
The Astrophysical Journal, 750:31 (14pp), 2012 May 1 doi:10.1088/0004-637X/750/1/31
C© 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

MONTE CARLO SIMULATIONS OF GLOBULAR CLUSTER EVOLUTION. VI. THE INFLUENCE
OF AN INTERMEDIATE-MASS BLACK HOLE

Stefan Umbreit1, John M. Fregeau2,4, Sourav Chatterjee3, and Frederic A. Rasio1
1 Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA) and Department of Physics and Astronomy,

Northwestern University, 2145 Sheridan Rd., Evanston, IL 60208, USA; s-umbreit@northwestern.edu
2 Kavli Institute of Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

3 Department of Astronomy, University of Florida, 211 Bryant Space Science Center, Gainesville, FL, USA
Received 2009 October 28; accepted 2012 February 23; published 2012 April 12

ABSTRACT

We present results from a series of Monte Carlo (MC) simulations investigating the imprint of a central intermediate-
mass black hole (IMBH) on the structure of a globular cluster. We investigate the three-dimensional and projected
density profiles, and stellar disruption rates for idealized as well as realistic cluster models, taking into account
a stellar mass spectrum and stellar evolution, and allowing for a larger, more realistic number of stars than was
previously possible with direct N-body methods. We compare our results to other N-body and Fokker–Planck
simulations published previously. We find, in general, very good agreement for the overall cluster structure and
dynamical evolution between direct N-body simulations and our MC simulations. Significant differences exist in
the number of stars that are tidally disrupted by the IMBH, and this is most likely caused by the wandering motion
of the IMBH, not included in the MC scheme. These differences, however, are negligible for the final IMBH masses
in realistic cluster models, as the disruption rates are generally much lower than for single-mass clusters. As a direct
comparison to observations we construct a detailed model for the cluster NGC 5694, which is known to possess a
central surface brightness cusp consistent with the presence of an IMBH. We find that not only the inner slope but
also the outer part of the surface brightness profile agree well with observations. However, there is only a slight
preference for models harboring an IMBH compared to models without.

Key words: black hole physics – globular clusters: general – globular clusters: individual (NGC 5694) – methods:
numerical – stars: kinematics and dynamics

1. INTRODUCTION

As recently as 10 years ago, it was generally believed that
black holes (BHs) occur in two broad mass ranges: stellar
(MBH � 3–20 M�), produced by the core collapse of mas-
sive stars, and supermassive (MBH ∼ 106–1010 M�), believed
to have formed in the centers of galaxies at high redshift and
grown in mass as a result of galaxy mergers (see, e.g., Volonteri
et al. 2003). However, the existence of BHs with masses in-
termediate between these two ranges could not be established
by observations until recently, although intermediate-mass BHs
(IMBHs) were discussed by theorists more than 30 years ago
(see, e.g., Wyller 1970). Indirect evidence for IMBHs has accu-
mulated over time from observations of so-called ultraluminous
X-ray sources (ULXs), objects with fluxes that exceed the angle-
averaged flux of a stellar mass BH accreting at the Eddington
limit. An interesting result from observations of ULXs is that
many, if not most, of them are associated with star clusters. It
has long been speculated (e.g., Frank & Rees 1976) that the
centers of globular clusters (GCs) may harbor BHs with masses
∼103 M�. If so, these BHs affect the distribution function of
the stars, producing velocity and density cusps (Bahcall & Wolf
1976). While the detection of ULXs can only give indirect evi-
dence of the presence of IMBHs, observations of cuspy velocity
profiles would make it possible to directly determine the BH
mass. However, the radius of influence of an IMBH, defined as
the radius where the orbital velocity around the BH equals the
velocity dispersion of the cluster, is very small. For example,
at a distance of 10 kpc, a 103 M� BH would influence orbits
within ≈1′′, making observations very challenging.

4 Chandra Fellow.

Studies of the surface density profile of GCs offer a com-
plementary method of constraining the effects of an IMBH on
the host GC stars. A recent study by Noyola & Gebhardt (2006)
obtained central surface brightness profiles (SBPs) for 38 Galac-
tic GCs from Hubble Space Telescope (HST) WFPC2 images.
They showed that half of the GCs in their sample have slopes
for the inner SBPs that are inconsistent with simple isothermal
cores, which may be indicative of an IMBH. However, it is chal-
lenging to explain the full range of slopes with current models.
While analytical models can only explain the steepest slopes in
their sample, recent N-body models of GCs containing IMBHs
(Baumgardt et al. 2005), might explain some of the intermediate
surface brightness slopes.

However, the disadvantage of current N-body simulations is
that for realistic cluster models, which take into account stellar
evolution and a realistic mass spectrum, the number of stars
is restricted to typically less than ∼105 as these simulations
require a large amount of computing time. However, many GCs
are known to be very massive, with masses reaching up to
2 × 106 M�, resulting in a much larger number of stars one
has to deal with when modeling these objects. In previous
N-body simulations, such large-N clusters have been scaled
down to low-N systems. Scaling down can be achieved in
two ways (e.g., Baumgardt et al. 2005): either the mass of
the central IMBH MBH is kept constant and N is decreased,
effectively decreasing the total cluster mass MC, or the ratio
MBH/MC is kept constant, while lowering both MBH and MC.
As both MBH/MC and the ratio of MBH to stellar mass are
important parameters that influence the structure and dynamics
of a cluster, but cannot be held constant simultaneously when
lowering N, it is clear that only with the real N can a fully
self-consistent simulation be achieved. Scaling becomes even
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more difficult once other physical processes are included in the
simulations such as stellar evolution or stellar collisions. Using
the correct number of stars in a dynamical simulation ensures
that the relative rates of different dynamical processes (which
all scale differently with N) are correct.

It is clear that in order to study the evolution of old GCs
that might harbor IMBHs, more approximate methods have to
be employed. They fall roughly into two categories, methods
that treat the cluster as a continuum distribution function
(Amaro-Seoane et al. 2004; Takahashi 1997; Giersz & Spurzem
1994; Murphy et al. 1991; Cohn & Kulsrud 1978; Lightman
& Shapiro 1977; Bahcall & Wolf 1977) and Monte Carlo
(MC) methods that use a particle-based approach (see, e.g.,
Fregeau & Rasio 2007; Freitag & Benz 2002, 2001; Shapiro &
Marchant 1978; Hénon 1971 and references therein). While
the former methods have been successfully used to study
the effect of a massive BH on the cluster structure (Amaro-
Seoane et al. 2004; Murphy et al. 1991; Cohn & Kulsrud
1978; Lightman & Shapiro 1977), the model clusters were
highly idealized, consisting only of equal-mass stars, and did
not incorporate stellar evolution. Although including additional
physical processes is not impossible, it remains nevertheless
highly non-trivial for these methods. The MC method, on the
other hand, relies on a star-by-star description of the cluster and
has, therefore, the great advantage that additional processes are
easily incorporated.

Our group has been developing over many years a state-of-
the-art MC code, which treats many relevant processes in suf-
ficient detail, making direct comparison with GC observations
feasible (Fregeau & Rasio 2007, and references therein). This
paper is the sixth in a series studying the fundamental aspects
of cluster dynamics using this code. Here, we will describe the
changes we made to our code in order to incorporate the effect
of a massive central IMBH and carry out comparison runs with
idealized models as well as more realistic cluster simulations
published previously in the literature. In Section 3, we briefly
describe our method and the changes we made to the MC code.
We validate our code by comparing our results to previously
published results in the literature, using idealized cluster mod-
els (Section 4), as well as more realistic ones that include stellar
evolution (Section 5). In Section 5.2, we present SBPs from our
large-N runs and compare them to observations of Noyola &
Gebhardt (2006). We conclude in Section 6.

2. PREVIOUS WORK ON GLOBULAR CLUSTER
EVOLUTION WITH IMBHs

The dynamical effect of an IMBH on the surrounding stellar
system was first described by Peebles (1972), who argued that
the bound stars in the cusp around the BH must obey a shallow
power-law density distribution to account for stellar consump-
tion near the cluster center. Analyzing the Fokker–Planck equa-
tion in energy space for an isotropic stellar distribution, Bahcall
& Wolf (1976) obtained a density profile with n(r) ∝ r−7/4,
which is now commonly referred to as the Bahcall–Wolf cusp.
The extension of the cusp solution is given by the radius of
influence of the BH, ri, which is defined as

ri ≡ GMBH

2 σ 2
, (1)

where G is the gravitational constant and σ is the velocity
dispersion of the core. As shown later by Shapiro & Lightman
(1976), such a solution can be readily obtained using simple

scaling arguments. The key is to realize that in the region
delimited by the tidal radius, rt, within which stars get tidally
disrupted, and ri within which the stars are bound to the BH,
the net energy diffusion timescale, tU , is proportional to the
local relaxation time, tr, which is the shortest timescale on
which any physical quantity can be transported. Furthermore,
the quasi-steady state of the cusp region is characterized by a
dynamic equilibrium, with a constant net energy flow into the
core region that should scale as n(r) r3E(r)/tU , where E(r)
is the mean specific energy at radius r, so E(r) ∼ GMBH r−1

in the cusp region. Setting then tU ∼ tr ∼ σ 3/2/[G2m2n(r)],
σ ∼ √

GMBH r−1, and simple substitutions immediately lead to
n(r) ∝ r7/4.

The formation of such a cusp has been confirmed subse-
quently by numerical studies. Most of them employed meth-
ods based on the Fokker–Planck equation, solving it directly
(Bahcall & Wolf 1976; Lightman & Shapiro 1977; Cohn &
Kulsrud 1978), or indirectly, either using the statistical MC
approach (Shapiro & Marchant 1978; Freitag & Benz 2002)
or a fluid-dynamical approach based on velocity moments
(Amaro-Seoane et al. 2004). Being derived from the
Fokker–Planck equation, all these methods share essentially the
same set of underlying assumptions: (1) the cluster potential has
spherical symmetry, (2) the cluster is in dynamical equilibrium
at all times, and (3) the evolution is driven by diffusive two-body
relaxation. Through direct N-body simulations that do not rely
on any a priori assumptions, Baumgardt et al. (2004a) confirmed
the cusp solution of Bahcall & Wolf (1976), therefore also pro-
viding important justification to the Fokker–Planck approach.

Based on the cusp solution, Frank & Rees (1976) calculated
the stellar disruption rate taking into account that stars inside
a critical radius, rcrit, are efficiently accreted by the BH as
they diffuse quickly into low angular momentum orbits with
periastron distances, rperi, smaller than rt. As for a given radial
position, the velocity vectors that lead to orbits with rperi < rt

form a cone; these orbits are also called loss-cone orbits. Outside
rcrit, stars are always able to leave the loss cone during one orbital
period due to two-body relaxation while inside rcrit the orbital
changes are smaller so that stars on loss-cone orbits are more
likely to reach the tidal radius and get disrupted before they
have a chance to get scattered out. Consequently, inside rcrit the
loss cone should be nearly empty while outside rcrit it always
remains full. In addition, Frank & Rees (1976) argue that the
disruption rate is mainly given by the cluster conditions at rcrit.
This is because, on the one hand, for r > rcrit the fraction of
stars populating the loss cone decreases as the loss-cone angle
decreases with increasing radius, while for r < rcrit the total net
flux of stars, and therefore the flux of stars that can diffuse
into the loss cone, decreases rapidly (Lightman & Shapiro
1977). Calculations by Amaro-Seoane et al. (2004) confirm
the loss-cone picture, showing that, for a cluster in dynamical
equilibrium, the disruption rate is strongly peaked at rcrit, and
the fraction of stars on loss-cone orbits is rapidly approaching
zero for r < rcrit, while for r > rcrit it is always close to
one. Similarly, Baumgardt et al. (2004a) find generally good
agreement between the disruption rates in their simulations and
the disruptions rates based on the approximate expression of
Frank & Rees (1976; their Equation (22)) and using the cluster
conditions at rcrit from their N-body models.

While earlier work on the dynamics of clusters with IMBHs
mainly focused on the equilibrium state of the cusp surrounded
by a static isothermal core, Shapiro (1977) considered the effect
of an IMBH on the global evolution of the cluster. Using a
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homological model for the dynamical evolution, he calculated
the core size in response to evaporation of high-velocity stars
and tidal disruption of stars tightly bound to the IMBH. While
stars that leave the cluster by evaporation carry away very little
energy-driving core contraction (Spitzer & Saslaw 1966), which
would ultimately lead to core collapse in the absence of an
IMBH, the tidal disruptions close to the central IMBH that
remove stars with highly negative specific energies provide
an energy source that causes the core to expand. Shapiro
(1977) shows that for low initial IMBH masses and large initial
core radii, stellar evaporation first dominates and drives core
contraction until, due to the increasing core density, the tidal
disruption rate becomes large enough to reverse core collapse.
The time of this reversal roughly coincides with the time of core
collapse for the cluster without IMBH. Tidal disruptions then
drive the re-expansion of the core, and the core size increases
asymptotically to infinity. This expansion is a generic feature of
a stellar system where energy is generated within a very small
central volume and the mass contained within this region is
very small compared to the cluster mass (Hénon 1965; Shapiro
1977).

The qualitative behavior of the core size evolution for
lower mass IMBHs was later confirmed by numerical stud-
ies (Marchant & Shapiro 1980; Murphy et al. 1991; Freitag &
Benz 2002; Amaro-Seoane et al. 2004). Amaro-Seoane et al.
(2004) in particular showed that the core size increases asymp-
totically as ∝ t2/3, which was also predicted by Shapiro (1977).
This expansion also causes the disruption rate to decrease with
time as approximately ∝ t−6/5 (Amaro-Seoane et al. 2004) and
will ultimately lead to the complete dissolution of the cluster as
the outer stars are removed by tidal forces (Wielen 1971). For
larger IMBH masses and small initial core sizes, tidal disruptions
will prevent any initial core contraction and the core expands
from the beginning (Shapiro 1977). This case was calculated
by Baumgardt et al. (2004a) using direct N-body simulations,
confirming that core expansion starts almost immediately and
follows a t2/3 power law.

Most of the studies mentioned so far considered the evolution
of clusters containing a central massive BH and comprised of
stars of equal mass. A stellar mass spectrum was first considered
by Bahcall & Wolf (1977) extending their previous work in
Bahcall & Wolf (1976). They find that, due to mass segregation,
lower mass stars have shallower density profiles than more
massive ones. For old GCs this means that the observable
surface brightness cusp must be much shallower as the more
massive dark stellar remnants are concentrated toward the center
while the lower-mass main-sequence stars that contribute most
of the light are much less centrally concentrated. It follows that,
although a cusp in the velocity and density profile provides
strong evidence for the presence of an IMBH in a cluster,
such cusps might not be easily detectable in real star clusters.
Using direct N-body simulations including an initial stellar mass
spectrum and stellar evolution, Baumgardt et al. (2004b) find,
indeed, flat luminosity density profiles almost indistinguishable
from a standard King profile. Carrying out similar simulations
but with MBH/Mc < 1%, Baumgardt et al. (2005) find surface
brightness cusps with power-law slopes ranging from α = −0.1
to α = −0.3. Based on these results they identified nine
candidate clusters from the sample of galactic GCs of Noyola
& Gebhardt (2006) that might contain IMBHs.

MC simulations of realistic clusters with a central IMBH
were mainly done in the context of galactic nuclei. A recently
developed and well-tested code is that of Freitag & Benz (2002).

Similar to our code, it is based on the method of Hénon (1971)
but is modified to evolve each star individually on a fixed fraction
of the local relaxation time, as opposed to the original shared
time-step scheme. In addition to the implementation of loss-
cone physics, which we will describe in detail in Section 3, it
also incorporates stellar collisions interpolating between results
from detailed hydrodynamical simulations. Collisions between
stars is an important physical process in dense galactic nuclei.
As already pointed out by Frank & Rees (1976), the radius
rcoll outside which stellar encounters responsible for relaxation
can be treated as elastic encounter can be larger than rcrit for
large MBH and typical sizes and densities for galactic nuclei.
Inside rcoll stars cannot deflect each other significantly without
colliding. As the relative velocity within rcoll is larger than the
escape velocity from the stellar surface the collision can be
very disruptive and might under certain conditions provide a
significant source to fuel an active galactic nucleus (see Freitag
& Benz 2002 and references therein). However, for typical
conditions inside GCs stellar collisions are unlikely to play a
significant role and are therefore not further considered for the
present study.

In addition to the formation of cuspy profiles, an IMBH
influences the SBP by producing rather large cluster cores as
measured by the core-to-half-light radius, such that larger cores
are produced by more massive IMBHs (Heggie et al. 2007).
The large core sizes are simply a result of the energy flow from
the central cusp region to the core which causes the cluster
to expand. Constructing generalized King models (King 1966)
including the effect of an IMBH and a stellar mass spectrum,
Miocchi (2007) finds that the core size and the cusp slope
are related such that clusters with larger slopes, s, have lower
concentrations, c = log(rc/rt ), where rc is the core radius of the
cluster. More specifically, they find that s and c are related by

11.6s − 4.85 � log

(
MBH

Mc

)
� −1.14c − 0.694 , (2)

where Mc is the cluster mass. Based on this criterion and data
from Noyola & Gebhardt (2006) for s as well as the Harris
catalog for c, they identified seven candidate clusters that might
contain IMBHs with mass >100 M�, with four of them also
identified by Baumgardt et al. (2005).

In contrast to the rather shallow surface brightness cusps,
the stronger cusp in the stellar velocity dispersion appears to
be a much better diagnostic to infer the presence of IMBHs in
GCs. However, for GCs this signature turns out to be difficult
to detect as any velocity dispersion measurement inside such a
cusp has to rely on only a few bright stars for expected IMBH
masses �1000 M� and typical GC masses (Baumgardt et al.
2005). These IMBH mass estimates are based on extrapolat-
ing the well-known MBH–σ relation (Magorrian et al. 1998;
Gebhardt et al. 2000; Ferrarese & Merritt 2000) between central
BH mass and velocity dispersion in the central bulges of galax-
ies down to velocity dispersions typical for GCs (∼10 km s−1).
In that case, MBH should be ∼103–104 M�. Furthermore, sim-
ulations of collisional runaways by Gürkan et al. (2004) show
that the mass of the Spitzer unstable subcluster, which provides
the mass reservoir for forming the BH progenitor, is ∼10−3 Mc,
implying IMBH masses of at most a few 103 M� for typical
cluster masses. However, it is important to point out that this
does not mean that MBH/Mc for an old GC has to be always
significantly less than 1%, as a cluster can later lose a substantial
amount of mass due to tidal stripping in the Galactic field.
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3. METHOD AND INITIAL CONDITIONS

3.1. Monte Carlo Method with IMBH

Our MC code shares some important properties with direct
N-body methods, which is why it is also regarded as a random-
ized N-body scheme (see, e.g., Freitag & Benz 2001). Just as
in direct N-body codes, it relies on a star-by-star description
of the GC, which makes it particularly straightforward to in-
clude additional physical processes such as stellar evolution.
Contrary to direct N-body methods, however, the stellar orbits
are resolved on a relaxation timescale tr, which is much larger
than the crossing time tcr, the timescale on which direct N-body
methods resolve those orbits. The specific implementation we
use for our study is the MC code initially developed by Joshi
et al. (2000) and further enhanced and improved by Fregeau
et al. (2003) and Fregeau & Rasio (2007). The code is based on
Hénon’s algorithm for solving the Fokker–Planck equation. It
incorporates treatments of mass spectra, stellar evolution, pri-
mordial binaries, and the influence of a galactic tidal field.

The effect of an IMBH on the stellar distribution is imple-
mented in a manner similar to that of Freitag & Benz (2002). In
this method the IMBH is treated as a fixed, central point mass
while stars are tidally disrupted and accreted onto the IMBH
whenever their periastron distances lie within the tidal radius,
rt, of the IMBH, which is given by

rt =
(

2
MBH

M∗

)1/3

R∗ , (3)

where R∗ and M∗ are the stellar radius and mass, respectively.
Stars are removed from the system and their masses are added
to the BH as soon as their velocity vector, v, enter the loss cone,
θLC, approximately given by

θ2
LC � 2

GMBHrt

v2r2
.

However, as the star’s removal happens on an orbital timescale,
one would need to use time steps as short as the orbital period
of the star in order to treat the loss-cone effects in the most
accurate fashion. This would, however, slow down the whole
calculation considerably. Instead, during one MC time step a
star’s orbital evolution is followed by simulating the random
walk of its velocity vector, which approximates the effect of
relaxation on the much shorter orbital timescale. The random-
walk procedure is as follows.

1. After a gravitational encounter between two stars is calcu-
lated in the standard MC fashion, resulting in a deflection
angle of δθstep, the orbital period, Porb, is calculated us-
ing Gauss–Chebychev quadrature, and a “representative”
diffusion angle during a single orbit, δθorb, is estimated as

δθorb =
(

δt

Porb

)− 1
2

δθstep,

where δt is the time step.
2. The star’s velocity vector with respect to the encounter

reference frame is calculated and a variable L2, which
represents the remaining quadratic deflection, is set to δθ2

step.
3. The star is tested for entry into the loss cone, and, if this

is the case, is removed and its mass added to MBH,
whereupon the random walk is terminated. Otherwise, we
proceed with the next step.
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Figure 1. Snapshot of the ratio of global MC time step to local relaxation
time. While in the individual time-step scheme of Freitag & Benz (2002) dt is a
constant fraction of tr (r) (dashed lines), in our shared time-step scheme dt/tr (r)
(solid line) is decreasing with increasing r as tr increases. As dt must be chosen
large enough to avoid artificial relaxation in the shared time-step scheme, f is
larger for r < rh than in Freitag et al. (2006), resulting in a slower expansion of
the cluster.

4. If L2 � 0, the random walk is terminated. The star’s
position and velocity are reset to its values before the
random-walk procedure.

5. A new random-walk step is carried out with amplitude Δ =
max(δθorb, min(0.1π, Δsafe,

√
L2)), and a random direction

on the velocity sphere, where Δsafe is set to roughly half
the angular distance to the loss cone. This way, Δ becomes
progressively smaller down to δθorb when approaching the
loss cone in order to keep the risk of missing a disruption
minimal. According to the new step size, the direction of the
star’s velocity is changed and L2 is updated: L2 := L2 − Δ.
The random walk continues at step 3.

Although many of our results turn out to agree very well
with previously published data, there are discrepancies when
comparing the disruption rates. One possible reason for these
differences might be related to the fact that our code uses a
shared time-step scheme. In an individual time-step scheme,
as in Freitag & Benz (2001), the time step is some constant
fraction of the local relaxation time, i.e., dti = f tr (ri), where f
is a constant and the subscript i refers to the individual star. In a
shared time-step scheme the smallest of these dti is chosen for all
stars. This results in much shorter time steps for stars farther out
in the cluster compared to an individual time-step scheme. As
has been noted by Freitag et al. (2006), the time-step size must
be chosen to be small enough in order to achieve good agreement
with N-body simulations, with f � 0.01. While choosing such
a small time step was still feasible in the code of Freitag &
Benz (2002), to enforce such a criterion for all stars in our
code would lead to a dramatic slowdown and notable spurious
relaxation as the time steps for the stars in the outer cluster
regions relative to the local relaxation time become extremely
small (see Gürkan et al. 2004). In order to reduce the effect of
spurious relaxation we are forced to choose a larger dt resulting
in a larger f for the inner regions, up to f ≈ 0.1. Figure 1 shows
an example of dt/tr (r) as a function of radius. One can see
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Table 1
Details of the Performed Monte Carlo Runs for Single-mass Clusters with Initial Conditions as in Baumgardt et al. (2004a; BME)

and Amaro-Seoane et al. (2004) and Freitag & Benz (2002) (ASFB)

Name N W0 rt MBH,i MBH,f TEND NDisr

(Rvir) (M�) (M�) (tcr)

BME-1 80,000 10 1 × 10−7 266 1429 ± 35 (827) 3000 1163 ± 35 (561)

BME-2 80,000 10 1 × 10−7 800 1690 ± 20 (1388) 2000 890 ± 20 (588)

BME-3 80,000 10 1 × 10−7 2660 3434 ± 20 (3285) 2000 774 ± 20 (625)

BME-16 178,800 10 1 × 10−7 461 2171 ± 30 (1368) 2000 1710 ± 30 (907)

ASFB-50 100,000 Plummer 2.26 × 10−8 50 10500 ± 100 (7450, 13050) 5.4 × 106 10, 450 ± 100 (7.4 × 103, 1.3 × 104)

ASFB-500 100,000 Plummer 2.26 × 10−8 500 11500 ± 100 (8900, 14500) 5.4 × 106 11, 000 ± 100 (8.4 × 103, 1.4 × 104)

Note. Values in parentheses are results from the corresponding literature, where two values are given: the first one refers to Freitag & Benz (2002) and the second to
Amaro-Seoane et al. (2004).

Table 2
Details of the Performed Monte Carlo Runs for Multi-mass Clusters with Initial Conditions as in Baumgardt et al. (2005; BMH)

Name N W0 MBH,i rh,i MBH,f NDisr Mc,f TEND rh,f log trh
(M�) (pc) (M�) (M�) (Gyr) (pc) (yr)

BMH-1 131,072 7 125 4.91 133 ± 3 (137) 4 ± 2 45, 671 ± 6 (45, 534) 12 12.02 ± 0.05 (12.31) 9.86 (9.82)

BMH-2 131,072 7 250 4.91 260 ± 4 (280) 6 ± 2 45, 677 ± 14 (45, 311) 12 11.98 ± 0.04 (12.60) 9.86 (9.84)

BMH-3 131,072 7 500 4.91 513 ± 5 (531) 9 ± 3 45, 400 ± 30 (44, 741) 12 12.36 ± 0.04 (13.70) 9.88 (9.89)

Notes. The star masses were chosen according to a Kroupa mass function ranging from 0.1to30 M�. Stellar evolution was modeled using the SSE code of Hurley
et al. (2002).

that in this case only for r � 0.1 rh we have dt/tr (r) � 0.01,
while for the inner region it rises quickly to 0.1. As a result, any
expansion of the inner cluster region, which limits the growth
of the IMBH in our comparison calculations, will be slower
and the disruption rates, therefore, larger, due to the higher core
densities. Such an expansion occurs either in response to the
growing IMBH mass or as an initial expansion of the cluster.
Previously, we applied a procedure that tries to compensate for
the larger time steps in the inner region (Umbreit et al. 2008) by
evolving the inner stars individually on smaller time steps while
keeping the cluster potential constant during one shared time
step, a procedure that bears some resemblance to the method of
Marchant & Shapiro (1980). However, it turned out that in order
to achieve good agreement with direct N-body simulations one
has to choose the time-step sizes for each cluster configuration
separately. This is not only undesirable but might also imply
that there are additional processes at work that significantly
influence the disruption rate and are not included in the MC
scheme. In Section 4.2.2 we discuss several possibilities, among
them the wandering of the IMBH. As there is no obvious way
to compensate for such a processes in a uniform and consistent
way through adjustments in the two-body relaxation timescale,
we do not use the sub-time-step scheme for the present paper.

3.2. Initial Conditions

Table 1 summarizes the initial conditions and main results for
all our single-mass runs and Table 2 for our multi-mass runs that
include stellar evolution (implemented by Fregeau et al. 2009
using the SSE code of Hurley et al. 2002).

The single-mass clusters consist of N stars all of mass 1 M�
with positions and velocities chosen according to a Plummer
model or a King model with dimensionless potential W0 = 10.
Radii and times are given in terms of the virial radius, Rvir, and

the crossing time, tcr, respectively, which are defined by

Rvir = GM2
c

−4 E0
, (4)

and

tcr = GM
5/2
c

(−4E0)3/2 , (5)

where E0 is the total gravitational energy of the cluster. The
cluster was evolved up to a time TEND, with an initial IMBH
mass MBH,i and rt a constant for all stars. Also shown are the
resulting final IMBH mass, MBH,f , and the number of tidally
disrupted stars, Ndisr.

The initial conditions for multi-mass clusters are chosen as in
BMH, with stellar masses drawn from a Kroupa mass function
(Kroupa 2001) in the range of 0.1–30 M�, stars evolved at
a metallicity Z = 0.001, and initial positions and velocities
chosen according to a King model with W0 = 7. The tidal
disruption radius for each star is given by Equation (3) with
stellar mass and radius provided by the stellar evolution code.
In addition to MBH,i , MBH,f , and Ndisr the half-mass radius, rh,
cluster mass, Mc, and the final relaxation time at the half-mass
radius, trh, are shown, where the added subscripts i and f indicate
initial and final values, respectively.

For each set of initial conditions nine MC runs were per-
formed with varying random seed, and the values given in the
table are the averages and standard deviations of these runs.

4. IDEALIZED MODELS

4.1. Imprints of IMBHs

In Figure 2 density and velocity profiles from our simulations
of single-mass clusters are shown, together with the expected
ri calculated from Equation (1) and using σ ≈ 0.55 in N-body
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Figure 2. Density ρ(r) (left panels) and velocity dispersion profiles σ (r) (right
panels) for runs BME-1 to BME-3 and BME-16 from top to bottom, respectively.
ρ is given in units of Mc/R

3
vir and σ in units of Rvir/tcr. The dotted line

indicates the radius of influence of the IMBH and the dashed lines represent the
theoretically expected power-law scalings ρ ∼ r−7/4 or σ ∼ r−1/2.

units, appropriate for a W0 = 10 King model. As can be clearly
seen, the density profile of the inner region of the evolved
clusters follow closely the expected n(r) ∝ r−7/4 power law
and the extent of the cusp matches that of the region where
the velocity dispersion is Keplerian, which in turn matches
the expected ri. However, contrary to what is seen in direct
N-body simulations, the cusp extends down to much smaller
radii, especially for BH masses below 1% of the cluster mass.
This is mainly because, in our simulations, the central IMBH
has a fixed position, while in direct N-body simulations it is
allowed to move freely. As a consequence, the density profile
flattens inside its wandering radius compared to a pure cusp
profile, resulting in fewer stars in the central region. As will be
shown later, this might have an influence on the rate at which
stars are tidally disrupted.

4.2. Disruption Rates

4.2.1. Comparison with Amaro-Seoane et al. (2004)
and Freitag & Benz (2002)

Figure 3 compares the growth of the IMBH in our simulations
and those of Amaro-Seoane et al. (2004), using a gas code,
and Freitag & Benz (2002), using an individual time-step MC
code. Here, the evolution of a cluster with 105 stars all of 1 M�
and a fixed massive BH in the center with a mass of 50 M�
or 500 M� was calculated. The stars were initially distributed
according to a Plummer density profile with rh = 0.707 pc. As
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Figure 3. BH mass as a function of time for two different initial BH masses,
50 M� (lower set) and 500 M� (upper set). Shown are results from the gas code
of Amaro-Seoane et al. (2004; dash-dotted lines) and the Monte Carlo codes of
Freitag & Benz (2002; dashed lines) and ours (solid lines).

can be seen, similar to the results of the MC code of Freitag
& Benz (2002), our results match qualitatively the results of
the gaseous method of Amaro-Seoane et al. (2004) inasmuch
as there is a steep rise of MBH at the time when the cluster
densities are largest, which coincides with the time the cluster
would formally go into core collapse if there were no IMBH.
After that time the BH growth levels off due to the expansion of
the core, described in Section 2, leading to the convergence of
the IMBH mass to an asymptotic value. Quantitatively, however,
there are differences in the onset of the rapid growth phase as
well as in the value of the final IMBH mass. The IMBH masses
in Amaro-Seoane et al. (2004) are generally larger at late times,
while the rapid growth phase is somewhat delayed. Our results
follow more closely, and unsurprisingly, the ones by Freitag &
Benz (2002) up until shortly after the onset of the rapid growth
phase, while they converge to larger MBH at late times. Part
of the reason for this discrepancy with Freitag & Benz (2002)
must be related to the larger time-step size compared to the
local relaxation time in the inner region of the cluster and, thus,
their slower expansion (discussed in Section 3). This is further
demonstrated in Figure 4, where we plot the IMBH growth for
two different values of the time-step parameter θmax, which is
the maximum deflection angle for all stars (see Freitag & Benz
2001, their Equation (7)). Here we clearly see that increasing
the time-step size increases the IMBH mass, while the onset of
the rapid IMBH mass growth is delayed. Both effects can be
ascribed to the system becoming more and more under-relaxed
for larger time steps. First, the core-contraction phase becomes
longer, causing the delay of the onset of the rapid growth phase,
and, second, the cluster expands slower, increasing the period
of high core densities, and, thus, accretion rates, as discussed in
Section 3.

Despite these differences, the asymptotic IMBH masses differ
by less than a factor of two and are, therefore, in reasonable
agreement with each other, given the very long integration time.

4.2.2. Comparison with BME

We now compare the growth rate of IMBHs in our simulations
with the direct N-body simulations of BME. For this comparison
we restrict ourselves to runs with a larger number of particles
to ensure that the central cusp around the IMBH is sufficiently

6



The Astrophysical Journal, 750:31 (14pp), 2012 May 1 Umbreit et al.

1 10 100
t/t

r

10
-3

10
-2

10
-1

M
B

H
/M

c

Figure 4. BH mass as a function of time for two values of the time-step
parameter, θmax = 1 (solid line) and θmax = 0.6 (dash-dotted line). Also shown
are results from the Monte Carlo code of Freitag & Benz (2002; dashed line).
All calculations started with an IMBH mass of 50 M�. Larger time steps cause a
delay in the onset of the rapid growth phase, due to the slower core contraction,
and slow down the core expansion of the cluster in response to the mass growth
of the IMBH, leading to larger accretion rates.

populated with stars for the MC method to be applicable (see
Table 1).

Figure 5 shows the disruption rate as a function of time
for runs BME-2 and BME-16 for our MC and the direct
N-body code. The qualitative behavior, i.e., the decrease of
the disruption rate due to the expansion of the cluster, is well
reproduced. However, our rates are systematically larger, always
leading to IMBH masses that are larger than in direct N-body
simulations (see Table 1). We find the largest discrepancies
for the lowest MBH/Mc ratios, where the total number of
disruptions differ by a factor of 2, whereas the disruption
rates differ by approximately a factor of 1.5. The difference in
the disruption rates becomes quickly smaller for larger IMBH
masses, so that for MBH/Mc = 1% (Figure 5 (left panel)) there
is agreement within the error bars. However, our rates are still
systematically larger for that case, leading to approximately
50% more disruptions at the end of the simulation compared

to N-body simulations. This difference is again smaller for
MBH/Mc ≈ 3% going down to only 25%.

There are several possible reasons that may explain larger
disruption rates in our simulations compared to direct N-body
simulations. First, one has to note that our results in Figure 5
are the averages over nine runs with different initial seeds to
generate the cluster, while the disruption rates of Baumgardt
et al. (2004a) come from only one realization of a cluster and are
time averages. As the run-to-run variations seem to be larger than
the time variations in our MC runs, it might be possible that this
also applies to the N-body results, in which case the differences
in disruption rates could be statistically less significant or even
disappear for larger BH masses.

Furthermore, both calculations start from non-equilibrium
cluster configurations, consisting of a central massive IMBH
and a flat constant density core (Baumgardt et al. 2004a). As
the MC method assumes that the cluster is always in dynamic
equilibrium, it cannot adequately model the initial phase until
such an equilibrium is reached. It might, therefore, be possible
that the difference in the number of tidal disruptions is at least in
part due to differences in modeling the initial, violent relaxation
process. On the other hand, the number of disruptions during
the first 100 tcr account for at most 5% of the total in all runs,
indicating that these differences have a rather minor influence
on our results.

Another effect is the wandering of the IMBH due to close
passages of stars that are not bound to the BH. Although,
one would intuitively think that a wandering IMBH would
increase the cross section for stars to enter the tidal radius as it
covers a larger volume and thus provides a larger cross section
(Chatterjee et al. 2002), the wandering also tends to flatten the
density profile (Baumgardt et al. 2004a; Amaro-Seoane et al.
2004). As the disruption rate is proportional to the density near
the IMBH, either at rcrit if the loss cone is empty, or rt if the
loss cone is full, such a flattening of the density profile could,
therefore, cause a lower disruption rate. Similarly, Magorrian &
Tremaine (1999) discuss the influence of BH wandering on the
disruption rate, arguing that, depending on cluster parameters
and BH mass, the disruption rate can be increased or decreased
relative to the disruption rate of a fixed central BH.

In order to estimate this effect more quantitatively we assume
for simplicity that, in the case of a wandering IMBH, the IMBH
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Figure 5. Comparison of the disruption rates per crossing time for the direct N-body results of Baumgardt et al. (2004a; open symbols) and for our MC simulations
(filled symbols). Shown are results of the runs BME-2 (left) and BME-16 (right). The disruption rates of the MC runs are the average rates from nine runs with
different random seeds, and the error bars are the standard deviation of this average. The disruption rates and error bars of the N-body results are time averages and
their standard deviations, respectively.
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remains inside the cusp and the stellar density, n(r), outside
of the wandering radius, rw, is given by ncusp ∼ r−7/4, while
inside it has a constant value of ncusp(rw). We furthermore make
the assumption that, in this case, we are in the full-loss-cone
regime, i.e., the loss cone is constantly replenished with stars on
a dynamical timescale, contrary to the empty-loss-cone regime,
where this happens on a relaxation time. The assumption of a full
loss cone for a wandering IMBH is justified as long as its motion
is fast enough so that the influx of stars is always sufficiently high
to completely replenish the loss cone. The situation is of course
different for a fixed BH where the loss cone is not replenished
but rather depleted on such a short timescale. In effect, we are
comparing the disruption rate of fixed BH in the empty-loss-
cone regime with that of a wandering BH in the full-loss-cone
regime.

The disruption rate for a wandering IMBH in the full-loss-
cone regime is simply given by the product of the disruption
cross section of the IMBH, ΣBH, the stellar number density, n∗,
and the relative velocity dispersion between IMBH and stars,
vrel, evaluated at the wandering radius, rw, as (see Binney &
Tremaine 2008, their Equations (8)–(123))

ṅw = n∗(rw) ΣBH(rt , rw) vrel(rw), (6)

where ΣBH is given by

ΣBH(rt , rw) = 4
√

πr2
t

(
1 +

GMBH

rt 2 v2
rel(rw)

)
, (7)

and vrel = √
(v2∗+v2

BH)/2 with v∗ and vBH denoting the stellar and
the IMBH velocity dispersion, respectively. Using vBH � v∗,
v∗(r) = √

GMBH/r in the cusp region, rw 
 rt , we obtain

ṅw = 4
√

π nc vc ri

(
ri

rw

)5/4

rt , (8)

where the subscript c refers to the core, nc = n(ri), and
vc = v(ri).

For a fixed IMBH the disruption rate is given by the influx of
stars into the region inside rcrit and can be similarly estimated
using (Frank & Rees 1976)

ṅlc � n(rcrit) ΣBH(rcrit) v∗(rcrit)
θ2

LC(rcrit)

2
, (9)

where θ2
LC = 2rt/3r is the loss-cone angle, rcrit is the critical

radius, and rt and rw are replaced with rcrit in Equation (7). The
term θ2

lc/2 represents the fraction of stars with velocity vectors
pointing into the loss cone for an isotropic velocity distribution.
Using the same substitutions as above, Equation (9) can be
written as

ṅlc � 8
√

π nc vc ri

(
ri

rcrit

)5/4

rt . (10)

From the ratio
ṅw

ṅlc
� 12

8

(
rcrit

rw

)5/4

(11)

as well as from Equation (8) we see, as we expected, that,
in general, the disruption rate is decreasing with increasing
wandering radius. Furthermore, when we calculate this ratio
using rw ≈ 4 × 10−3 and rcrit ≈ 2 × 10−3 from Figure 1 in
Baumgardt et al. (2004a) for a cluster with MBH ≈ 700 M� and
N = 8 × 104 (run BME-1), we find a value of ≈0.6. This is

very similar to what we obtain for the ratio of disruption rates in
BME-16 (see Figure 5). However, Equation (11) does not seem
to hold for larger IMBH masses. If we calculate the ratio for, e.g.,
the cluster with MBH ≈ 1395 and N = 8×104 in the same figure
(run BME-2), Equation (11) predicts that the disruption rate for
a fixed IMBH should be lower than for a wandering IMBH by
a factor of ≈1.6 while from Figure 5 we find that it is mostly
larger. The reason for that is probably related to the assumption
of a full loss cone when deriving Equation (8), as it is clear that
in the limit of very small rw, and consequently larger IMBH
masses, the empty-loss-cone regime, and thus, Equation (10),
must be approached. Indeed, in Figure 5 (left panel) we see that
the disruption rates seem to converge at late times. Similarly,
we find very good agreement in the total number of disruptions
between N-body and our MC runs for IMBHs with even larger
masses. As rw ∼ √

M∗/MBH (Chatterjee et al. 2002), it appears
that the effect of a wandering IMBH has a negligible influence
on the disruption rate for MBH/M∗ � 1000. Given that in the
core of a multi-mass cluster with a central IMBH M∗ ≈ 0.6 M�
(Baumgardt et al. 2004b), we would expect that an IMBH
can be treated as being fixed at the cluster center as long as
MBH � 600 M�.

A third effect that could decrease the disruption rate and that
is not included in the current MC scheme is the formation of,
and the strong interaction with, an IMBH binary that is able to
scatter other stars into the outer cluster regions. This mechanism
has been recently suggested by Gill et al. (2008) to suppress
mass segregation in a multi-mass cluster with IMBH. Gill et al.
(2008) also found that the efficiency of this scattering process
is relatively independent of the relative mass of the IMBH.
Given the trend we see for the difference in the number of tidal
disruptions between our simulations and N-body results as a
function of MBH/Mc, it appears that this mechanism is unlikely
to be the main reason.

Finally, there is the possibility that, as already argued in
Section 4.2.1, the larger disruption rates are a result of the
slower expansion of the inner regions caused by the larger
time-step size relative to the local relaxation time. However,
while this slower expansion might increase the disruption rate
in general, it is not at all clear why this should make a larger
difference for clusters with lower-mass IMBHs. For instance,
when we compare the ratios of the final masses from our runs
to the results of the individual time-step code of Freitag &
Benz (2002) for the different MBH,i we see from Figure 3 that
they are rather similar (0.70 for MBH,i = 50 M� and 0.71 for
MBH,i = 500 M�). On the other hand, the final mass ratios for
runs BME-1 to BME-3 vary dramatically in comparison (from
0.6 to 0.95) for a similar range in initial IMBH masses. Another
reason why it is less likely that the differences to the direct
N-body results are caused by differences in the expansion rates
is given in Figure 6, where we compare the Lagrange radii for run
BME-16. As can be seen, apart from very minor deviations, the
expansion of the cluster in our simulation agrees well with the
N-body results, even for the regions within 0.1 rh. However, one
should also note that, here, only the radii that contain more than
1% of the total cluster mass are shown, as only for those were
N-body data available. Larger differences would be expected for
smaller radii, especially because for this particular run the 1%
Lagrange radius is just outside the cusp region which mostly
determines the disruption rate.

In general we can say that, despite the significant differences
in the total number of disrupted stars, the disruption rates do not
differ greatly from the ones from direct N-body simulations and
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Figure 6. Evolution of the Lagrange radii of run BME-16 for our Monte Carlo
simulations (solid lines) and direct N-body simulations (dashed lines). Shown
are the radii that contain 1%, 2%, 5%, 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80%, and 90% of the total mass of the cluster. The cluster expands due to the
energy generated in the cluster center by the tidal disruption of stars. Apart
from a small jump in the N-body data for the outer 90% of the cluster, which
appears to be spurious, our results are in reasonable agreement with the results
of Baumgardt et al. (2004a).

are even in very good agreement for runs with MBH/Mc � 0.01
given the error bars. Furthermore, from Figure 6 we see that our
MC code can reproduce the evolution of the cluster structure,
at least down to the cusp region, quite well. We expect that this
also applies to other clusters as long as the wandering radius of
the IMBH is inside the cusp.

5. REALISTIC CLUSTER MODELS

5.1. Comparison to BMH

Here we re-examine a subset of the N-body models of BMH
using our MC code to see if we are able to reproduce their results
and, in particular, the inner surface brightness slopes mentioned
in Section 2. For this comparison we only include runs with
large N in order to populate the high-mass end of the initial
mass function (IMF) sufficiently well, which is important for
the applicability of the MC method. Furthermore, as in BMH,
we only include bright stars, defined as main-sequence stars
and giants with masses larger than 90% of the turnoff mass, for
the calculation of the SBPs to take into account that those stars
contribute most (> 80%) of the observed light.

Table 2 gives a summary of the resulting cluster structural
parameter after the clusters have been evolved to an age of
12 Gyr together with the corresponding results of BMH. In
contrast to our single-mass runs we find lower IMBH masses
in our runs compared to the direct N-body results. However,
this difference is much less pronounced, if not negligible,
as it is at most 20 M�, resulting in final IMBH masses that
deviate at most by 7% from the N-body results. The reason for
that is not only because the tidal disruption radii of the stars
are generally lower compared to our single-mass cases but,
more importantly, the cluster had a much lower density in the
core initially and subsequently expanded because of mass loss
due to stellar evolution. After the core started contracting again,
after about 1 Gyr, it became quickly dominated by massive
dark remnants, mostly BHs and massive white dwarfs, that
drove out lower-mass main-sequence stars. This decreases the
overall disruption rate, because the main-sequence stars which

are more easily disrupted given their much larger radii compared
to compact remnants, are, on average, much farther out, while
the compact remnants, though much closer to the IMBH, are
unlikely to get disrupted.

The fact that for these simulations there are fewer disruptions
in our MC runs than in the N-body simulations is most probably
again related to the wandering of the IMBH. While for a fixed
IMBH there is a well-populated cusp, for a wandering IMBH no
such clear cusp can be identified. In the N-body simulations the
massive dark remnants in the cusp are ejected through strong
gravitational interactions with the IMBH, which allows the
main-sequence stars and giants to diffuse inward and to come
closer to the tidal radius. In addition, due to its motion, the
IMBH is also able to come closer to stars that are just outside of
the cusp region, which also increases the number of disruptions.

Comparing the cluster structural parameters we find again
very good agreement between the MC and direct N-body runs.
There are only minor but systematic differences inasmuch as
in our MC runs the clusters have systematically larger masses,
though only by less than 1.5%, and are more compact, with their
half-mass radii differing at most by 10%. The most likely reason
is that, in our simulations, we do not model close encounters
with stars tightly bound to the IMBH. Those interactions might
frequently lead to the ejection of massive stars or remnants,
which also contributes to the cluster expansion. In addition,
the somewhat larger disruption rates might have also added to
the stronger expansion. However, given the minor differences
between the MC and N-body results, close encounters with stars
tightly bound to the IMBH do not seem to have a significant
influence on the cluster structure as a whole.

We also achieve good agreement for the surface density
profiles between the two methods. Figure 7 shows the two-
dimensional density profiles of bright stars for two clusters at the
end of the simulation. These profiles are obtained by averaging
five snapshots obtained at 50 Myr intervals. The profiles show
only very shallow cusps with power-law slopes α between −0.2
and −0.3, consistent with the N-body results. In order to reduce
the amount of noise and obtain a more reliable fit of the inner
slope of the SBP, we re-ran run BMH-2 but with twice as many
particles. The resulting profile is shown in Figure 7. As one can
see, the power-law fit has a slope of α = −0.23, very close to
the average of α = −0.25 found in Baumgardt et al. (2005)
and agreeing very well with the relation (2) found by Miocchi
(2007).

5.2. Comparison to Real Star Clusters

The ultimate goal of any cluster simulation is to reproduce
observations of real star clusters as closely as possible. For
GCs these observations are mostly in the form of photometric
data and SBPs, while there are only a few clusters for which
well-measured velocity dispersion profiles are available. In the
previous section we found that our MC simulations with IMBH
as well as the corresponding N-body simulations of Baumgardt
et al. (2005) are able to reproduce the intermediate inner surface
brightness slopes seen in some Galactic GCs. As discussed in
Section 2, an IMBH also influences the SBP in that it produces
rather large cluster cores as measured by rc/rh. It is, therefore,
interesting to see if the combination of slope and concentration
we find in our models matches any observations. However,
instead of comparing slopes and concentrations quoted in the
literature it is more suitable to directly compare SBPs in this
case, given that the tidal radii of observed clusters are very
uncertain (see, e.g., discussion in Baumgardt et al. 2010).
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Figure 7. Surface density profile of bright stars for two clusters with different numbers of stars and BH masses. The dashed line in the right panel is a power-law fit
to the inner region of the cluster, while the two dashed lines in the left panel are power laws with slopes bracketing the range [−0.2,−0.3] suggested by BMH for
clusters harboring IMBHs. The inner parts of our surface density profiles are in good agreement with the results of BMH.

Table 3
Parameter Ranges Explored

Parameter Range

N 0.6–1.7 × 106

rvir 2–4 pc
W0 0.8–7
MBH 500–4500 M�
RG 29.4 kpc
Z 0.0004

Note. The galactic distance, RG, and metallicity, Z, are from
the Harris catalog (Harris 1996).

For this comparison we choose the cluster NGC 5694 for
which Noyola & Gebhardt (2006) report an inner slope of
0.19 ± 0.11, close to our fit in Figure 7 (right panel). We
modeled the cluster by carrying out a large parameter survey
consisting of approximately 600 model calculations, varying the
initial number of stars, concentration, virial radii, and IMBH
mass. All models had the same IMF as in BMH and were
evolved for 12 Gyr. As the orbit of NGC 5694 in the Galaxy
is not known we assumed for simplicity that it moves on a
circular orbit at its current distance of ≈29 kpc from the Galactic
center. Given this distance, it is a rather isolated cluster, and
has been speculated to be of extragalactic origin (Lee et al.
2006). We included in our search also clusters that contain no
IMBH but, instead, 10% hard binaries, as it has been shown
that a cluster with binaries can possess similar shallow surface
brightness slopes as a cluster harboring an IMBH (Vesperini &
Trenti 2010). We calculated the SBP by converting the stellar
radius and bolometric luminosity for each star obtained from
the Cluster Monte Carlo (CMC) stellar evolution module binary
star evolution (BSE) to V-band luminosity using the standard
stellar library in Lejeune et al. (1998). The luminosities were
then radially binned similar to Noyola & Gebhardt (2006) and
converted to apparent magnitudes using a distance of 35 kpc
from the sun. In order to minimize the large fluctuations caused
by the brightest giants, we only consider objects with an absolute
V-band magnitude fainter than 3. This value is also low enough
to ensure that the shape of the SBP does not become significantly

Table 4
Evolution of the Characteristics of Our Best-fit Model without IMBH

t = 0 t = 12 Gyr

N 1.30 × 106 1.28 × 106

Mc 8.08 × 105 M� 4.83 × 105 M�
rh 2.1 pc 4.4 pc
trh 0.96 Gyr 3.75 Gyr
rtide 308 pc 260 pc
fbin 10% 8.9%

Notes. Here, N is the number of stars and binaries, rtide is the tidal, or Jacobi,
radius, and fbin is the binary fraction. The initial density distribution is a King
profile with W0 = 3.

Table 5
Evolution of the Characteristics of Our Best-fit Model with a 500 M� IMBH

t = 0 t = 12 Gyr

N 1.30 × 106 1.28 × 106

Mc 7.63 × 105 M� 4.65 × 105 M�
rh 1.98 pc 3.98 pc
trh 0.90 Gyr 3.29 Gyr
rtide 308 pc 261 pc

Note. The initial density distribution is a King profile with W0 = 0.8.

biased (see also Giersz & Heggie 2009). Table 3 summarizes
the parameter ranges explored.

5.2.1. Surface Brightness Profiles

Figure 8 shows the resulting SBPs of our best-fit models along
with the data from Noyola & Gebhardt (2006), and in Tables 4
and 5 are their initial and final cluster parameters.

In general, the model SBPs match well within 60 arcsec, while
outside, the observed profile seems to flatten. This excess light
is usually attributed to both, the confusion with background
stars and stars that are escaping but remain still close to the
cluster for a considerable time (Fukushige & Heggie 2000),
which we cannot model using a simple tidal cutoff prescription.
In this case, however, confusion with background stars is a
more likely explanation as the estimated tidal radius from the
literature (Harris 1996) and the Jacobi radius we obtain at the
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Figure 8. Surface brightness profile from our best-fit model with (left panel) and without (right panel) a central IMBH for NGC 5694 (Noyola & Gebhardt 2006; filled
circles), a cluster that might harbor an IMBH (Baumgardt et al. 2005), showing a shallow cusp. Right: models with different IMBH masses. The maximum IMBH
mass for which a reasonable match to the data can be obtained is 1000 M�.

end of our models is larger by a factor of four compared to the
radius where the observed profile begins to flatten.

Comparing the inner profiles, we find that, indeed, within
the photometric errors, the data can be well reproduced even
without IMBH, while models with IMBH show good agreement
if the IMBH mass is less than ≈1000 M�. As the latter mass
corresponds to a BH-to-cluster mass ratio of 0.2%, with a total
cluster mass of 4.7 × 105 M� at the end, our best-fit IMBH
masses are in good agreement with the extrapolated relation for
SMBH-harboring galaxy bulges.

The good agreement of the SBPs for the cluster model with
IMBH is somewhat surprising as, according to Miocchi (2007),
NGC 5694 is not expected to harbor an IMBH based on the
fact that its concentration is too large for the relatively steep
inner surface brightness slope (see relation (2)). However, this
statement is based on values for the concentration quoted from
the literature (Harris 1996) which, as we mentioned before, are
in general rather uncertain due to difficulties determining the
tidal radius of a cluster. An error of 40% in the measured tidal
radius would bring the value of the slope and the concentration
of the cluster in agreement with relation (2). Furthermore, the
observed slope has a rather large uncertainty as well, which,
even considered alone, could make the observed parameters
consistent with this relation. Therefore, it appears that the close
match we obtain for the shape of the SBP in our simulation
with the observed one of NGC 5694 does not necessarily
contradict the validity of the slope–concentration relation found
by Miocchi (2007) but seems to be broadly consistent with it.

5.2.2. Time Variability

Since Giersz & Heggie (2009) and Heggie & Giersz (2009),
the importance of fluctuations when comparing cluster models
with observations has been better understood. More recently
Vesperini & Trenti (2010) investigated the variation of the
inner surface brightness slopes for clusters with and without
IMBH based on N-body models with up to 65, 536 stars, and
found that intermediate slopes in the range expected for clusters
harboring an IMBH are also ubiquitous among clusters without
IMBH, in particular when there is a non-negligible fraction of
dynamically hard binaries. However, the models in Vesperini
& Trenti (2010) were, owing to the computational expense of
direct N-body simulations including binaries, rather idealized
in the sense that they only contained a much lower number
of particles, by a factor of 20, than are actually present in
NGC 5694. In addition, the surface brightness slopes were

derived by considering all main-sequence stars while most of
the light is actually contributed by only a small subset of main-
sequence stars and giants with masses larger than ≈0.7 M�
for clusters with ages of around 12 Gyr (see also BMH and
Section 5.1). It is likely that these limitations will influence the
derived surface brightness slopes.

Noyola & Baumgardt (2011) raised similar concerns. They
analyzed a series of low-N, N-body models with and without
IMBHs that were stacked on top of each other to contain in the
end up to 6 × 106 stars for constructing corresponding HST-like
images and then deriving surface brightness slopes the same
way as has been done for observed GCs in Noyola & Gebhardt
(2006). Contrary to Vesperini & Trenti (2010), their results show
that the inner surface brightness slope is a good diagnostic to
discern IMBH-less clusters from likely candidates of IMBH
harboring clusters, with intermediate values, ranging from −0.1
to −0.4, indicating the presence of an IMBH.

Given these discrepancies and limitations in the literature, it is
worthwhile to investigate the slope variations for our full-scale
models, where the cluster as well as single and binary evolution
is self-consistently taken into account. Although we have not
checked whether our MC code is able to reproduce the density
fluctuations of an N-body model, Heggie & Giersz (2009) show
that the time variations of the core radius in their MC model,
which they identify as to be due to variations of the inner density
slope, are of the same magnitude as in a corresponding N-body
model, though less coherent due to the random sampling of the
stellar orbits. It thus appears that the density fluctuations in a
Henon-type MC code reflect the degree of variations present in
N-body simulations and can at least be used to get some first
insight into the temporal behavior of the SBP. Ideally, we would
like to follow the inner SBP with a direct N-body simulation for
a brief time period around the current age of NGC 5694, but
even for such a relatively short time a direct N-body calculation
of the entire cluster with N ≈ 1.3 × 106 stars would take a
prohibitive amount of time.

For this analysis, we used a simple least-square fit for the
determination of the SBP slope over a range that covers the
three innermost points of the Noyola & Gebhardt (2006) profile.
This range corresponds to 11%–32% of the core radius, and is,
thus, similar to the one Vesperini & Trenti (2010) used for their
determination of slopes. In order to reduce the uncertainty of the
individual fits we used a much finer binning than in Figure 8,
with 50 logarithmically spaced bins in the fitted range.

Figure 9 shows the evolution of the inner surface brightness
slopes from five snapshots covering a period of 1 Gyr at around
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Figure 9. Evolution of the inner surface brightness slopes for our best-fit models
with (filled circles) and without (open squares) IMBH. The dashed line is the
slope value as measured by Noyola & Gebhardt (2006) (−0.19), while the dotted
line is the value from a least-square fit to their three innermost data points
(−0.17), which covers the range between 0.28 and 0.85 arcsec, and roughly
corresponds to 11%–33% of the core radius. The slopes in the model without
IMBH always remain significantly shallower (>−0.1%) than the observed one,
while in the models with IMBH they cover a much wider range, from >−0.1 to
−0.4. The uncertainties of the fitted slopes are always ≈0.1.

12 Gyr. As can be seen, the slopes of the cluster models without
IMBH do not steepen much beyond −0.1, while for the cluster
with IMBH they cover a much wider range, from >−0.1 to
−0.4. Comparing with the slopes derived from observations it
appears, at face value, somewhat unlikely that the cluster model
without IMBH can match the observed slope, and a cluster
with IMBH seems more likely to fit. On the other hand, the
uncertainties of the individual slopes are, with 0.1, rather large,
so the disagreement is only marginally statistically significant.
In addition, it might pretty well be that due to our coarse
sampling we have missed possible maxima. For this reason
we also analyzed four similar models in our grid, with the
same initial particle number and radius but different, slightly
lower concentrations, going down to W0 = 1.8 in steps of 0.2
(Figure 10). As one can see, with the exception of one point, all
slopes remain shallower than −0.17, the value from our least-
square fit to the observations. Although about a third of the
values are within the error bars, it is nevertheless remarkable that
the average slope is close to zero while for models with IMBH it
is clearly steeper than −0.1 and closer to the observed one. Thus,
based on our results it remains, at least on a qualitative level,
somewhat more difficult to reconcile a cluster model without
IMBH with observations.

Clearly, given the large uncertainties of not only our slopes,
but also of the slope in Noyola & Gebhardt (2006) for
NGC 5694, a more detailed statistical analysis, taking the SBP
directly into account, is certainly desirable in order to quantify
how likely or unlikely it is that NGC 5694 harbors an IMBH.
As Giersz & Heggie (2009) already pointed out, the agreement
between model and observations has to be determined in terms
of the probability that an observational profile be rejected as
a member of the ensemble of profiles provided by the model.
Such an analysis, however, is beyond the scope of the present
paper.

5.2.3. Dynamical Age

The advantage of having modeled the evolution of NGC 5694
self-consistently with a realistic number of stars is that it allows
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Figure 10. Evolution of the inner surface brightness slopes for models similar
to the best-fit model without IMBH but slightly lower concentrations (open
squares). The dashed line is the slope value as measured by Noyola & Gebhardt
(2006) (−0.19), while the dotted line is the value from a least-square fit to their
three innermost data points (−0.17), which covers the range between 0.28 and
0.85 arcsec and roughly corresponds to 11%–33% of the core radius. With the
exception of one point, the fitted slopes never exceed −0.17, the value of the
least-square fit to the data. The uncertainties of the fitted slopes are always ≈0.1.

us to obtain a more reliable estimate of its dynamical age.
The dynamical age has consequences for the expected inner
surface brightness slope for an observed cluster (e.g., Noyola
& Gebhardt 2006; Trenti et al. 2010), and is essential when
assessing possible mass-segregation signatures for IMBHs (Gill
et al. 2008).

Hurley (2007) already emphasized that the relaxation time of
a cluster is time-dependent and the actual dynamical cluster
state, whether in the core-contraction or past core-collapse
phase, is better described in terms of Ntrh , the number of elapsed
half-mass relaxation times, defined as

Ntrh =
∫ τ

0

dt

trh(t)
, (12)

where τ is the cluster age. He showed that in his models
trh decreases by a factor of two over the cluster lifetime and
compared Ntrh with simple estimates, dividing the cluster age
by either the initial or current trh, finding that the former estimate
was much closer to Ntrh than the latter.

Apparently assuming the same behavior for the evolution
of NGC 5694 and using an estimate for the current half-light
relaxation time of trh = 1.9 Gyr from the updated Harris catalog
(Harris 1996), Vesperini & Trenti (2010) estimated its dynamical
age as Ntrh ≈ 3 (see their Figure 3). However, they also point
out that such estimated ages have rather large uncertainties, and
detailed models are necessary in order to get more accurate
results.

In fact, as inspection of Tables 4 and 5 reveals, the simple ex-
trapolation of the Hurley (2007) results to our full-scale models
is not justified. This is mainly because NGC 5694 is not tidally
limited and can expand freely which increases its relaxation time
rather than decreasing it over time. Calculating the dynamical
age of our models for NGC 5694 as in Equation (12), we find
Ntrh = 4.2 for the best-fit model without and Ntrh = 4.7 for the
one with IMBH. Therefore, NGC 5694 appears to be not far
from core collapse and to have evolved considerably. Straight-
forward estimates based on the initial and final relaxation time,
on the other hand, give τ/trh(0) ≈ 13 and τ/trh(τ ) ≈ 3,
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respectively, which means that, contrary to the case in Hurley
(2007), using the current instead of the initial half-mass relax-
ation time gives a better approximation for the dynamical age of
this cluster. Considering, however, that even this estimate differs
by as much as 40% and the difference still worsens when the
cluster gets older and expands further, neither approximation
seems really suitable for a reliable estimate.

Coincidentally, if the value quoted from the Harris catalog
is corrected for the fact that the projected half-mass radius
is smaller by ≈25% than the unprojected one (see, e.g.,
Hurley 2007), the resulting current trh ≈ 2.8 Gyr would imply
Ntrh = 4.4, which is very close to the integrated value from
Equation (12) for our models. Clearly, one cannot attach any
meaning to this as the corrected relaxation time still differs
significantly from the one in our model, owing to the underlying
simplifying assumptions (see Harris 1996), and the close match
is rather accidental.

As this comparison shows, there seems to be no simple way to
reliably estimate dynamical ages of clusters without considering
the previous cluster evolution in more detail.

6. SUMMARY AND CONCLUSIONS

In this paper, we studied the influence of IMBHs on the evo-
lution of GCs using our MC code, which has been extended to
include the effects of a central IMBH on the stellar distribution.
The IMBH is treated as a fixed point mass in the cluster center,
and at each time step stars are tested for entry into their loss
cone. In order to test our implementation we carried out a large
number of idealized, as well as more realistic dynamical simu-
lations of GCs and compared our results with published results
from direct N-body and Fokker–Planck calculations.

In general we found that our results agree reasonably well
with results from N-body and Fokker–Planck-type codes. Sig-
nificant differences only exist for idealized models while for
more realistic clusters these differences become negligible.

We found that our code is able to reproduce the expected
density cusp and Keplerian velocity profile around the IMBH
for a single-mass cluster very well. In addition, we also found
that the evolution of the cluster density profile outside of the
1% Lagrange radius is in very good agreement with direct N-
body simulation. The only notable difference is that the cusp
extends farther down toward the IMBH than in the direct N-body
simulations of Baumgardt et al. (2004a). The reason is most
likely that the IMBH is fixed at the cluster center while in the
N-body simulations it is allowed to move freely. Although this
has a minor effect on the density profile, causing it mainly to be
flatter inside rw, we argue that it produces significant differences
in the disruption rates for single-mass clusters. In particular, as
we demonstrated by simple estimates of the disruption rate, the
effect of IMBH wandering might be able to explain why we see
up to a factor of two larger disruption rates for low-mass IMBHs
than for higher-mass ones, compared to N-body results, which
is difficult to explain otherwise. For a sufficiently fast-moving
IMBH, the loss cone can always be assumed full in which case
the disruption rate is a strong function of the density at the
disruption radius rt. Therefore, for larger rw, and consequently
for lower MBH, the density at rt becomes lower inside the very
steep power-law cusp which, in turn, decreases the disruption
rate. In our calculations the disruption rate is determined by the
diffusion of stars into the loss cone. This rate turns out to be
larger than for the case of a wandering IMBH for our cluster
parameters if rw is significantly larger than rcrit, which agrees

with the differences we see for run BME-16. For lower rw, and,
thus, larger MBH, loss-cone depletion effects appear to become
important as we find from our simulations that the rates for
these two cases converge for IMBHs with MBH/M∗ � 1000,
while Equation (11) predicts that the rate for a wandering IMBH
should become larger than for a fixed one.

The agreement for larger MBH also implies that, in a realistic
GC, an IMBH with MBH > 600 M� can be safely treated as
a fixed central point mass, given the scaling of the wandering
radius and the fact that the average stellar mass in the core
converges quickly to M∗ ≈ 0.6 M� (Baumgardt et al. 2004b) in
multi-mass clusters with a central IMBH. These larger IMBH
masses are expected for clusters with Mc � 2×105 M� initially,
based on a straightforward extrapolation of the well-known
M–σ relation (Magorrian et al. 1998; Gebhardt et al. 2000;
Ferrarese & Merritt 2000). Since most GCs are more massive
than this, we conclude that our code is able to calculate the
evolution of GCs with a central IMBH for a wide range of
relevant cluster parameters.

Comparing the IMBH mass growth in the empty-loss-cone
regime with different Fokker–Planck-type codes, such as the gas
code by Amaro-Seoane et al. (2004) and the MC code by Freitag
& Benz (2002), we found better agreement with our results. For
all codes the IMBH growth shows the same qualitative behavior,
that is, the masses converge to a constant value. Only at late
times do the masses differ significantly by factors of 1.3–2. The
larger IMBH masses in our simulations compared to the results
of Freitag & Benz (2002) are most likely due to the slower
expansion of the inner regions in our simulations, which are
caused by the larger time steps relative to the local relaxation
time, a consequence of the shared time-step scheme used in our
code. Contrary to the effect of IMBH wandering, this effect does
not introduce a dependence on MBH and our final masses always
differ by 30% regardless of the initial MBH.

The situation for realistic cluster models is, however, rather
different. In this case, the disruption rates are generally lower
because the cluster core gets quickly dominated by dark rem-
nants, which have extremely small rt. Therefore, the influence
of the IMBH wandering is, in general, much reduced and does
not produce significantly different results compared to a fixed
IMBH. There are only minor deviations in the final cluster mass
and size, with our clusters being more compact by ≈10% and
slightly more massive by ≈1%. The reason here might be re-
lated to the fact that we do not model close encounters with stars
in the cusp, which could be an important ejection mechanism
for the stars (Baumgardt et al. 2004a). Such encounters are also
responsible to efficiently remove dark remnants from the cusp
(Baumgardt et al. 2004b) and, thus, allow for lower-mass main-
sequence stars to get close to the IMBH and disrupted. The
somewhat larger number of disruptions in the N-body simula-
tions is also caused by the wandering of the IMBH as it can, this
way, get closer to the main-sequence stars that are, due to mass
segregation, farther out. Although the total mass the IMBHs
gain in the N-body simulations is up to three times larger than
in our simulations, the total difference amounts to just 20 M� at
most or less than 7% of the total cluster mass and is, thus, very
minor, given that this difference comes from not much more
than 10 disrupted main-sequence stars.

Using our MC code we are also able to reproduce the in-
termediate power-law slopes in the SBP seen in all N-body
simulations with IMBH in Baumgardt et al. (2005). Although
there is considerable scatter in the profile which makes the de-
termination of the individual slopes rather uncertain, we show
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that they, nevertheless, are within the same region as in the
N-body simulations. Using twice as many stars in our simula-
tions than were used in Baumgardt et al. (2005) we have a high
enough resolution to obtain a reliable fit, which turns out to
be close to the average slope found by Baumgardt et al. (2005).
This, once again, confirms that, despite differences in the details
of the dynamics in the innermost cusp region, the overall cluster
structure and evolution is rather well reproduced.

Finally, by carrying out a large parameter survey, we were
able to model, for the first time, the SBP of NGC 5694 in
Noyola & Gebhardt (2006) and constrain the maximum mass of
a possible IMBH in the cluster center to <1000 M�, which,
in this case, corresponds to MBH/Mc � 0.2%. Given the
photometric errors in the observed profile, both models with
and without an IMBH can be constructed to match observations.
However, considering the surface brightness slopes, there is a
slight preference for models with an IMBH, as clusters without
IMBH rarely had slopes as large as observed. This was in spite
of the presence of a significant population of binaries (≈8%
in the end), which has produced larger variations in the direct
N-body simulations of Vesperini & Trenti (2010) containing
a much lower number of stars. Clearly, taking into account
the rather large uncertainties in the individual fitted slopes, a
more thorough statistical comparison of the SBPs is required
to better assess the likelihood of the presence of an IMBH in
NGC 5694. So far the evidence for an IMBH is only marginal.
Moreover, the existence of an IMBH in this particular cluster
seems inconsistent with the static models of Miocchi (2007),
with NGC 5694 having a concentration that is too large for the
measured inner surface brightness slope. However, considering
possible errors in the value for the concentration quoted in the
Harris catalog (Harris 1996) and the rather large uncertainty in
the inner surface brightness slope, we find that this is not yet
conclusive either.

In summary, we find that our MC code, which now includes
the effects of a central IMBH on the stellar distribution, is
able to reproduce the overall structure and evolution of single-
mass as well as of more realistic multi-mass cluster models
reasonably well compared to direct N-body simulations. There
are differences in the disruption rates and IMBH masses which
are most likely related to the wandering of the IMBH, which
is not included in the MC code. However, these differences
become almost negligible for realistic cluster models as the
disruption rates are generally very low for these cases. In
addition, since the IMBH wandering radius scales with MBH/M∗
as rw ∼ √

MBH/M∗ (Chatterjee et al. 2002) the influence of
the IMBH motion is reduced for more massive clusters with
a similar MBH/Mc. One process that still plays a role for
more massive clusters and which is not included in our MC
simulations are the close gravitational interactions with cusp
stars which we plan to implement in the near future.
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