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ABSTRACT

A promising mechanism to form intermediate-mass black holes is the runaway merger in dense star clusters, where
main-sequence stars collide and form a very massive star (VMS), which then collapses to a black hole (BH). In this
paper, we study the effects of primordial mass segregation and the importance of the stellar initial mass function
(IMF) on the runaway growth of VMSs using a dynamical Monte Carlo code for N-body systems with N as high
as 106 stars. Our code now includes an explicit treatment of all stellar collisions. We place special emphasis on the
possibility of top-heavy IMFs, as observed in some very young massive clusters. We find that both primordial mass
segregation and the shape of the IMF affect the rate of core collapse of star clusters and thus the time of the runaway.
When we include primordial mass segregation, we generally see a decrease in core-collapse time (tcc). Although
for smaller degrees of primordial mass segregation this decrease in tcc is mostly due to the change in the density
profile of the cluster, for highly mass-segregated (primordial) clusters, it is the increase in the average mass in the
core which reduces the central relaxation time decreasing tcc. The final mass of the VMS formed is always close to
∼10−3 of the total cluster mass, in agreement with previous studies and is reminiscent of the observed correlation
between the central BH mass and the bulge mass of the galaxies. As the degree of primordial mass segregation is
increased, the mass of the VMS increases at most by a factor of three. Flatter IMFs generally increase the average
mass in the whole cluster, which increases tcc. For the range of IMFs investigated in this paper, this increase in tcc is
to some degree balanced by stellar collisions, which accelerate core collapse. Thus, there is no significant change
in tcc for the somewhat flatter global IMFs observed in very young massive clusters.
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1. INTRODUCTION

1.1. IMBHs

It is generally accepted that two separate classes of black holes
(BHs) exist, defined by their mass ranges: stellar mass BHs
of mass ∼3–20 M� (Bolton 1972; Webster & Murdin 1972;
Casares 2007), which form through the collapse of massive
stars, and supermassive BHs (SMBHs) of mass ∼106–1010 M�,
which are found in the centers of most galaxies including the
Milky Way (Kormendy & Gebhardt 2001; Merritt & Ferrarese
2001; Ghez et al. 2003; Miller & Colbert 2004). However, this
leaves a gap in the mass range from ∼ 102 to 104 M� which in
recent years seems to have been filled by tentative evidence for
intermediate-mass black holes (IMBHs; Portegies Zwart et al.
1999; Grindlay et al. 2001). This evidence consists of dynamical
measurements (Gebhardt et al. 2002; Gerssen et al. 2002; van
der Marel et al. 2002), detection of ultraluminous X-ray sources
(ULX) found off-center in galaxies (Miller & Colbert 2004), the
anomalously high mass-to-light ratio observed in the centers of
some globular clusters (Miller & Colbert 2004), and the mass-
segregation quenching in the cores of globular clusters in the
presence of an IMBH (Pasquato et al. 2009).

The possible existence of IMBHs in globular clusters is sug-
gested by the MBH − σ relation for galaxies, where MBH is the
mass of the central massive BH and σ is the velocity dispersion
of the bulge. Extending this relation down to velocity dispersions
typical for globular clusters (≈10 km s−1), we expect BH masses
in the range of ∼103–104 M�. There are several claims in the
literature that, indeed, such IMBHs are present in some globular

clusters. The evidence is mainly based on measurements of the
stellar velocity distribution, with velocity dispersions increas-
ing strongly toward the center if an IMBH is present. The most
promising candidates are the clusters G1 (Gebhardt et al. 2005,
2002) and ω Cen (Noyola et al. 2008). However, the presence of
IMBHs in these clusters is still debated. For instance, based on
scaled direct N-body models, Baumgardt et al. (2003) show that
there is no need to invoke the presence of an IMBH in the center
of G1 in order to explain the observed velocity dispersion profile.
On the other hand, Gebhardt et al. (2005) point out that, since the
region where the IMBH influences the velocity distribution is
barely resolved, additional information from higher order veloc-
ity moments must be considered. Using orbit-based models to fit
both surface brightness and velocity data simultaneously, they
find (similar to their earlier results) that only these higher order
velocity moments provide sufficient evidence for an IMBH in
G1 with a mass of 1.8 (±0.5) × 104 M�. However, these results
must still be confirmed using fully self-consistent evolutionary
models that do not rely on assumed mass-to-light ratio profiles.

Numerous ULX sources have been identified by Chandra and
XMM-Newton, often associated with starburst environments.
These sources have X-ray luminosities of LX > 1039 erg−1,
exceeding the angle-averaged flux of a BH of mass <20 M�
accreting material at the Eddington luminosity, LE. Although
many ULX could be identified as active galactic nuclei at the
centers of galaxies, and thus SMBHs, some are clearly off-
center with typical projected distances of ≈400 pc (Miller &
Colbert 2004). For instance, the ULX X41.4+60 in the starburst
galaxy M82 (Portegies Zwart et al. 2004) has been found 7′′
away from the galaxy center which corresponds to a distance of
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≈200 pc. Kaaret et al. (2001) argue, therefore, that this X-ray
source is unlikely to be an underluminous SMBH, as dynamical
friction would cause it to spiral into the nucleus of the galaxy
on timescales much shorter than the age of the galaxy. Based
on this argument they derive an upper mass limit of ≈105 M�.
From the total X-ray luminosity and the assumption that the
ULX source radiates isotropically at the Eddington rate, Kaaret
et al. (2001) also derive a lower limit of 500 M�. However,
they point out that this value can be lower by a factor of a few
when mild beaming is considered, thus bringing it closer to
the stellar mass BH range. On the other hand, newer Chandra
observations by Kaaret et al. (2009) have shown that during
an outburst, where X41.4+60 increased its X-ray luminosity by
a factor of more than three, its X-ray spectrum remained in
the so-called hard state, characterized by a dominant power-
law component containing 80% of the total flux (Remillard &
McClintock 2006). From stellar mass BH X-ray binaries it is
known that their spectra are in the hard state if L < 0.3 LE . If
one assumes the same limit for higher-mass BH X-ray binaries,
the peak luminosity of 8.5 × 1040 erg−1 inferred from Chandra
observations would imply a lower-mass limit of ≈2000 M�
(Kaaret et al. 2009). As one can see, even if one considers that
the radiation could be mildly beamed, the minimum mass is well
above the stellar mass BH range, making this source a prime
IMBH candidate. Another good candidate for an IMBH is the
recently found ULX source HLX-1 in the edge-on spiral galaxy
ESO 243-49 (Farrell et al. 2009). With a maximum luminosity
of up to 1.1×1042 erg−1 in the 0.2–10 kev band, and accounting
for beaming effects, Farrell et al. (2009) obtain a conservative
lower limit of ∼500 M�.

Further indications for the presence of IMBHs in some globu-
lar clusters come from unusually high mass-to-light ratios mea-
sured in their centers, as inferred from pulsar timing measure-
ments. For instance, the Galactic globular cluster NGC 6752 has
five millisecond pulsars, three of which are in the core (D’Amico
et al. 2002). Two of these three have negative period derivatives
and one has an anomalously high positive period derivative. If
the spin derivatives are due to the gravitational potential of the
cluster, Ferraro et al. (2003) conclude that the mass-to-light ra-
tio in the core is M/L ≈ 6–7, much higher than that inferred for
most globular clusters. For comparison, M/L ≈ 2 is what one
would expect for an old star cluster with a standard initial mass
function (IMF) based on stellar evolution alone (Caputo 1985).
Furthermore, based on the position of one of the pulsars, Ferraro
et al. (2003) find that there is 1000–2000 M� of underluminous
matter within the inner 0.08 pc of the cluster. This could be
explained by a ∼1000 M� IMBH in the center of the cluster,
but also by an exceptional concentration of dark remnants, or a
∼100 M� BH that is offset but near the projected location of the
three millisecond pulsars in the cluster core. As the high spatial
resolution in their observations does not show a cusp down to
0.08 pc, Ferraro et al. (2003) conclude that any central BH must
have a mass M � 1000 M�.

There has been some considerable theoretical work by Gill
et al. (2008) on observational evidences of IMBHs in star
clusters. Mass segregation in star clusters brings heavier stars
toward the center, increasing the average stellar mass in the
core. As a diagnostic tool to quantify mass segregation, Gill
et al. (2008) defined this radial variation of the average stellar
mass as Δm = 〈m〉c − 〈m〉rh, where Δm is the difference of
the average mass in the core (〈m〉c) and the average mass at the
projected half-mass radius of the cluster (〈m〉rh). A cluster with
no IMBH on a relaxation timescale settles to a quasi-equilibrium

configuration with varying degrees of mass segregation (Δm).
They found that in simulations of clusters with an IMBH, mass
segregation (Δm) is significantly quenched. The idea is that,
if there is an IMBH in the core, since the IMBH will be more
massive than any of the other massive stars in the core, the IMBH
has an extremely high probability of changing into a binary in a
close three-body encounter. The subsequent interactions of this
IMBH in a binary with other massive stars in the core might kick
out or scatter the other massive stars in the core. Since the mass-
segregated massive stars are the ones that will be scattered out of
the core in this way, 〈m〉c will decrease. Thus, in a cluster with no
central IMBH, mass segregation (Δm) will be more pronounced
than in a cluster with an IMBH. According to the authors, this
phenomenon of quenching mass segregation in the presence of
an IMBH can be observed by high-resolution imaging of the
cores of a large sample of globular clusters by the Hubble Space
Telescope (Pasquato et al. 2009).

1.2. Pathways to IMBH Formation

There are several pathways discussed in the literature through
which IMBHs may form. The simplest way is through the core
collapse of a massive Population III star formed in a mini dark
matter halo at high redshift (Madau & Rees 2001). At lower
redshifts, such massive stars must be grown through mergers of
lower-mass stars, which requires rather large stellar densities,
typically �106 pc−3 (Freitag et al. 2006a; Ardi et al. 2008;
Baumgardt et al. 2008). As an alternative to stellar mergers
it is also possible to increase the mass of a stellar-mass BH by
tidally disrupting and accreting other stars; however, this seems
to require even larger stellar densities (Baumgardt et al. 2008).

In a cluster with a broad range of stellar masses, large
stellar densities can be achieved through mass segregation,
which will drive the most massive objects to the center, while
lighter stars spread out to attain kinetic energy equipartition.
However, for any reasonable IMF, the most massive stars are
unable to achieve energy equipartition with the lighter stars
and therefore decouple from the rest of the cluster and form a
compact subsystem in the cluster center. This process is called
Spitzer instability (Spitzer 1969) and causes core collapse to be
accelerated (Spitzer 1969; Vishniac 1978; Watters et al. 2000;
Gürkan et al. 2004). As shown by Gürkan et al. (2004, hereafter
Paper I), for a realistically broad stellar mass spectrum, the core-
collapse time (tcc) can be as short as tcc = 0.15 trc(0), where trc(0)
is the initial central relaxation time.

Once the most massive objects have segregated, the formation
of an IMBH can occur in two different ways: one is when the
massive stars have already evolved into stellar mass BHs at the
time of core collapse and these BHs then merge by emitting
gravitational waves. The BHs first form BH binaries which
then harden through dynamical interactions with other objects
until the binary is close enough for gravitational radiation to
dissipate sufficient orbital energy until the BHs merge (see,
e.g., O’Leary et al. 2006). However, growing an IMBH with
a mass of ∼1000 M� through such stellar mass BH mergers
is only realistic for the very massive clusters such as those in
galactic nuclei (O’Leary et al. 2006). For smaller systems such as
globular clusters, Mouri & Taniguchi (2002) and O’Leary et al.
(2006) have shown that this mechanism is rather inefficient. This
is because it is much more likely that the stellar mass BHs escape
through strong dynamical binary interactions (Portegies Zwart
& McMillan 2000) or recoil from asymmetric gravitational
wave emission (Miller & Hamilton 2002; Gültekin et al. 2004;
O’Leary et al. 2007) given the low cluster escape speed.
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Another way to form an IMBH, which is not restricted to
galactic nuclei, is through mergers of massive main-sequence
stars that segregate to the center and drive cluster core col-
lapse before the formation of stellar BHs. This subsystem of
massive stars can enter a phase of rapid collisions, and since
the most massive object has the largest cross-section for further
collisions, this object is expected to grow in a runaway fashion.
The resulting very massive star (VMS) eventually collapses to
form an IMBH (Portegies Zwart & McMillan 2002; Gürkan
et al. 2004). As the time it takes for the most massive stars
to turn into BHs is approximately 3 Myr (Meynet & Maeder
2000), an IMBH is only formed through runaway merging if the
cluster reaches core collapse within the first 3 Myr of dynamical
evolution.

This simple picture has a few important caveats. First, the fate
of such a massive merger remnant formed by a runaway is rather
uncertain. Direct monolithic collapse to a BH with no or little
mass loss is a possible outcome, at least for sufficiently small
metallicities (Heger & Woosley 2002). However, it has been
suggested that mass loss from stellar winds could dominate the
mass increase due to repeated mergers (Glebbeek et al. 2009).
In this case it might be difficult to form a VMS at all. On the
other hand, within the runaway phase, it has been shown that,
for clusters like those studied here, the time between collisions
is much shorter than the Kelvin–Helmholtz timescale of the
collision product, so that the growing VMS must be out of
thermal equilibrium. Instead the calculations of Glebbeek et al.
(2009) were done assuming that each merger remnant behaves
exactly like an ordinary massive star in thermal equilibrium.
The uncertainty in the final VMS (and IMBH) mass is further
increased when considering that a stronger wind mass loss
would also lead to a stronger expansion of the cluster core,
decreasing the mass growth rate of the VMS by lowering the
collision rate. To address this problem, one would need to
perform a fully self-consistent simulation coupling the stellar
dynamics with detail radiation hydrodynamics of the stellar
collisions and mass loss from merger remnants. This is clearly
beyond the scope of this paper.

The runaway collision scenario in globular clusters has been
extensively investigated in Paper I and in Freitag et al. (2006a,
2006b) using Monte Carlo (MC) simulations for a large variety
of initial conditions. Paper I focuses on the dependence of tcc on
the shape and the width of the IMF, the presence of a Galactic
tidal field, and the cluster density profile. The key result is that
for clusters with a broad range of masses, tcc is set by the central
relaxation time, trc(0), which means that for multi-mass clusters,
core collapse depends on the local conditions in the core, while
for single-mass clusters core collapse is a global phenomenon.
Furthermore, it is clear that tcc depends only weakly on the
external tidal field. It was also found that the dependence of
tcc on the mass spectrum can be conveniently expressed by a
single parameter mmax/ 〈m〉, where mmax is the maximum and
〈m〉 is the average stellar mass. For mmax/ 〈m〉 > 50, the ratio
tcc/trc converges to a constant value ≈0.15 for all IMFs and
cluster density profiles. Combined with the requirement that tcc
be less than 3 Myr, this relation provides a uniform criterion
for runaway growth to occur for a large range of possible,
unsegregated cluster configurations.

Freitag et al. (2006a) performed similar simulations but
also incorporating collisions explicitly. They quantified the
dependence of the onset of the runaway on the initial collision
time, and found that runaway growth happens earlier with
respect to trh, the half-mass relaxation time for initially more

collisional clusters. Thus, collisions extend the parameter space
of initial cluster conditions for runaway to occur. However,
as pointed out by the authors, for any standard IMF (Kroupa,
Salpeter, Miller-Scalo) this effect is negligible for masses typical
for globular clusters. Thus, in this regime, the condition for
runaway to occur reduces to the one found in Paper I, based on
the central relaxation time alone.

The runaway collision scenario has also been verified nu-
merically by direct N-body simulations. In Portegies Zwart &
McMillan (2002), runaway collisions were produced in suffi-
ciently dense and highly concentrated clusters with only a few
104 stars initially. Portegies Zwart et al. (2004) modeled the evo-
lution of MGG-11 with ≈105 and, in one case, with ≈5 × 105

stars, and found that, similar to Paper I, only clusters with a
short enough mass-segregation timescale, or, correspondingly,
low enough trh, are likely to produce a runaway object. How-
ever, their results also show that, in addition to a short trh, these
clusters must also be sufficiently concentrated, corresponding
to King models with W0 � 9, in order to trigger a runaway
object. This might be due to the fact that in the N-body simula-
tions, binaries formed by three-body interactions (Freitag et al.
2006a), a process which is not included in the MC runs, and
these binaries dominated the collisional evolution in the core.
On the other hand, for N � 106, Freitag et al. (2006a) have
demonstrated that three-body binaries are of little importance
for the collision process. Similarly, Portegies Zwart et al. (2004)
find for their large N ≈ 5 × 105 run that the influence of three-
body binaries on the collisional evolution is lower than in their
lower-N runs. Thus, it appears that the nature of collisional run-
away growth in a star cluster changes with increasing N from
being less dominated by binary collisions and involving more
and more single–single collisions.

Although the runaway merger scenario has been extensively
investigated for a large variety of initial conditions, almost
all of these studies started with unsegregated clusters, that
is, clusters, where the stellar mass is not correlated with the
radial position within the cluster. However, in recent years,
observations frequently indicated that many young star clusters
with ages of only a few Myr already show a strong degree
of mass segregation, suggesting that mass segregation may
be primordial and motivating a new study of its effects on
collisional runaways.

1.3. Primordial Mass Segregation and Top-heavy IMF

Significant mass segregation has been found in many young
star clusters. Mass segregation can be understood as the ten-
dency toward equipartition of kinetic energies. This tendency
for equipartition is a consequence of gravitational encounters,
which attempt to drive the local velocity distribution toward
a Maxwellian, with m1〈V 2

1 〉 = m2〈V 2
2 〉 (Heggie & Hut 2003,

Chapter 16). As a result, massive stars move more slowly, on
average, than lighter ones, so the massive stars drop lower in
the potential well, while the stars of smaller mass move out
and may even escape (Heggie & Hut 2003, Chapter 16). This
results in having the more massive members of a gravitationally
bound system closer to the center whereas the lighter members
are found further away. This dynamical mass segregation acts
on a timescale of the order of the relaxation time of the cluster
(Heggie & Hut 2003; Spitzer 1987, Section 4.2).

However, there are indications that the degree of mass
segregation seen in many young clusters cannot be a result of
their dynamical evolution as their ages are much less than their
relaxation time (Hillenbrand 1997; Fischer et al. 1998; de Grijs
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1998; Hillenbrand & Hartmann 1998; Gouliermis et al. 2004;
Stolte et al. 2006). For instance, for NGC 330, the richest young
star cluster in the Small Magellanic Cloud, observations show
that the IMF becomes steeper at increasing distances from the
cluster center, with the number of massive stars decreasing from
the core to the outskirts of the cluster five times more rapidly
than the less-massive objects, while the age of NGC 330 is
10 times shorter than the expected relaxation time of the cluster
(Sirianni et al. 2002). Another example is provided by the Orion
nebula cluster, in which it can be argued from numerical results
that the massive stars in the center cannot have formed in the
outer regions. This implies that the stellar mass is to some degree
a function of the initial position within the cluster (Bonnell &
Davies 1998). Interestingly, the 3 mm continuum observations
obtained with the Combined Array for Research in Millimeter-
Wave Astronomy of 11 Infrared Dark Cloud cores establish that
the mass segregation can be identified at the formative stage
of a stellar cluster (Perez Munoz & Carpenter 2007). All these
observations suggest that many clusters may have been formed
significantly mass-segregated.

Primordial mass segregation has been explained either by
the formation of massive stars preferentially in the densest
regions of the parent molecular cloud (Murray & Lin 1996)
or by competitive gas accretion during the earliest phases of
star formation (Bonnell & Bate 2006). An additional alternative
has been suggested by McMillan et al. (2007). They show that
a much higher degree of mass segregation in a cluster can be
achieved if the cluster is a result of one or more mergers of
smaller clusters. As the smaller clusters have shorter relaxation
times, mass segregation proceeds faster. When the clusters
merge, this larger degree of mass segregation is preserved in
the final cluster.

Primordial mass segregation also has important conse-
quences. It has been shown that, in an initially mass-segregated
cluster, the effect of early mass loss due to stellar evolution is, in
general, more destructive than for an unsegregated cluster with
the same density profile, since this leads to shorter lifetimes, a
faster initial evolution toward less concentrated structure, and a
flattening of the stellar mass function (McMillan et al. 2008).

Recently, Ardi et al. (2008) studied the influence of initial
mass segregation on the runaway growth of a massive star
by means of direct N-body simulations of up to ≈131 stars.
Contrary to the expectations from Gürkan et al. (2004), they
found that, for a given density profile, initial mass segregation
does not increase the available parameter space of cluster initial
conditions leading to runaway growth. They argue that this is
because the initial mass segregation decreases the collision
rate of stars in the core as, due to the increased average
mass, the number density is decreased. This is in line with
earlier N-body simulations suggesting that runaway growth can
occur only when the cluster is initially sufficiently collisional
(Portegies Zwart et al. 2004), in contrast to predictions based
only on the core-collapse time. This result should be tested for
larger N as the nature of the collisional runaway changes from
being dominated by three-body binary formation at low N to
single–single collisions at high N.

One of the main uncertainties in star cluster evolution lies
in determining the true IMF. Often it is assumed that the IMF
is a standard power law (or power laws with different indices
in different mass ranges) with no primordial radial variation in
the cluster (e.g., Salpeter 1959; Miller & Scalo 1979; Kroupa
2001). Deviations from the standard IMFs are observed in many
clusters both at the high- and low-mass ends (e.g., Elmegreen

2004). In particular, at the high-mass end, IMFs are observed to
be generally flatter compared with the standard Salpeter power
law in young massive clusters like the Arches cluster (Stolte
et al. 2002; Kim et al. 2006).

2. NUMERICAL METHODS

2.1. Monte Carlo Code

The numerical method that has been used here to investigate
the dynamical evolution of star clusters is the MC method,
based on the classic work of Hénon (1971) and described in
detail in Fregeau & Rasio (2007, and references therein). In
MC simulations, N, the total number of stars in the cluster
is dependent on the initial half-mass relaxation time in the
cluster. For a Plummer sphere, it is given by (Spitzer 1987,
Equation (2.63))

trh(0) = 0.138N

ln γcN

(
r3
h

GM

)1/2

, (1)

where γc ∼ 0.01 is the Coulomb logarithm and rh is the half-
mass radius.

Since our code now includes an explicit treatment of all
stellar collisions, we briefly summarize here the “sticky sphere”
method for stellar collisions (Freitag & Benz 2002).

In the sticky sphere approximation, a collision occurs when-
ever the centers of two stars pass within a distance d = (R1+R2),
with R1,2 being the stellar radii. Until this distance is reached,
the gravitational influence of other stars as well as any mutual
tidal interactions are neglected. The cross-section for such a
collision is given by Binney & Tremaine (1987, Section 7.5.8),

S12
coll = πb2

max = π (R1 + R2)2

(
1 +

(v12
∗ )2

v2
rel

)
, (2)

where bmax is the largest impact parameter leading to contact,
vrel is the relative velocity between two stars, and v12

∗ =
(2G(M1 +M2)/(R1 +R2))0.5. In a cluster where all stars have the
same mass M∗ and radius R∗, the average local collision time
Tcoll is given by Binney & Tremaine (1987, Section 7.5.8):

1

Tcoll
= 1

n∗

∫
d3v1d

3v2f (v1)f (v2)||v1 − v2||Scoll, (3)

where n∗ is the stellar number density. For a Maxwellian velocity
distribution, this becomes

1

Tcoll
= 16

√
πn∗σvR

2
∗

[
1 +

GM∗
2σ 2

v R∗

]
, (4)

where σv is the velocity dispersion.
In order to resolve collisional processes in an MC simulation,

we constrain the time step size δt according to an estimate of
the central collision time using

δt � f T̃coll, (5)

where f = 5×10−3 is a constant chosen small enough to ensure
that collisions are sampled sufficiently and T̃coll is an estimate
of Tcoll based on Equation (4) and given by

1

T̃coll

= 16
√

πn∗σv

〈
R2

∗
〉 [

1 +
G 〈M∗R∗〉
2σ 2

v

〈
R2∗

〉
]

, (6)
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Figure 1. Average stellar mass profile for initially mass-segregated clusters
created according to the prescription of Šubr et al. (2008). All the simulations
shown here contain 5 × 105 stars with a Salpeter IMF (within Mmin = 0.2 M�
and Mmax = 120 M�). The horizontal axis shows the cluster radius in units of the
initial half-mass radius. The dotted straight line is for an initially unsegregated
cluster and the red and black solid straight lines are for clusters with different
degrees of primordial mass segregation (S = 0.3, 0.2). The average mass for
the mass-segregated clusters increases steeply within ∼1 rh. For S = 0.3, the
increase is by up to a factor of ∼5.

(A color version of this figure is available in the online journal.)

with quantities in angular brackets being local averages. The
collision probability for two neighboring stars is calculated as

Pcoll = n∗vrelScollδt, (7)

where n∗ is a local estimate of the stellar number density. The
time step size δt is chosen such that Pcoll � 1. A random number
(between 0 and 1) is then drawn. If the random number <Pcoll,
two stars are selected for a collision and they are merged under
the assumption of mass and linear momentum conservation.

The units adopted for our simulations are the standard N-body
units of the MC code, and the same as in Paper I.

2.2. Implementation of Primordial Mass
Segregation and Top-heavy IMFs

The effect of primordial mass segregation was studied in
Paper I using a preliminary prescription. However, the recipe in
Paper I is not defined with well-constrained parameters. In this
paper, we have used recipes that are more realistically modeled
and we do a much more extensive study.

Here, we consider two prescriptions for mass segregation:
(1) the prescription of Šubr et al. (2008) for generating mass-
segregated clusters, in which the degree of mass segregation
can be adjusted by a parameter S related to the mean inter-
particle energy of the stars and (2) the Baumgardt et al. (2008)
prescription, which creates a maximally mass-segregated cluster
in virial equilibrium.

From N-body models, Šubr et al. (2008) find that the quantity
that is transferred between the light and massive stars is the po-
tential energy, while their average kinetic energy remains nearly
constant during the cluster evolution. Therefore, mass segrega-
tion is generated in terms of mean inter-particle potentials 〈Uij 〉,
which is parameterized as

〈Uij 〉 = 2(1 − S)2 〈Utot〉 M∗iM∗j

M2
tot

(
Mi

sub M
j

sub

M2
tot

)−S

, (8)

Figure 2. Same as Figure 1 but the primordially mass-segregated cluster is
generated using the Baumgardt et al. (2008) recipe. Even in this case the average
stellar mass of the cluster rises strongly within 1 rh, by up to a factor of ∼5.

where M∗i and M∗j denote the masses of the ith and jth particle,
Mtot denotes the total mass of the cluster, Utot is the total potential
energy of the cluster, Mi,j

sub is the sum of all M∗k < M∗i,j , and S is
the degree of mass segregation which can have values between
0 and 1 (for a detailed description of the code refer to Šubr et al.
2008). In this recipe, S = 0 implies an unsegregated cluster
and S = 1 a completely mass-segregated cluster. Relating
to entropy, S = 0 has the lowest entropy and the system is
highly symmetric in terms of 〈Uij 〉, while for S = 1, all the
binding energy is carried by the two most massive stars in
the cluster and corresponds to a state of maximum entropy.
With this parameterization of the inter-particle potential, quasi-
stationary, star-by-star realizations of mass-segregated clusters
are generated. The stars are assigned masses according to the
Salpeter IMF with maximum and minimum mass of 0.2 M� and
120 M�, respectively.

An important property of this mass-segregation recipe is that
both the density profile and the average mass in the core (〈m〉c) is
different for each value of S, starting from a Plummer sphere for
S = 0. This has the consequence that trc(0) which is dependent
on density in the core (ρc) and 〈m〉c changes. This in turn causes
tcc to change.

The recipe from Baumgardt et al. (2008), on the other
hand, does not change the underlying density profile and
generates mass-segregated clusters, in comparison, much faster.
It essentially sorts all stars such that, for a given density profile,
the most massive stars have, on average, the lowest specific total
energy.

Figures 1 and 2 show the average mass profile for the initially
mass-segregated clusters (and unsegregated clusters also for
comparison) using the Šubr et al. (2008) and Baumgardt et al.
(2008) recipes, respectively. As can be seen in these plots, the
average mass rises rapidly within one half-mass radius, by up
to a factor of ∼5 (for the Baumgardt et al. 2008 recipe as
well as for S = 0.3) for the initially mass-segregated clusters.
Similarly, Figures 3 and 4 show the enclosed mass for the
same two prescriptions. Comparing the median positions of the
massive stars in these models, it becomes clear that the massive
stars are on average at much smaller radii in initially mass-
segregated clusters compared with non-segregated ones, as
expected. The median distance from the cluster center can be up
to a factor of �4 smaller for stars with masses larger than 50 M�.
Comparing the enclosed stellar mass profiles for the two recipes
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Figure 3. Enclosed stellar mass in primordially mass-segregated (solid lines)
and unsegregated (dashed lines) clusters. The average mass in the cluster is
≈0.68 M�. The black and red solid lines are for mass-segregated clusters
(Šubr et al. 2008 recipe) with the degree of mass segregation, S = 0.2 and
S = 0.3, respectively. We show here mass enclosed in stars more massive than
the average mass of the cluster (M∗ > 20 M� and M∗ > 50 M�) as well as
mass enclosed in stars of mass less than the average mass (M∗ < 0.4 M�). All
the simulations shown here contain 5 × 105 stars with a Salpeter IMF (within
Mmin = 0.2 M� and Mmax = 120 M�). Lines denoting enclosed stellar mass
contained in stars more massive than the average mass (i.e., M∗ > 20 M�
and M∗ > 50 M�) show that the massive stars in the unsegregated clusters
are at significantly larger radii than the primordially mass-segregated cluster.
The median position of massive stars in the unsegregated cluster differs by
a factor of ∼4 for stars with M∗ > 50 M�, and by a factor of ∼3 for stars
with M∗ > 20 M�, compared with the mass-segregated cluster with S = 0.3.
Whereas lines denoting enclosed stellar mass contained in stars less massive
than the average mass (i.e., M∗ < 0.4 M�) show that the low-mass stars are
definitely much more spread out in the case of primordially mass-segregated
clusters when compared with the unsegregated cluster.

(A color version of this figure is available in the online journal.)

(Figures 3 and 4), it can be seen that the Baumgardt et al. (2008)
recipe agrees pretty closely with the Šubr et al. (2008) recipe
for S = 0.3.

In this paper, we also study the effect of flatter IMFs on the
runaway collision scenario in young massive star clusters. We
introduce a new IMF in this paper motivated by the Arches
IMF from Dib et al. (2007). For the rest of the paper, this new
IMF will be called the “Variable IMF,” and we will denote the
sections of this IMF (dN/dm ∝ m−α) as [α1 . . . α4] with α4
corresponding to the high-mass tail of the IMF. This Variable
IMF is a variation on the Arches IMF (Dib et al. 2007) by
leaving out the middle section from 3.0–15.0 M� so that the
IMF is then more easily compared with the standard Kroupa
IMF. The upper mass section of the Variable IMF is much flatter
than traditional Salpeter (1955), Kroupa (2002), or Miller &
Scalo (1979) IMFs. We therefore expect a greater number of
high-mass stars, increasing both the average mass as well as the
entire cluster mass.

2.3. Initial Conditions

For all the simulations in this paper, our code includes phys-
ical processes such as two-body relaxation and physical stellar
collisions between stars in the “sticky sphere” approximation.
In this paper, we do not include stellar evolution in our calcu-
lations since our aim here is to investigate dynamical processes
taking place before even the most massive main-sequence stars
in the cluster have evolved (i.e., <3 Myr). We have also not
included any primordial binaries in our simulations just to keep
the simple picture of runaway in the presence of primordial mass

Figure 4. Same as Figure 3 but for primordially mass-segregated clusters using
the Baumgardt et al. (2008) recipe. The black solid lines denote the primordially
mass-segregated clusters and the dashed lines are for unsegregated clusters.
Massive stars in unsegregated clusters are at significantly larger radii, with their
median position differing by a factor of ∼4 for stars with M∗ > 50 M�, and
by a factor of ∼3 for stars with M∗ > 20 M�, compared with the primordially
mass-segregated clusters.

Table 1
Classification of IMF

IMF Range of m α

(M�)

Kroupa
0.1–0.5 −1.3
0.5–∞ −2.3

Arches
0.1–0.5 −1.3
0.5–1.0 −2.3
1.0–3.0 −2.04
3.0–15.0 −1.5
15.0–∞ −1.72

Variable
0.1–0.5 −1.3
0.5–1.0 −2.3
1.0–3.0 −2.04
3.0–∞ −1.72

segregation, and exclude the effects of primordial binaries on
runaway collisions (Gürkan et al. 2006).

The most important physical properties of all our initial
cluster models are given in Tables 2 and 3. A comparison of the
Variable IMF with the Arches IMF or with the standard Kroupa
IMF is given in Table 1. In Table 2, we have listed simulations
of clusters with the Variable IMF, varying α3 and α4. We have
also listed the simulations done with the Salpeter IMF varying
Mmax. In all these simulations, our focus has been to investigate
the effect of IMF on the core collapse of young massive clusters.
All our models start with an isolated Plummer sphere and the
virial radius has been chosen such that the corresponding cluster
has a core-collapse time of 3 Myr.

In Table 3, we have listed simulations of clusters for different
values of initial N and initial virial radius, rvir, varying the degree
of primordial mass segregation. Virial radius is defined by

rvir = −GM2

4E
, (9)

where M is the total mass and E is the total gravitational energy
of the cluster. This grid formed by the different values of initial
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Table 2
Initial Conditions and Results for Simulations with Varying IMF

Name IMF rvir tcc/trh
(pc)

01 Variable α3 = −2.04, α4 = −1.7 0.39 0.127
02 Variable α3 = −2.04, α4 = −1.8 0.39 0.103
03 Variable α3 = −2.04, α4 = −1.9 0.39 0.092
04 Variable α3 = −2.04, α4 = −2.0 0.39 0.088
05 Variable α3 = −2.04, α4 = −2.1 0.39 0.077
06 Variable α3 = −2.04, α4 = −2.2 0.39 0.081
07 Variable α3 = −2.04, α4 = −2.3 0.39 0.078
08 Variable α3 = −1.9, α4 = −1.72 0.39 0.132
09 Variable α3 = −2.0, α4 = −1.72 0.39 0.125
10 Variable α3 = −2.1, α4 = −1.72 0.39 0.117
11 Variable α3 = −2.2, α4 = −1.72 0.39 0.102
12 Variable α3 = −2.3, α4 = −1.72 0.39 0.099
13 Salpeter Mmax = 110 0.39 0.067
14 Salpeter Mmax = 100 0.39 0.073
15 Salpeter Mmax = 90 0.39 0.0812
16 Salpeter Mmax = 80 0.39 0.079
17 Salpeter Mmax = 70 0.39 0.097
18 Salpeter Mmax = 60 0.39 0.108

Notes. rvir is the virial radius of the cluster, tcc denotes the core-collapse time
of the cluster, and trh denotes the half-mass relaxation time. All models start as
Plummer spheres with N = 5×105 and the Variable IMF covers the same mass
range (0.2–120 M�).

N and initial rvir is referred to as the parameter space in the later
part of the paper. For all the simulations listed here, our aim has
been to investigate the effect of primordial mass segregation on
tcc of young clusters with different initial conditions (N and rvir).
We have calculated tcc based on the central relaxation time trc
defined as

trc(0) = σ 3
c

4.88πG2(ln γcN )n 〈m〉2
c

, (10)

where σc, n, and 〈m〉c are the three-dimensional velocity disper-
sion, the number density, and the average stellar mass, respec-
tively, at the cluster center (Spitzer 1987, Equation (3.37)). As
a typical reference model similar to Paper I, all the simulations
in Table 3 are initiated with Plummer models and the Salpeter
IMF (within Mmin = 0.2 M� and Mmax = 120 M�). Another
reason for using Plummer sphere is that the Šubr et al. (2008)
formalism starts with an isolated Plummer sphere.

3. RESULTS

3.1. Primordial Mass Segregation

Freitag et al. (2006a) were the first to study the core collapse
and collisional runaway for unsegregated clusters using an MC
simulation code including stellar collisions. Similar to Freitag
et al. (2006a), we did not take into account the stellar evolution in
the simulations since all the simulations were limited to the first
3 Myr, before the most massive stars lose mass in supernova
explosions. If a cluster had a core-collapse time more than
3 Myr, we implicitly took stellar evolution into account by
ending the simulation at 3 Myr. Since our code now includes
stellar collisions, we first checked whether we are able to
reproduce their results. They found that for all models with
trc < 20 Myr, runaway formation of a VMS occurred.

Figure 5 is a parameter survey similar to Freitag et al.
(2006a, their Figure 1), showing for each simulation whether

Table 3
Initial Conditions and Results of Simulations with

Primordial-Mass Segregation (Šubr Recipe)

Name N rvir S trc(0) tcc

(pc) (Myr) (Myr)

1a 3 × 105 0.50 0.00 29.30 4.40
1b 3 × 105 0.50 0.05 21.86 3.28
1c 3 × 105 0.50 0.10 19.33 2.90
1d 3 × 105 0.50 0.20 11.26 1.69
1e 3 × 105 0.50 0.30 6.80 1.02
2a 3 × 105 0.62 0.00 28.66 4.30
2b 3 × 105 0.62 0.05 24.53 3.68
2c 3 × 105 0.62 0.10 13.00 1.95
2d 3 × 105 0.62 0.20 10.33 1.55
2e 3 × 105 0.62 0.30 5.86 0.88
3a 3 × 105 0.77 0.00 41.33 6.20
3b 3 × 105 0.77 0.05 31.53 4.73
3c 3 × 105 0.77 0.10 20.80 3.12
3d 3 × 105 0.77 0.20 19.20 2.88
3fe 3 × 105 0.77 0.30 13.93 2.09
5a 5 × 105 0.41 0.00 25.86 3.88
5b 5 × 105 0.41 0.05 21.13 3.17
5c 5 × 105 0.41 0.10 17.4 2.61
5d 5 × 105 0.41 0.15 10.00 1.50
5e 5 × 105 0.41 0.20 8.66 1.30
5f 5 × 105 0.41 0.25 8.0 1.20
5g 5 × 105 0.41 0.30 5.53 0.83
6a 5 × 105 0.52 0.00 31.86 4.78
6b 5 × 105 0.52 0.05 22.53 3.38
6c 5 × 105 0.52 0.10 13.93 2.09
6d 5 × 105 0.52 0.15 14.13 2.12
6e 5 × 105 0.52 0.20 10.46 1.57
6f 5 × 105 0.52 0.25 10.53 1.58
6g 5 × 105 0.52 0.30 9.93 1.49
7a 5 × 105 0.64 0.00 38.66 5.80
7b 5 × 105 0.64 0.05 23.33 3.50
7c 5 × 105 0.64 0.10 16.66 2.50
7d 5 × 105 0.64 0.15 17.53 2.63
7e 5 × 105 0.64 0.20 16.00 2.40
7f 5 × 105 0.64 0.25 16.00 2.40
7g 5 × 105 0.64 0.30 13.53 2.03
7h 5 × 105 0.64 0.00 38.33 5.75
7i 5 × 105 0.64 0.05 23.33 3.50
7j 5 × 105 0.64 0.10 15.93 2.39
7k 5 × 105 0.64 0.15 17.86 2.68
7l 5 × 105 0.64 0.20 16.00 2.40
7m 5 × 105 0.64 0.25 15.93 2.39
7n 5 × 105 0.64 0.30 14.00 2.10
7o 5 × 105 0.64 0.00 38.66 5.80
7p 5 × 105 0.64 0.05 25.33 3.80
7q 5 × 105 0.64 0.10 16.66 2.50
7r 5 × 105 0.64 0.15 10.76 2.69
7s 5 × 105 0.64 0.20 16.00 2.40
7t 5 × 105 0.64 0.25 16.00 2.40
7u 5 × 105 0.64 0.30 14.06 2.11
7v 5 × 105 0.64 0.00 40.00 6.00
7x 5 × 105 0.64 0.05 23.33 3.50
7w 5 × 105 0.64 0.10 16.86 2.53
7y 5 × 105 0.64 0.15 17.53 2.63
7z1 5 × 105 0.64 0.20 16.00 2.40
7z2 5 × 105 0.64 0.25 16.00 2.40
7z3 5 × 105 0.64 0.30 13.33 2.00
8a 5 × 105 0.77 0.00 52.60 7.89
8b 5 × 105 0.77 0.05 34.60 5.19
8c 5 × 105 0.77 0.10 28.26 4.24
8d 5 × 105 0.77 0.15 24.20 3.63
8e 5 × 105 0.77 0.20 20.40 3.06
8f 5 × 105 0.77 0.25 19.73 2.96
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Table 3
(Continued)

Name N rvir S trc(0) tcc

(pc) (Myr) (Myr)

8g 5 × 105 0.77 0.30 16.53 2.48
9a 1 × 106 0.41 0.10 20.8 3.12
9b 1 × 106 0.41 0.15 19.06 2.86
9c 1 × 106 0.41 0.20 16.53 2.48
9d 1 × 106 0.41 0.30 10.40 1.56
10a 1 × 106 0.51 0.10 32.60 4.89
10b 1 × 106 0.51 0.15 21.46 3.22
10c 1 × 106 0.51 0.20 17.66 2.65
10d 1 × 106 0.51 0.30 15.53 2.33
11a 1 × 106 0.83 0.10 46.53 6.98
11b 1 × 106 0.83 0.15 43.73 6.56
11c 1 × 106 0.83 0.20 27.60 4.24
11d 1 × 106 0.83 0.30 20.06 3.01
12a 1 × 106 1.10 0.10 60.53 9.08
12b 1 × 106 1.10 0.15 59.26 8.89
12c 1 × 106 1.10 0.20 52.40 7.86
12d 1 × 106 1.10 0.30 44.46 6.67

Notes. Here N and rvir are the initial number of stars and the initial virial radius,
respectively. S is the degree of mass segregation (Equation (8)), trc(0) is the
initial central relaxation time, and tcc denotes the core-collapse time. All initial
models are isolated Plummer spheres with standard Salpeter IMFs with a mass
range (0.2–120 M�). Calculation of trc and tcc: for Plummer models rv = 1 and
rh = 0.769 in N-body units (Paper I, their Table 1). From rv in physical units
we calculate rh in physical units. With initial N and initial rh (in physical units)
we also calculate the initial half-mass relaxation time in physical units, given
by trh = (0.138N/ ln γN )×(r3

h /GM)1/2. From trh, we calculate trc (trh and trc
for Plummer models is 0.093 and 0.0437, respectively, in Fokker–Planck units).
Finally, we obtain tcc = 0.15 trc.
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Figure 5. Parameter space survey for the primordially unsegregated clusters. All
the simulations shown here contain 5 × 105 stars with a Salpeter IMF (within
Mmin = 0.2 M� and Mmax = 120 M�). Each circle represents a simulation
of a cluster with a particular virial radius (rvir) and number of stars (N).
Filled circles represent simulations that result in a runaway while the empty
circles indicate cases in which no runaway occurs. The straight line denotes
tcc = 0.15 trc = 3 Myr as a function of rvir and N; clusters with initial conditions
below this line have tcc < 3 Myr. As expected, we see in this plot that all the
simulations that result in a runaway do in fact fall below this line.

(A color version of this figure is available in the online journal.)

a runaway occurred (filled circles) or not (open circles), for
all our unsegregated models varying rvir and the number of
stars in the cluster. The solid straight line corresponds to
tcc = 0.15 trc = 3 Myr, not including collisions. Simulations
of clusters with initial conditions lying below the straight line
will have tcc < 3 Myr, whereas tcc > 3 Myr for simulations with
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Figure 6. Same as Figure 5 but all the simulations are for primordially mass-
segregated clusters (S = 0.3). The solid straight line once again denotes
tcc = 0.15 trc = 3 Myr as a function of rvir and N for initially unsegregated
clusters. This plot shows that simulations of primordially mass-segregated
clusters with initial conditions even above the solid straight line might have
core-collapse time less than 3 Myr and can result in a runaway. Thus, simulations
of primordially mass-segregated clusters increase the parameter space (range of
rvir in pc) for runaway collisions to happen when compared with simulations of
primordially unsegregated clusters by at least a factor of ≈3.

(A color version of this figure is available in the online journal.)

initial conditions above the line. It can be clearly seen in Figure 5
that the initial conditions leading to a runaway indeed fall below
this line. Thus, we have successfully reproduced the results of
Freitag et al. (2006a) with our code and have reconfirmed the
validity of the simple criterion for runaway collisions to occur
in young dense star clusters.

We then repeated the same set of simulations for primordially
mass-segregated clusters using the recipe from Šubr et al.
(2008) with S > 0. Figure 6 shows our results for mass-
segregation parameter S = 0.30. We see that, with primordial
mass segregation, the initial cluster rvir can be chosen several
times larger compared with unsegregated clusters and still lead
to a runaway. Thus, simulations of primordially mass-segregated
clusters increase the parameter space (range of rvir in pc) for
runaway collisions to happen when compared with simulations
of primordially unsegregated clusters.

To further illustrate the effect primordial mass segregation
has on the mass growth of the most massive star, we com-
pared results of a primordially mass-segregated versus an un-
segregated cluster, with otherwise identical initial conditions.
Figure 7 shows the growth curve of the most massive star in
an unsegregated cluster and in a primordially mass-segregated
cluster (S = 0.3), with N = 5 × 105 stars and rvir = 0.64 pc.
The unsegregated cluster does not have a runaway or a very
steep mass growth before it reaches core collapse, and only a
200 M� star is formed within 3 Myr. For the primordially mass-
segregated cluster, we clearly see a very steep mass growth
leading to a formation of a 900 M� star within 3 Myr and hence
a runaway. A general result, in agreement with Freitag et al.
(2006a), is that only one VMS forms in the cluster and there
is no sign of multiple runaways. Note that this result might be
different for clusters with significant fractions of primordial bi-
naries (Gürkan et al. 2006). As in this example, we also note in
all our simulations that the time of the runaway coincides with
the time of core collapse, which decreases from tcc ∼ 6 Myr for
the unsegregated cluster, and to tcc ∼ 2 Myr for the primordially
mass-segregated cluster.
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Figure 7. Growth curves of the most massive star (MMMS) of an unsegregated
cluster (dashed lines) and primordially mass-segregated cluster (solid lines)
with N = 5 × 105 stars and virial radii of 0.64 pc. The different colors
indicate simulations of the same cluster with different random seeds. While
the most massive star in the primordially mass-segregated cluster has a very
steep and rapid mass growth leading to a runaway, the most massive star in
the unsegregated cluster shows no such effect. For the unsegregated cluster
trc = 38.67 (red), 38.33 (blue), 38.66 (green), and 40 Myr (purple) while for
the primordially mass-segregated cluster trc values are 13.53 (red), 14.0 (blue),
14.0 (green), and 13.33 Myr (purple).

(A color version of this figure is available in the online journal.)
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Figure 8. Decrease in the core-collapse time (tcc) of a cluster with N = 5×105

stars, as the degree of primordial mass segregation (S) is increased in the cluster.
For each value of S, the three different colors represent simulations with three
different virial radii (rvir).

(A color version of this figure is available in the online journal.)

To show how strongly the core-collapse time decreases for
other values of S, we plot in Figure 8 the core-collapse time for
clusters with different initial rvir, against S. We clearly see a trend
of decreasing tcc with increasing S. The decrease in tcc is steepest
for S � 0.1, causing a reduction of tcc by a factor of ≈2. For
S > 0.1, the decrease in tcc is weaker, reducing tcc by another
30%. This trend is also illustrated in Table 3 where we have
shown that tcc decreases for simulations with primordial mass
segregation, when compared with the simulations of initially
unsegregated clusters with similar initial conditions.

To analyze this trend further, we first check whether the simple
relation from Paper I between tcc and trc(0) (tcc/trc(0) = 0.15)
remains still valid for mass-segregated clusters. In Figure 9, we
plot tcc/trc against S for clusters with different rvir. We see that
tcc/trc remains nearly constant at 0.15 with only a ∼10% scatter.
Thus, we conclude that the ratio of tcc/trc remains consistent

0 0.1 0.2 0.3
S

0.11

0.13

0.15

0.17

0.19

t cc
/t rc

r
vir

 = 0.64
r
vir

 = 0.52
r
vir

 = 0.41

Figure 9. Dependence of core-collapse time in units of the central relaxation
time, on primordial mass segregation (S). For each value of S, the three
different colors represent simulations with three different virial radii (rvir). For
comparison, tcc/trc as predicted in Paper I for unsegregated clusters is plotted
as the dotted line. Even for the mass-segregated clusters tcc/trc remains roughly
consistent with Paper I.

(A color version of this figure is available in the online journal.)
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Figure 10. Decrease in the central relaxation time (trc in Myr) of a cluster of
5 × 105 stars with the increase in the degree of primordial mass segregation (S).
For each value of S, the three different colors represent simulations with three
different virial radii (rvir).

(A color version of this figure is available in the online journal.)

with the value found in Paper I and the strongly decreasing tcc
can then only be caused by a decrease in trc(0). This is also
shown in Figure 10, where we plot trc(0) against S for clusters
with different rvir. We notice a very similar decrease in trc as in
tcc, with increasing S, so the reason for the shorter tcc must be
attributed to shorter trc.

However, in the Šubr et al. (2008) formulation it is not a
priori clear whether this decrease in trc is entirely related to an
increase in primordial mass segregation, as the central density
(ρc) also increases with S (Section 4.2). In order to disentangle
these effects, we calculate relative contributions of all the factors
to trc. We note that trc ∝ σ 3

c /ρc 〈m〉c, where σc is the velocity
dispersion in the core and 〈m〉c is the average stellar mass in
the core. Figure 11 plots the variation of σ 3

c , 1/ρc, and 1/ 〈m〉c,
normalized to their values at S = 0, against S in a cluster with
N = 5 × 105 stars. The inverse of the normalized initial central
density of the clusters decreases as S is increased from 0.0 to
0.15 by 25%, and then remains nearly constant for larger S
values. The inverse of normalized 〈m〉c in the cluster always
decreases with the increase in mass segregation, up to a factor
of 2.5 for S = 0.3. The variation of σ 3

c , on the other hand, is only
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Figure 11. Evolution of the central relaxation time trc (solid line) and the
factors affecting trc (dotted lines). All parameters are normalized to their values
for an unsegregated cluster, (X/XS=0.0). The black line is for the inverse of
central density (1/ρc), the intermediate gray is for the inverse of average stellar
mass in the core (1/ 〈m〉c), and the light gray represents the cube of the velocity
dispersion in the core (σ 3

c ). While σ 3
c remains almost the same with increasing S,

both 1/ρc and 1/ 〈m〉c decrease trc. However, for higher values of S (S > 0.15),
it is mainly 1/ 〈m〉c which decreases trc.

(A color version of this figure is available in the online journal.)

by a factor of ≈10%, implying that σc stays almost constant in
the core and does not change with S. From this it follows that
for S < 0.15 both the increase in 〈m〉c as well as ρc contribute
equally to the decrease in trc. On the other hand, for larger S, trc
is dominated by 〈m〉c while the contribution from ρc is minimal
(≈20%). So it is the increase in 〈m〉c that mainly causes the
low trc values for larger S. Thus, the maximum increase in the
parameter space for a runaway to occur is driven mainly by
“true” primordial mass segregation.

The advantage of including stellar collisions in our code is
that we are able to directly determine how much mass eventually
ends up in the VMS. Paper I showed that, as the core collapse
proceeds, the mass contained in the collapsing core which
forms the mass reservoir for the runaway converges to a value
Mcc ∼ 0.001–0.002 Mtot, where Mtot denotes the total mass of
the cluster. In general, we find that the fraction of Mtot that ends
up as a VMS is in a similar mass range as Mcc in Paper I. In
Figure 12, we show that fraction as a function of S for a cluster
with N = 5×105 stars. It can be clearly seen that the fraction of
Mtot ending up as a VMS increases almost by a factor of three for
S = 0.3 and hence mass of the VMS increases significantly with
primordial mass segregation. Thus, primordial mass segregation
not only increases the parameter space for runaways to occur,
but also produces more massive VMS.

3.2. Top-heavy IMFs

As discussed previously, there are indications that some
young massive star clusters may be born with IMFs flatter than
the Salpeter IMF. Here, we study how such flatter IMFs influence
the available parameter space of cluster initial conditions for
a runaway to occur. One crucial result from Paper I is that
the ratio of maximum to average stellar mass in the IMF is
the most important parameter setting the timescale for the
onset of core collapse. From Paper I, if mmax/ 〈m〉 < 40,
tcc ∝ (mmax/ 〈m〉)−1.3, and if mmax/ 〈m〉 � 50, a domain is
reached by any realistic IMF where tcc � 0.15 trc. A flatter
IMF increases the number of massive stars, thus increasing the
average stellar mass in the cluster, which in turn causes an

Figure 12. Fraction of the total stellar mass in the cluster, that ends up as a VMS
after a runaway collision, as a function of the degree of mass segregation. All
the simulations are for a cluster of 5 × 105 stars and a virial radius of 0.64 pc.
The MVMS/Mtot shown here is averaged over five simulations with the same
initial conditions and different random seeds. The error bars are the standard
deviations calculated from the data and the average value.

(A color version of this figure is available in the online journal.)

α
α

Figure 13. Dependence of the core-collapse time in units of the half-mass
relaxation time, on the shape and width of the IMF. The horizontal axis shows
the ratio of maximum to mean stellar mass (mmax/ 〈m〉) in the IMF. The solid
black line is for mass-segregated clusters (Baumgardt et al. 2008), whereas all
other symbols are for unsegregated clusters. The black dashed straight line, the
triangles, and the stars denote the simulations with physical stellar collisions
turned off whereas the circles represent simulations with collisions (truncated
Salpeter IMF with Mmax = 110, 100, 90, 80, 70, 60). The stars correspond
to the Variable IMF varied as a power law from −1.72 to −2.3 (α4) and the
triangles correspond to the middle section of the Variable IMF varied as a power
law from −1.9 to −2.3 (α3). Flatter IMFs (triangles and stars) increase tcc by
30% but when collisions (circles) are included tcc decreases on an average by
15%.

increase in tcc. This means that although for flatter IMFs we have
more massive stars, the parameter space for runaway collisions
to occur actually gets smaller. On the other hand, collisions can
reduce tcc by constantly dissipating orbital energy (Freitag et al.
2006a). This means that the increase in tcc seen in simulations
without an explicit treatment of stellar collisions is to some
degree compensated by the effect of collisions. In Figure 13, we
quantify this effect for flatter IMFs considering a wide range
of mmax/ 〈m〉 values. We plot tcc/trh versus mmax/ 〈m〉 with and
without collisions. As can be clearly seen, with stellar collisions
turned off, tcc increases; but when collisions are included, tcc
decreases on average by 15%. Overall this causes tcc/trh for
a collisional cluster causes the core collapse to stay close to
the value for the standard Salpeter IMF (0.07) all the way to
mmax/ 〈m〉 ≈ 140.
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We also studied the combined effects of initial mass segrega-
tion and a flat IMF on the evolution of young massive clusters.
This is mainly motivated by Espinoza et al. (2009) where the
global IMF of the Arches cluster is determined to be flatter than
Salpeter, while the Arches is also known to be strongly mass-
segregated. Note, however, that the uncertainty on the slope is
such that it may not be incompatible with a Salpeter IMF and
there are models of the Arches (Harfst et al. 2010) that can ex-
plain the degree of mass segregation with a Salpeter IMF and
unsegregated initial conditions. On the other hand, Harfst et al.
(2010) do not rule out the possibility that Arches could be pri-
mordially mass-segregated. In Figure 13, we show the results
for primordially mass-segregated clusters using the Baumgardt
et al. (2008) recipe, which, unlike the Šubr et al. (2008) recipe,
can be applied to clusters with arbitrary density profiles. This
way the decrease in tcc is only caused by the increase in the
average stellar mass at the center of the cluster. From Figure 13,
we see that, as in the unsegregated case, the effect of a flatter
IMF increases tcc, and for mmax/ 〈m〉 = 120 is very close to
the standard Salpeter value. The change for mmax/ 〈m〉 = 160
is only by 20%. Note that mmax/ 〈m〉 = 120 corresponds to
either a Salpeter IMF with a high-mass cutoff at 80 M�, or to
an IMF with a slope of −2.1 and a full mass spectrum (from
0.1 to 120 M�). This latter slope is precisely the one suggested
for the global IMF of the Arches by Espinoza et al. (2009). If
the global IMF of the Arches star cluster is also representative
of the IMFs for much more massive clusters such as Westerlund
1, this would imply that the simple relation from Paper I can be
used to determine whether a young massive cluster will undergo
a runaway or not, without explicitly accounting for a different
global IMF or primordial mass segregation.

4. SUMMARY AND DISCUSSIONS

This work is a continuation of our study of the runaway col-
lision scenario in young dense star clusters. In this paper, our
goal was to investigate the parameter space for runaway colli-
sions to occur, when the effects of stellar collisions, primordial
mass segregation, and a globally flatter IMF (as indicated by
observations of young massive star clusters) are accounted for.
We considered clusters having Plummer density profiles, vary-
ing the initial virial radius, the number of stars in the cluster,
and the IMF. Primordial mass segregation was generated using
the Šubr et al. (2008) and Baumgardt et al. (2008) methods. We
naturally expected that primordial mass segregation in a clus-
ter should lead to shorter core-collapse times since the massive
stars start their lives closer to the center of the cluster, where
the density and therefore collision rates are highest. Indeed,
from our simulations we found that the core-collapse time, tcc
decreases with increasing the degree of primordial mass segre-
gation, increasing the initial virial radius for runaway collisions
to happen, by at least a factor of ≈3.

We find that the simple relation between the core collapse and
the central relaxation times (tcc = 0.15 trc), discussed in Paper
I, still holds even with primordial mass segregation. The strong
decrease in tcc hence implies a similar reduction in trc, which
accelerates the core collapse and enlarges the parameter space
for runaway collisions to occur. This decrease in trc, in both the
Šubr et al. (2008) and Baumgardt et al. (2008) prescriptions,
is caused by the strong increase in the average stellar mass in
the core. In the Šubr et al. (2008) recipe, the decrease in trc is
also caused by an increase in central density, which, however,

does not contribute much at higher degrees of mass segregation
(S > 0.15).

We find that the fraction of the total cluster mass that is
eventually accumulated onto the VMS, the possible progenitor
of an IMBH, is comparable to the mass of the collapsing core,
Mcc, already determined in Paper I. If IMBHs were indeed
formed in massive star clusters, our results show that the ratio
of the mass of the IMBH to the total stellar cluster mass follows
the M/Mbulge ratio. However, the runaway collision scenario
imposes the requirement that the IMBH must have formed in
a cluster with an initial central relaxation time shorter than
20 Myr.

Finally, we find that for top-heavy IMFs (in unsegregated
clusters) the parameter space for runaway collisions is reduced,
since flatter IMFs increase tcc by a factor ≈1.4 for mmax/ 〈m〉 ≈
120. However, this increase is to some degree balanced by
collisions, which happen more frequently in clusters with flatter
IMFs as we get more massive stars. In addition, primordial
mass segregation in these clusters again reduces tcc, and for an
IMF with a slope of −2.1, as may be present in the Arches
cluster (Espinoza et al. 2009), this reduced tcc is nearly the same
as for an unsegregated cluster with a Salpeter IMF. Thus, if
the IMF is Salpeter-like, primordial mass segregation increases
the parameter space for runaway collisions to occur, whereas
for flatter IMFs the parameter space remains very similar to
that in unsegregated clusters with a Salpeter-like IMF. From
this we can conclude that if young massive star clusters (like
Westerlund 1) are primordially mass-segregated and have an
IMF slope similar to the Arches, then the results from Paper I
are directly applicable.

We thank John Fregeau and Sourav Chatterjee for the
useful discussions. This work was supported by NSF Grant
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ern University.
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