ 2.2. Thus,
a twin binary composed of such stars will remain de-
tached if a & rfcR ≈ 1000R⊙ and will ultimately sur-
pass the Roche limit if a . rRocheR ≈ 800R⊙. Only if
800R⊙ . a . 1000R⊙ will the binary reach the contact
phase without the cores also inspiraling to form a tight
binary.
The dynamic simulations of §3.2 always start from

a symmetric equilibrium configuration, with the binary

components being hydrostatic in the corotating frame.
In our simulations with core masses of mc = 0.125 and
less, we find a dynamical instability to exist at or slightly
inside the secular instability limit. This dynamical in-
stability is a global instability of the equilibrium state,
triggered by small numerical noise and characterized by
a growing asymmetric mode. Binaries that come in-
side this instability limit first transfer mass gradually
from one component to the other and eventually coa-
lesce quickly as mass is lost through the outer Lagrangian
points. The cores are left in a tight binary surrounded
by a circumbinary envelope.
The merger of our small core mass twin binaries pro-

ceeds in a fashion qualitatively similar to that of the
Q1.3 model of D’Souza et al. (2006). In that model,
the binary is composed of purely polytropic components
(mc = 0) with mass ratio (donor to accretor) q = 1.3. In
both our simulations and theirs, the dynamical instabil-
ity manifests itself as a gradually developing mass trans-
fer flow, followed by excretion of gas through the outer
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Fig. 13.— The state of the simulation presented in Fig. 12 at a
late time (t = 422), with the column density projected in both the
xy and xz planes.

Fig. 14.— Energies versus time for the simulation presented in
Fig. 12. From the bottom curve to the top one, we show gravi-
tational energy W , total energy E, kinetic energy T , and internal
energy U .

Lagrangian points and merger of the stellar envelopes.
One important difference, however, is that the instabil-
ity in our mc = 0 case does not develop until the stars
have reached a degree of contact η ≈ 0.17, whereas the
instability is present in the Q1.3 model while the binary
is still semidetached. This difference highlights the stabi-
lizing influence of the common envelope in twin binaries,
even though the instability still exists even for q = 1.
We can directly compare our results for the limiting

case mc = 0 with those of Rasio & Shapiro (1995).

Fig. 15.— The separation rc between the cores as a function
of time t for binaries that begin just inside the Roche limit (top
frame) and those that begin just inside the secular limit (bottom
frame). Each curve is labeled by the factional core mass mc. The
horizontal dashed line indicates the minimum separation for which
the gravitational interaction of the two cores is unsoftened in our
simulations.

The agreement in the first contact, secular instability,
and Roche limit separations is excellent (better than
1%). The computational resources of the time, how-
ever, limited Rasio & Shapiro (1995) to follow up to
only ∼ 3 orbits, so that they were unable to identify
weak mass transfer events, that is, events that develop
gradually over many dynamical timescales (Paczyiński
& Sienkiewicz 1972). As a result, they determined the
dynamical instability limit to be at r ≈ 2.45, well inside
the secular instability limit. In contrast, by following the
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Fig. 16.— The parameter space of twin binaries. Here and
throughout the paper, the core mass mc and binary separation
r are given in units of the total mass and radius, respectively, of
an isolated binary component. The top curve, separating detached
and contact binaries, marks configurations of first contact. The
middle curve, spanning 0 ≤ mc . 0.15, is the secular instability
limit that separates stable and unstable contact binaries: in this
work, we find that most secularly unstable systems are also dy-
namically unstable to mass transfer across the inner Lagrangian
point. The bottom curve, separating contact binaries from config-
urations with no equilibrium, represents the Roche limit. Binaries
that are unstable or that cannot exist in equilibrium have their
components inspiral and merge, a process we follow with dynami-
cal calculations.

dynamical evolution of mc = 0 twin binaries for up to
∼ 100 orbits, we find that the dynamical instability limit
actually coincides, or nearly coincides, with the secular
instability limit at r ≈ 2.67.
We find that twin binaries with mc & 0.15 exist stably

at separations all the way down to the Roche limit, where
mass is then excreted symmetrically through the outer
Lagrangian points. This excretion carries away angular
momentum and causes the stars, along with their cores,
to inspiral on a dynamical timescale. For core masses
mc . 0.9, the core inspiral to a final separation that
is a fraction of the stellar radius. Indeed for mc . 0.5,
which corresponds to most giant stars in nature, the final
separation of the cores is less than one-tenth the stellar
radius. Thus, we are left with two cores in a tight binary
surrounded by the combined gaseous envelopes of the
original binary, the precursor for double neutron stars
proposed in the Brown scenario.
As the gravitational forces of the cores are softened at

distances less than ∼ 0.1, our dynamic simulations that
lead to cores in a tight binary can provide only an upper
limit on the separation at the end of their inspiral. Our
simulations of the mc = 0.15 case, for example, place
this upper limit at ∼ 0.03 times the stellar radius (see
Fig. 15). Thus, a binary composed of twin M = 10M⊙,
R = 200R⊙, Mc = 1.5M⊙ red giants would have their
cores spiral to a separation of less than 0.03R ≈ 6R⊙.
The gradual transfer of energy to the circumbinary en-

velope could easily decrease the separation of the cores
by a factor of ∼ 2 further. As gravitational radiation
alone can bring two 1.5M⊙ point masses separated by
up to ∼ 5R⊙ to contact in less than a Hubble time, such
systems could have evolved to become arbitrarily tight
by the present time. We therefore feel that such dou-
ble cores are indeed excellent candidates for binary NS
progenitors, as proposed in the Brown scenario.
For core masses mc & 0.15, we find that a twin bi-

nary can exist stably in deep contact, at separations
all the way down to the Roche limit. In contrast, the
semi-analytic condensed polytrope models of Hjellming
& Webbink (1987) predict instead that twin binaries will
experience sustained mass transfer once the components
come in contact, provided only that mc < 0.458 (a range
that includes the vast majority of giant stars). The pri-
mary oversimplification in the semi-analytic treatment
appears to be the approximation that mass outside of
the Roche lobe cannot help to contain the star within it.
Our numerical calculations, however, model the common
envelope that exists outside of the Roche lobe and that
acts to suppress mass transfer. In addition, our fully
three-dimensional calculations remove the point mass
and spherical structure approximations implicit to the
semi-analytic method.
The models of Hjellming & Webbink (1987) seem best

suited to semidetached binaries, where there is no com-
mon envelope to complicate the dynamics of the mass
flow. A comparison of such cases with our results is not
possible, as our work is limited to binaries with identical
components. Natural future work would include relax-
ing this constraint so that binaries with mass ratio q 6= 1
can be studied and compared with semi-analytic models.
Of particular interest to the binary neutron star problem
would be cases in which the mass ratio deviated from one
by only a few percent or less.
The modeling of giants as Γ = 5/3 condensed poly-

tropes is a common simplifying approximation, one that
here allows our results to be scaled to binaries of any
mass and length scales. We note, however, that radiation
pressure can be the dominate contributor to the equation
of state at some ages and at some locations within the
envelopes of massive giants (M & 14M⊙, according to
calculations with the TWIN stellar evolution code). For
such cases, our treatment of the envelope as a constant
entropy, Γ = 5/3 gas can be legitimately questioned.
While the effects of employing more realistic stellar mod-
els would be worthwhile to study in future work, we do
not expect our results to change qualitatively. Regard-
less of the equation of state, gas that flows past the outer
Lagrangian points will still necessarily carry away a spe-
cific angular momentum larger than the system average,
forcing the remaining gas to configurations of smaller an-
gular momentum per unit mass. We conclude that the
inspiral of cores should be a common outcome whenever
a real twin binary exceeds the Roche limit.

We thank Evghenii Gaburov, Zachary Proulx, Adam
Simbeck, and Eric Theriault for useful discussions. This
material is based upon work supported by the National
Science Foundation under Grant No. 0703545 and has
made use of NASA’s Astrophysics Data System and D.
Price’s SPLASH visualization software.
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Paczyiński, B., & Sienkiewicz, R. 1972, Acta Astronomica, 22, 73
Pinsonneault, M. H., & Stanek, K. Z. 2006, ApJ, 639, L67
Piran, T., & Shaviv, N. J. 2005, Physical Review Letters, 94,

051102
Pols, O. R. 1994, A&A, 290, 119
Portegies Zwart S., et al., 2009, NewA, 14, 369
Rasio, F. A. 1991, PhD Thesis, Cornell University
Rasio, F. A. 1994, Memorie della Societa Astronomica Italiana,

65, 37
Rasio, F. A., & Lombardi, J. C. 1999, J. Comp. App. Math., 109,

213
Rasio, F. A., & Shapiro, S. L. 1991, ApJ, 377, 559
Rasio, F. A., & Shapiro, S. L. 1992, ApJ, 401, 226
Rasio, F. A., & Shapiro, S. L. 1994, ApJ, 432, 242
Rasio, F. A., & Shapiro, S. L. 1995, ApJ, 438, 887

Rosswog S., 2009, NewAR, 53, 78
Rucinski, S. M. 1992, in The Realm of Interacting Binary Stars,

eds. J. Sahade et al. (Dordrecht: Kluwer), 177, 111
Schönberg M., Chandrasekhar S., 1942, ApJ, 96, 161
Stairs, I. H., Thorsett, S. E., Taylor, J. H., & Wolszczan, A. 2002,

ApJ, 581, 501
Stairs, I. H., Thorsett, S. E., Dewey, R. J., Kramer, M., &

McPhee, C. A. 2006, MNRAS, 373, L50
Tassoul, M. 1975, ApJ, 202, 803
Thorsett, S. E., & Chakrabarty, D. 1999, ApJ, 512, 288
Wang C., Lai D., Han J. L., 2006, ApJ, 639, 1007
Webbink, R. F. 1976, ApJ, 209, 829
Webbink, R. F. 2006, Journal of the American Association of

Variable Star Observers (JAAVSO), 35, 124
Weisberg, J. M., & Taylor, J. H. 2005, ASP Conf. Ser. 328:

Binary Radio Pulsars, 328, 25
Willems, B., & Kalogera, V. 2004, ApJ, 603, L101
Willems, B., Kalogera, V., & Henninger, M. 2004, ApJ, 616, 414
Wong T.-W., Willems B., Kalogera V., 2010, arXiv,

arXiv:1008.2397


