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ABSTRACT

The secular approximation for the evolution of hierarchical triple configurations has proven to be
very useful in many astrophysical contexts, from planetary to triple-star systems. In this approxima-
tion the orbits may change shape and orientation but the semimajor axes are constant. For example,
for highly inclined systems, the Kozai-Lidov mechanism can produce large-amplitude oscillations of
the eccentricities. Here we re-derive the secular evolution equations including both quadrupole and oc-
tupole orders using Hamiltonian perturbation theory. Our new derivation corrects an error in previous
treatments of the problem. Already to quadrupole order, our results disagree with the previous “stan-
dard” treatment; they agree only in the test-particle limit where one of the bodies in the inner binary
has negligible mass compared to that of the outer perturber. Assuming, as done in previous treat-
ments, that the z-component of the inner orbit’s angular momentum (perpendicular to the invariable
plane) is conserved can produce erroneous results for various astrophysical systems of interest.

1. INTRODUCTION

Triple star systems are believed to be very common
(e.g., Tokovinin 1997; Eggleton et al. 2007). From dy-
namical stability arguments these must be hierarchi-
cal triples, in which the (inner) binary is orbited by a
third body on a much wider orbit. Probably more than
50% of bright stars are at least double (Tokovinin 1997;
Eggleton et al. 2007). Given the selection effects against
finding faint and distant companions we can be reason-
ably confident that the proportion is actually substan-
tially greater. Tokovinin (1997) showed that 40% of bi-
nary stars with period < 10 d in which the primary is a
dwarf (0.5−1.5M⊙) have at least one additional compan-
ion. He found that the fraction of triples and higher mul-
tiples among binaries with period (10− 100 d) is ∼ 10%.
Moreover, Pribulla & Rucinski (2006) have surveyed a
sample of contact binaries, and noted that among 151
contact binaries brighter than 10 mag., 42±5% are at
least triple.

Many close stellar binaries with two compact objects
are likely produced through triple evolution. Secular ef-
fects (i.e., coherent interactions on timescales long com-
pared to the orbital period), and specifically Kozai-
Lidov cycling (Kozai 1962; Lidov 1962, see below), have
been proposed as an important element in the evolution
of triple stars (e.g. Harrington 1969; Mazeh & Shaham
1979; Kiseleva et al. 1998; Fabrycky & Tremaine 2007;
Perets & Fabrycky 2009). In addition, Kozai-Lidov cy-
cling has been suggested to play an important role in
both the growth of black holes at the centers of dense star
clusters and the formation of short-period binary black
holes (Wen 2003; Miller & Hamilton 2002; Blaes et al.
2002). Recently, Ivanova et al. (2010) showed that the
most important formation mechanism for black hole
XRBs in globular clusters may be triple-induced mass
transfer in a black hole-white dwarf binary.

Secular perturbations in triple systems also play an
important role in planetary system dynamics. Kozai
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(1962) studied the effects of Jupiter’s gravitational per-
turbation on an inclined asteroid in our own solar sys-
tem. In the assumed hierarchical configuration, treating
the asteroid as a test particle, Kozai (1962) found that
its inclination and eccentricity fluctuate on timescales
much larger than its orbital period. Jupiter, assumed to
be in a circular orbit, carries most of the angular mo-
mentum of the system. Due to Jupiter’s circular orbit
and the negligable mass of the asteroid, the system’s po-
tential is axisymmetric and thus the component of the
inner orbit’s angular momentum along the total angu-
lar momentum is conserved during the evolution. Kozai
(1979) also showed the importance of secular interactions
for the dynamics of comets (see also Quinn et al. 1990;
Bailey et al. 1992; Thomas & Morbidelli 1996). The evo-
lution of the orbits of binary minor planets is dominated
by the secular gravitational perturbation from the sun
(Perets & Naoz 2009); properly accounting for the result-
ing secular effects—including Kozai cycling—accurately
reproduces the binary minor planet orbital distribu-
tion seen today (Naoz et al. 2010; Grundy et al. 2011).
In addition Kinoshita & Nakai (1991), Vashkov’yak
(1999), Carruba et al. (2002), Nesvorný et al. (2003),

Ćuk & Burns (2004) and Kinoshita & Nakai (2007) sug-
gested that secular interactions may explain the signifi-
cant inclinations of gas giant satellites and Jovian irreg-
ular satellites.

Similar analyses have been applied to the orbits of ex-
trasolar planets (e.g., Innanen et al. 1997; Wu & Murray
2003; Fabrycky & Tremaine 2007; Wu et al. 2007;
Naoz et al. 2011; Correia et al. 2011). Naoz et al. (2011)
considered the secular evolution of a triple system con-
sisting of an inner binary containing a star and a Jupiter-
like planet at several AU, orbited by a distant Jupiter-like
planet or brown-dwarf companion. Perturbations from
the outer body can drive Kozai-like cycles in the inner
binary, which, when planet-star tidal effects are incorpo-
rated, can lead to the capture of the inner planet onto
a close, highly-inclined or even retrograde orbit, similar
to the orbits of the observed retrograde “hot Jupiters.”
Many other studies of exoplanet dynamics have consid-
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ered similar systems, but with a very distant stellar bi-
nary companion acting as perturber. In such systems,
the outer star completely dominates the orbital angular
momentum, and the problem reduces to test-particle evo-
lution in the lowest level of approximation, which leads to
the conservation of the z-component of the inner orbit’s
angular momentum (e.g. Wu & Murray 2003; Wu et al.
2007; Fabrycky & Tremaine 2007; Takeda et al. 2008).

In early studies of high-inclination secular perturba-
tions (Kozai 1962; Lidov 1962), the outer orbit was circu-
lar and again dominated the orbital angular momentum
of the system. In this situation, the component of the
inner orbit’s angular momentum along the z-axis is con-
served. In many later studies the assumption that the
z-component of the inner orbit’s angular momentum is
constant was built into the equations (e.g. Eggleton et al.
1998; Mikkola & Tanikawa 1998; Zdziarski et al. 2007;
Takeda et al. 2008). In fact these studies are only valid
in the limit of a test particle forced by a perturber on a
circular orbit. To leading order in the ratio of semima-
jor axes, the double averaged potential of the outer orbit
is axisymmetric (even for an eccentric outer perturber),
thus if taken to the test particle limit, this results in
a conservation of the z-component of the inner orbit’s
angular momentum. We refer to this limit as the “stan-
dard” treatment of Kozai oscillations, i.e. quadrupole-
level approximation in the test particle limit (test parti-
cle quadrupole, hereafter TPQ).

In this paper we show that a common mistake in the
Hamiltonian treatment of these secular systems can lead
to the erronious conclusion that the z-component of the
inner orbit’s angular momentum is constant outside the
TPQ limit; in fact, the z-component of the inner orbit’s
angular momentum is only conserved by the evolution
in the test-particle limit and to quadrupole order. To
demonstrate the error we focus on the quadrupole (non-
test-particle) approximation in the main body of the pa-
per, but we include the full octupole-order equations of
motion in an appendix.

This paper is organized as follows. We first present the
general framework (§2); we then derive the complete for-
malism for the quadrupole-level approximation and the
equations of motion (§3), we also develop the octupole-
level approximation equations of motion in §4. We dis-
cuss a few of the most important implications of the cor-
rect formalism in §5. We also compare our results with
those of previous studies (§6) and offer some conclusions
in §7.

2. HAMILTONIAN PERTURBATION THEORY FOR
HIERARCHICAL TRIPLE SYSTEMS

Many gravitational triple systems are in a hierarchi-
cal configuration—two objects orbit each other in a rel-
atively tight inner binary while the third object is on a
much wider orbit. If the third object is sufficiently dis-
tant, an analytic, perturbative approach can be used to
calculate the evolution of the system. In the usual sec-
ular approximation (e.g., Marchal 1990), the two orbits
torque each other and exchange angular momentum, but
not energy. Therefore the orbits can change shape and
orientation (on timescales much longer than their orbital
periods), but not semimajor axes (SMA).

We first define our basic notations. The system con-
sists of a close binary (bodies of masses m1 and m2) and

Fig. 1.— Coordinate system used to describe the hierarchical
triple system (not to scale). Here ’c.m.’ denotes the center of mass
of the inner binary, containing objects of masses m1 and m2. The
separation vector r1 points from m1 to m2; r2 points from ’c.m.’
to m3. The angle between the vectors r1 and r2 is Φ.

a third body (mass m3). It is convenient to describe
the orbits using Jacobi coordinates (Murray & Dermott
2000, p. 441-443). Let r1 be the relative position vector
from m1 to m2 and r2 the position vector of m3 relative
to the center of mass of the inner binary (see fig. 1). Us-
ing this coordinate system the dominant motion of the
triple can be divided into two separate Keplerian orbits:
the relative orbit of bodies 1 and 2, and the orbit of
body 3 around the center of mass of bodies 1 and 2. The
Hamiltonian for the system can be decomposed accord-
ingly into two Keplerian Hamiltonians plus a coupling
term that describes the (weak) interaction between the
two orbits. Let the SMAs of the inner and outer orbits
be a1 and a2, respectively. Then the coupling term in
the complete Hamiltonian can be written as a power se-
ries in the ratio of the semi-major axes α = a1/a2 (e.g.,
Harrington 1968). In a hierarchical system, by definition,
this parameter α is small.

The complete Hamiltonian expanded in orders of α is
(e.g., Harrington 1968),

H=
k2m1m2

2a1
+

k2m3(m1 + m2)

2a2
(1)

+
k2

a2

∞
∑

j=2

αjMj

(

r1
a1

)j (
a2
r2

)j+1

Pj(cos Φ) ,

where k2 is the gravitational constant, Pj are Legendre
polynomials, Φ is the angle between r1 and r2 (see Figure
1) and

Mj = m1m2m3
mj−1

1 − (−m2)j−1

(m1 + m2)j
. (2)
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Fig. 2.— Geometry of the angular momentum vectors. We show
the total angular momentum vector (Gtot), the angular momentum
vector of the inner orbit (G1) with inclination i1 with respect to
Gtot and the angular momentum vector of the outer orbit (G2)
with inclination i2 with respect to Gtot. The angle between G1

and G2 defines the mutual inclination itot = i1+i2. The invariable
plane is perpendicular to Gtot.

Note that we have followed the convention of Harrington
(1969) and chosen our Hamiltonian to be the negative of
the total energy, so that H > 0 for bound systems.

We adopt the canonical variables known as Delau-
nay’s elements, which provide a particularly convenient
dynamical description of our three-body system (e.g.
Valtonen & Karttunen 2006). The coordinates are cho-
sen to be the mean anomalies, l1 and l2, the longitudes of
ascending nodes, h1 and h2, and the arguments of peri-
astron, g1 and g2, where subscripts 1, 2 denote the inner
and outer orbits, respectively. Their conjugate momenta
are

L1 =
m1m2

m1 + m2

√

k2(m1 + m2)a1 , (3)

L2 =
m3(m1 + m2)

m1 + m2 + m3

√

k2(m1 + m2 + m3)a2 ,

G1 = L1

√

1 − e21 , G2 = L2

√

1 − e22 , (4)

and
H1 = G1 cos i1 , H2 = G2 cos i2 . (5)

Note that G1 and G2 are also the magnitudes of the an-
gular momentum vectors (G1 and G2), and H1 and H2

are the z-components of these vectors. Figure 2 shows
the resulting configuration of theses vectors. The follow-
ing geometric relations between the momenta follow from
the law of cosines:

cos itot =
G2

tot −G2
1 −G2

2

2G1G2
, (6)

H1 =
G2

tot + G2
1 −G2

2

2Gtot
, (7)

H2 =
G2

tot + G2
2 −G2

1

2Gtot
, (8)

where Gtot = G1 + G2 is the (conserved) total angu-
lar momentum, and the angle between G1 and G2 de-

fines the mutual inclination itot = i1 + i2. From eqs. (7)
and (8) we find that the inclinations i1 and i2 are deter-
mined by the orbital angular momenta:

cos i1 =
G2

tot + G2
1 −G2

2

2GtotG1
, (9)

cos i2 =
G2

tot + G2
2 −G2

1

2GtotG2
. (10)

In addition to these geometrical relations we also have
that

H1 + H2 = Gtot = const . (11)

The canonical relations give the equations of motion:

dLj

dt
=

∂H
∂lj

,
dlj
dt

= − ∂H
∂Lj

, (12)

dGj

dt
=

∂H
∂gj

,
dgj
dt

= − ∂H
∂Gj

, (13)

dHj

dt
=

∂H
∂hj

,
dhj

dt
= − ∂H

∂Hj

, (14)

where j = 1, 2. Note that these canonical relations have
the opposite sign relative to the usual relations (e.g.,
Goldstein 1950) because of the sign convention we have
chosen for our Hamiltonian. Finally we write the Hamil-
tonian through second order in α as (e.g., Kozai 1962)

H=
β1

2L2
1

+
β2

2L2
2

+ (15)

4β3

(

L4
1

L6
2

)(

r1
a1

)2(
a2
r2

)3

(3 cos 2Φ + 1) ,

where the mass parameters are

β1 =k2m1m2
L2
1

a1
, (16)

β2 =k2(m1 + m2)m3
L2
2

a2
(17)

and

β3 =
k4

16

(m1 + m2)
7
m7

3

(m1m2)3 (m1 + m2 + m3)3
. (18)

3. SECULAR EVOLUTION EQUATIONS TO QUADRUPOLE
ORDER

In this section, we derive the secular equations of mo-
tion to the quadrupole-level, where in Appendix A we de-
velop the complete quadrupole-level secular approxima-
tion. The main difference between the derivation shown
here (see also Appendix A) and those of previous stud-
ies lies in the “elimination of nodes” (e.g., Kozai 1962;
Jefferys & Moser 1966). This is related to the transition
to a coordinate system with the total angular momentum
along the z-axis, which is known as the invariable plane
(e.g., Murray & Dermott 2000). In this coordinate sys-
tem (see Figure 2), the longitudes of the ascending nodes
differ by π, i.e., h1 − h2 = π. Conservation of angular
momentum implies that this relation holds at all times.
Many previous works have exploited it to explicitly sim-
plify the Hamiltonian. However, as we explain below
(and see also §6.1), this substitution leads to the incorrect



4 Naoz et al.

conclusion that Ḣ1 = Ḣ2 = 0 when the canonical equa-
tions of motion are applied; thus, some previous stud-
ies incorrectly concluded that the z-components of the
orbital angular momenta are always constant. We will
show that one can still use the (incorrect) Hamiltonian
found in previous studies (e.g., Kozai 1962; Harrington
1969) as long as the evolution equations for the inclina-
tions are derived from the total angular momentum con-
servation, instead of using the canonical relations. Of
course, the correct evolution equations can also be cal-
culated from the correct Hamiltonian, which we derive
in this section.

We note that there are some other derivations of the
secular evolution equations that avoid the elimination of
the nodes (Farago & Laskar 2010; Laskar & Boué 2010;
Mardling 2010; Katz & Dong 2011), and thus do not suf-
fer from this error.

Previous studies made the substitution h1 − h2 = π
directly in the Hamiltonian (see §6.1). After the substi-
tution, the Hamiltonian is independent of the longitudes
of ascending nodes (h1 and h2), and thus gives an evo-
lution where both H1 and H2 are constant. The substi-
tution h1 − h2 = π is incorrect at the Hamiltonian level
because it unduly restricts variations in the trajectory of
the system to those where δh1 = δh2 (see Appendix E).
After deriving the equations of motion, however, we can
exploit the relation h1−h2 = ∆h = π, which comes from
the conservation of angular momentum and the fact that
G1 + G2 = Gtot = Gtotẑ. This considerably simplifies
the equations.

The secular Hamiltonian is given by the average over
the rapidly-varying l1 and l2 in equation (15) (Appendix
A for more details)

H2 =
C2

8

{

[1 + 3 cos(2i2)]
(

[2 + 3e21][1 + 3 cos(2i1)] (19)

+ 30e21 cos(2g1) sin2(i1)
)

+ 3 cos(2∆h)[10e21 cos(2g1)

×{3 + cos(2i1)} + 4(2 + 3e21) sin(i1)2] sin2(i2)

+ 12{2 + 3e21 − 5e21 cos(2g1)} cos(∆h) sin(2i1) sin(2i2)

+ 120e21 sin(i1) sin(2i2) sin(2g1) sin(∆h)

− 120e21 cos(i1) sin2(i2) sin(2g1) sin(2∆h)
}

,

where

C2 =
k4

16

(m1 + m2)7

(m1 + m2 + m3)3
m7

3

(m1m2)3
L4
1

L3
2G

3
2

. (20)

Making the usual (incorrect) transformation ∆h → π, we
get the quadrupole-level Hamiltonian that has appeared
in many previous works (see, e.g. Ford et al. 2000b):

H2(∆h → π) =C2{
(

2 + 3e21
) (

3 cos2 itot − 1
)

(21)

+ 15e21 sin2 itot cos(2g1)} ,

where we have set i1 + i2 = itot. Because this Hamilto-
nian is missing the longitudes of ascending nodes (h1 and
h2), previous studies concluded that the z-component
(i.e., vertical) angular momenta of the inner and outer
orbits (i.e., H1 and H2) are constants.

We use the canonical relations [equations (12)] in order
to derive the equations of motion from the Hamiltonian.
In our treatment, both H1 and H2 evolve with time be-
cause the Hamiltonian is not independent of h1 and h2.

From eq. (7), we see that

Ḣ1 =
G1

Gtot
Ġ1 −

G2

Gtot
Ġ2 , (22)

and from eq. (11) we see that Ḣ1 = −Ḣ2. The
quadrupole-level Hamiltonian does not depend on g2;
thus the magnitude of the outer orbit’s angular momen-
tum, G2, is constant3, and therefore

Ḣ1 =
G1Ġ1

Gtot
. (23)

From relations (12-14) we have Ḣ1 = ∂H/∂h1, and Ġ1 =
∂H/∂g1. The former gives

Ḣ1 = −30C2e
2
1 sin i2 sin itot sin(2g1) . (24)

and the latter evaluates to

Ġ1 = −30C2e
2
1 sin2 itot sin(2g1) . (25)

Employing the law of sines, Gtot/ sin itot = G1/ sin i2 =
G2/ sin i1, equation (24) can also be written as

Ḣ1 = − G1

Gtot
30C2e

2
1 sin2 itot sin(2g1) , (26)

which satisfies the relation in eq. (23). The evolution of
the arguments of periapse are given by

ġ1 = 6C2

{

1

G1
[4 cos2 itot + (5 cos(2g1) − 1) (27)

× (1 − e21 − cos2 itot)] +
cos itot
G2

[2 + e21(3 − 5 cos(2g1))]

}

,

and

ġ2 = 3C2

{

2 cos itot
G1

[2 + e21(3 − 5 cos(2g1))] (28)

+
1

G2
[4 + 6e21 + (5 cos2 itot − 3)(2 + e21[3 − 5 cos(2g1)])

}

.

Previous quadrupole-level calculations that made the
substitution error in the Hamiltonian lack the 1/G2 term
in the latter equation. The evolution of the longitudes of
ascending nodes is given by

ḣ1 = − 3C2

G1 sin i1
{2 + 3e21 − 5e21 cos (2g1)} sin (2itot) (29)

and

ḣ2 = − 3C2

G2 sin i2
{2+3e21−5e21 cos (2g1)} sin (2itot) . (30)

Using the law of sines, G1 sin i1 = G2 sin i2, from which
we get ḣ1 = ḣ2, as required by the relation h1 − h2 = π.
In many systems it is useful to calculate the time evolu-
tion of the eccentricity, obtained through the following
relation:

dej
dt

=
∂ej
∂Gj

∂H
∂gi

, (31)

3 This conserved quantity is lost at higher orders of the approx-
imation; see §4 and Appendix C.
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In the quadrupole approximation ė2 = Ġ2 = 0 (which is
not the case at higher order in α; see Appendix C). The
eccentricity evolution for the inner orbit is given by

ė1 = C2
1 − e21
G1

30e1 sin2 itot sin(2g1) . (32)

Another useful parameter is the inclination, which can
be found through the z-component of the angular mo-
mentum:

d(cos i1)

dt
=

Ḣ1

G1
− Ġ1

G1
cos i1 , (33)

and similarly for i2 (but note again that Ġ2 = 0 to
quadrupole order). In Appendix B we show that the
quadrupole approximation leads to well-defined mini-
mum and maximum eccentricity and inclination. The
eccentricity of the inner orbit and the inner (and mutual)
inclination oscillate. We also demonstrate in Appendix B
that our formalism gives critical initial mutual inclination
angles for large oscillations of 39.2◦ ≤ itot ≤ 140.8◦ in
the test-particle limit and with nearly-zero initial inner
eccentricity, in agreement with Kozai (1962).

4. OCTUPOLE-LEVEL EVOLUTION

In Appendix C, we derive the secular evolution equa-
tions to octupole order. Many previous octupole-order
derivations provided correct secular evolution equations
for at least some of the elements, in spite of using
the elimination of nodes substitution at the Hamil-
tonian level (e.g. Harrington 1968, 1969; Sidlichovsky
1983; Krymolowski & Mazeh 1999; Ford et al. 2000b;
Blaes et al. 2002; Lee & Peale 2003b; Thompson 2010).
This is because the evolution equations for e2, g2, g1 and
e1 can be found correctly from a Hamiltonian that has
had h1 and h2 eliminated by the relation h1 − h2 = π;
the partial derivatives with respect to the other coordi-
nates and momenta are not affected by the substitution.
The correct evolution of H1 and H2 can then be derived,
not from the canonical relations, but from total angu-
lar momentum conservation. We discuss in more details
the comparison between this work and previous analyses
in §6. The full consequences of allowing the Hi to be
dynamical are explored here for the first time.

The octupole-level terms in the Hamiltonian can be-
come important when the eccentricity of the outer orbit
is non-zero, and if α is not negligible. We quantifying
this by considering the ratio between the octupole to
quadrupole-level coefficients, which is

C3

C2
=

15

4

(

m1 −m2

m1 + m2

)(

a1
a2

)

1

1 − e22
, (34)

where C3 is the octupole-level coefficient [eq. (C1)] and
C2 is the quadrupole-level coefficient [eq. (20)]. We define

ǫM =

(

m1 −m2

m1 + m2

)(

a1
a2

)

e2
1 − e22

, (35)

which gives the relative significance of the octupole-level
approximation. This parameter has three important
parts; first the eccentricity of the outer orbit (e2), second,
the mass difference of the inner binary (m1 and m2) and

the SMA ratio4. In the test particle limit (i.e., m1 ≫ m2)
we find that ǫM is reduced to the octupole coefficient
introduced in Lithwick & Naoz (2011) and Katz et al.
(2011),

ǫ =

(

a1
a2

)

e2
1 − e22

. (36)

This coefficient measures the significance of the octupole
contribution in the test particle limit. We will use here
the general form (i.e., ǫM ). We label the behavior of a
system for which ǫM ≪ 1 is not satisfied as “eccentric
Kozai-Lidov” mechanism.

The octupole terms vanish when e2 = 0. Therefore if
one artificially held e2 = 0, in the test-particle limit the
inner body’s orbit would be given by the equations de-
rived by Kozai (1962), i.e. by the test particle quadrupole
equations. However, at octupole order the value of e2
evolves in time if the inner body is massive. Further-
more, even if the inner body is massless, if the outer
body has e2 > 0 then the inner body’s behavior will
also be different than in Kozai’s treatment. For exam-
ple, Lithwick & Naoz (2011) and Katz et al. (2011) find
that the inner orbit can flip orientation (see below) even
in the test-particle, octupole limit. The octupole-level
effects can change qualitatively the evolution of a sys-
tem. Compared to the quadrupole-level behavior, the
eccentricity of the inner orbit can sometimes reach a
much higher value. In some cases these excursions to
very high eccentricities can be accompanied by a “flip”
of the orbit with respect to the total angular momen-
tum, i.e., starting with i1 < 90◦ the inner orbit can
eventually reach i1 > 90◦ (see Figures 6–9 for exam-
ples). Chaotic behavior is also possible at the octupole
level (Lithwick & Naoz 2011; Katz et al. 2011), but not
at the quadrupole-level (see Appendix B). In contrast
to the octupole-level behavior, the quadrupole-level ap-
proximation leads to regular cycles in eccentricity and
inclination, with well-defined maximum and minimum
values, and it cannot produce flips for the inner orbit
(again, see Appendix B).

Given the large, qualitative changes in behavior mov-
ing from quadrupole to octupole order in the Hamil-
tonian, is it possible that similar changes in the sec-
ular evolution may occur at even higher orders? In-
tuitively, the answer to this question lies in the elimi-
nation of G2 as an integral of motion at octupole or-
der, leaving only four integrals of motion: the energy of
the system, and the three components of the total an-
gular momentum. There are no more integrals of mo-
tion to be eliminated, and thus one might expect no
more dramatic changes in the evolution when moving
to even higher orders. It is possible to see this quantita-
tively for specific initial conditions through comparisons
with direct n-body integrations. We compare our oc-
tupole equations with direct n-body integrations, using
the Mercury software package (Chambers & Migliorini
1997). We used both Bulirsch-Stoer and symplectic inte-
grators (Wisdom & Holman 1991) and found consistent
results between the two. We present the results of a
typical integration compared to the integration of the

4 Note here that the subscripts “1” and “2” refer to the inner
bodies in m1 and m2, but the subscript “2” refers to the outer
body in e2.
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Fig. 3.— Comparison between a direct integration (using a B-
S integrator) and the octupole-level approximation (see Appendix
C). The red lines are from the integration of the octupole-level
perturbation equations, while the blue lines are from the direct
numerical integration of the three-body system. Here the inner bi-
nary contains a star of mass 1M⊙ and a planet of mass 1MJ, while
the outer object is a brown dwarf of mass 40MJ. The inner orbit
has a1 = 6 AU and the outer orbit has a2 = 100 AU. The initial
eccentricities are e1 = 0.001 and e2 = 0.6 and the initial relative
inclination itot = 65◦. The thin horizontal line in the top panel
marks the 90◦ boundary, separating prograde and retrograde or-
bits. The initial mutual inclination of 65◦ corresponds to an inner
and outer inclination with respect to the total angular momentum
(parallel to z) of 64.7◦ and 0.3◦, respectively. The arguments of
pericenter of the inner and outer orbits are initially set to zero. The
SMA of the two orbits (not shown) are nearly constant during the
direct integration, varying by less than 0.02 percent. The agree-
ment in both period and amplitude of oscillation between the direct
integration and the octupole-level approximation is quite good.

octupole-level secular equations in Figure 3. The ini-
tial conditions (see caption) for this system are those of
Naoz et al. (2011), Figure 1. We find good agreement
between the direct integration and the secular evolution
at octupole order. Both show a beat-like pattern of ec-
centricity oscillations, suggesting an interference between
the quadrupole and octupole terms, and both methods
show similar flips of the inner orbit.

5. IMPLICATIONS

The Kozai (1962) and Lidov (1962) equations of mo-
tions are correct to quadrupole order and for a test par-
ticle. Using them outside this limit can lead to incorrect
results. Here we discuss a few examples and the im-
portance of higher-order effects in various astrophysical
settings.

5.1. Massive Inner Object at the Quadrupole Level

The danger with working in the wrong limit is apparent
if we consider an inner object that is more massive then
the outer object. While the standard formalism incor-
rectly assumes that the orbit of the outer body is fixed
in the invariable plane, and therefore the inner body’s
vertical angular momentum is constant, the quadrupole-
level equations presented in Section 3 do not.

We compare the two formalisms in Figure 4. We con-
sider the triple system PSR B1620−26 located near the

core of the globular cluster M4. The inner binary con-
tains a millisecond radio pulsar of m1 = 1.4M⊙ and a
companion of m2 = 0.3M⊙ (McKenna & Lyne 1988).
From Ford et al. (2000a), we adopt parameters for the
outer perturber of m3 = 0.01M⊙ and e2 = 0.45. The
inner binary separation is a1 = 5 AU while a2 = 50 AU.
We initialize the system with itot = 70◦, g1 = 120◦ and
g2 = 0◦ and e1 = 0.5. Note that the actual measured in-
ner binary eccentricity is e1 ∼ 0.045, however in order to
illustrate the difference we adopt a higher value. There is
no logical reason to assume the observed eccentricity as
the initial eccentricity when modeling the formation of a
system, since different physical processes can contribute
to eccentricity damping (for example, tidal friction (Hut
1980) and mass transfer (Sepinsky et al. 2010)). The ini-
tial mutual inclination of 70◦ corresponds to an inner and
outer inclination with respect to the total angular mo-
mentum (parallel to z) of 6.75◦ and 63.25◦, respectively.
Remember that we consider the evolution of the system
to quadrupole order for comparison, even though there is
no apriori reason to truncate the evolution at this order,
especially since ǫM = 0.036. We have verified, however,
that octupole order effects do not qualitatively change
the behavior. This is because the outer companion mass
is low, and hence the inner orbit does not exhibit large
amplitude oscillations5.

For the comparison, we do not compare the (constant)
H1 from the TPQ formalism to the (varying) H1 of the
correct formalism. Instead, we compare the (constant)
H1 from the TPQ formalism with G1 cos itot, which is the
vertical angular momentum that would be inferred in our
formalism if the outer orbit were instantaneously in the
invariable plane, as assumed in the TPQ formalism.

In Figure 4, the mutual inclination oscillates between
106.7◦ to 57.5◦, and thus crosses 90◦. These oscillations
are mostly due to the oscillations of the outer orbit’s
inclination, while i1 does not change by more than ∼ 1◦

in each cycle. Clearly, the outer orbit does not lie in the
fixed invariable plane! Figure 4, bottom panel, shows
√

1 − e21 cos itot, which, in the TPQ limit, is the vertical
angular momentum of the inner body.

We can evaluate analytically the error introduced by
the application of the TPQ formalism to this situation.
We compare the vertical angular momentum (H1) as cal-

culated here to HTPQ
1 = L1

√

1 − e21 cos i = const.. The

relative error between the formalisms is HTPQ
1 /H1 − 1.

In Figure 5 we show the ratio between the inner or-
bit’s vertical angular momentum in the TPQ limit (i.e.,

HTPQ
1 = G1 cos i) and equation (24) as a function of the

total angular momentum ratio, G1/G2, for various incli-
nations. Note that this error can be calculated without
evolving the system by using angular momentum conser-
vation, equation (6). The TPQ limit is only valid when
G1/G2 ∼< 10−4.

5.2. Planetary Dynamics

Recent measurements of the sky-projected angle be-
tween the orbits of several hot Jupiters and the spins

5 Unlike the test particle octupole-level approximation
(Lithwick & Naoz 2011; Katz et al. 2011), backreaction of the
outer orbit may suppress the eccentric Kozai effect. We address
this in further detail in Teyssandier et al. in Prep.
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Fig. 4.— Comparison between the standard TPQ formalism
(dashed blue lines) evolution and our methods (solid red lines)
for the case of PSR B1620−26. Here the inner binary is a mil-
lisecond pulsar of mass 1.4M⊙ with a companion of m2 = 0.3M⊙,
and the outer body has mass m3 = 0.01M⊙. The inner orbit has
a1 = 5 AU and the outer orbit has a2 = 50 AU (Ford et al. 2000a).
The initial eccentricities are e1 = 0.5 and e2 = 0.45 and the ini-
tial relative inclination itot = 70◦. The thin horizontal line in the
top panel marks the 90◦ boundary, separating prograde and ret-
rograde orbits. The initial mutual inclination of 70◦ corresponds
to an inner and outer inclination with respect to the total angu-
lar momentum (parallel to z) of 6.75◦ and 63.25◦, respectively.
The argument of pericenter of the inner orbit is initially set 120◦,
while the outer orbit’s is set to zero. We consider, from top to
bottom, the mutual inclination itot, the inner orbit’s eccentricity

and
√

1 − e2
1

cos itot, which the standard formalism assumes to be

constant (dashed line).

Fig. 5.— The ratio between the correct, changing z-component
angular momentum, H1, and the assumption often used in the liter-

ature which is HTPQ
1

= G1 cos i. This ratio was calculated analyti-
cally for various total angular momentum ratios, G1/G2, and incli-
nations. The curves, from bottom to top, have i = 40, 50, 60, 70, 80
and 89 degrees.

Fig. 6.— Evolution of a planetary system with m1 = 1M⊙,
m2 = 1MJ and m3 = 2MJ , with a1 = 4 AU and a2 = 45 AU.
We initialize the system at t = 0 with e1 = 0.01, e2 = 0.6, g1 =
180◦, g2 = 0◦ and itot = 67◦. For these initial conditions i1 =
57.92◦ and i2 = 9.08◦. The z-components of the orbital angular
momenta, H1 and H2, are shown normalized to the total angular
momentum of each orbit. The inner orbit flips quasi-periodically
between prograde (i1 < 90◦) and retrograde (i1 > 90◦).

of their host stars have shown that roughly one in
four is retrograde (Gaudi & Winn 2007; Triaud et al.
2010). If these planets migrated in from much larger
distances through their interaction with the protoplane-
tary disk (Lin & Papaloizou 1986; Masset & Papaloizou
2003), their orbits should have low eccentricities and
inclinations6. Disk migration scenarios therefore have
difficulty accounting for the observed retrograde hot
Jupiter orbits. An alternative migration scenario that
can account for the retrograde orbits is the secular in-
teraction between a planet and a binary stellar com-
panion (Wu & Murray 2003; Fabrycky & Tremaine 2007;
Wu et al. 2007; Takeda et al. 2008; Correia et al. 2011).
For a very distant companion (ǫM ≪ 1) the quadrupole

test-particle approximation applies, and
√

1 − e21 cos i1
is nearly constant. Although this forbids orbits that are
truly retrograde (with respect to the total angular mo-
mentum of the system), if the inner orbit begins highly
inclined relative to the outer star’s orbit and aligned with
the spin of the inner star, then the star-planet spin-orbit
angle can change by more than 90◦ during the secular
evolution of the system, producing apparently retrograde
orbits (Fabrycky & Tremaine 2007; Correia et al. 2011).
Nonetheless, a difficulty with this “stellar Kozai” mech-
anism is that even with the most optimistic assumptions
it can only produce . 10% of hot Jupiters (Wu et al.
2007).

Naoz et al. (2011) considered planet-planet secular in-
teractions as a possible source of retrograde hot Jupiters.
In this situation ǫM is not small, requiring computation

6 This assumption can be invalid if there are significant mag-
netic interactions between the star and the protoplanetary disk
(Lai et al. 2010) or if there is an episode of planet-planet scattering
following planet formation (Chatterjee et al. 2008; Nagasawa et al.
2008) see also Merritt et al. (2009).
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Fig. 7.— Zoom-in on part of the evolution of the point-mass
planetary system in Figure 6. In this zoom-in, we can see that flips
in the inner orbit—i1 crossing 90◦—are associated with excursions
to very high eccentricity.

of the octupole-level secular dynamics. In Figures 6 and 7
we show the evolution of a representative configuration,
where m1 = 1 M⊙, m2 = 1MJ and m3 = 2MJ , with
a1 = 4 AU and a2 = 45 AU. For this configuration,
ǫM = 0.083. Flips of the inner orbit are associated with
evolution to very high eccentricity (see Figure 7).

5.3. Solar System Dynamics

Kozai (1962) studied the dynamical evolution of an
asteroid due to Jupiter’s secular perturbations. He as-
sumed that Jupiter’s eccentricity is strictly zero. How-
ever, Jupiter’s eccentricity is ∼ 0.05, and thus study-
ing the evolution of a test particle in the asteroid belt
(a1 ∼ 2 − 3 AU) places the evolution in a regime where
the eccentric Kozai-Lidov effect could be significant, with
ǫM = ǫ = 0.03 (Lithwick & Naoz 2011; Katz et al. 2011).

We considered the evolution of asteroid at 2 AU (as-
sumed to be a test particle) due to Jupiter at 5 AU
with eccentricity of e2 = 0.05. We set e1 = 0.2,
itot = 65◦ and g1 = g2 = 0◦ initially. The aster-
oid is a test particle and therefore i1 ≈ itot. In Fig-
ure 8 we compare the evolution of an asteroid using the
TPQ limit (e.g., Kozai 1962; Thomas & Morbidelli 1996;
Kinoshita & Nakai 2007) and the octupole-level evolu-
tion discussed here. For this value of ǫ, the eccentric
Kozai-Lidov effect significantly alters the evolution of the
asteroid, even driving it to such high inclination that the
orbit becomes retrograde. Though we deal only with
point masses in this work, note that the eccentricity is
so high that the inner orbit’s pericenter lies well within
the sun.

The value of ǫ here is mainly due to the relative high
α in the problem. The system is very packed which raise
questions with regards to the actual validity of the ap-
proximation in that regime. In fact, such high eccentrici-
ties drive the pericenter of the asteroid to collide with the
sun and the apo-center of the asteroid to approach about
1 AU from Jupiter’s orbit. To address this question we
run a N -body simulation using Mercury software package

Fig. 8.— Evolution of an asteroid due to Jupiter secular grav-
itational perturbations (Kozai 1962). We consider m1 = 1M⊙,
m2 → 0 and m3 = 1 MJ , with a1 = 2 AU and a2 = 5 AU. We ini-
tialize the system at t = 0 with e1 = 0.2, e2 = 0.05, g1 = g2 = 0◦

and itot = 65◦. We show the TPQ limit evolution (cyan lines)
and the octupole equations (red lines). The thin horizontal dotted
line in the top panel marks the 90◦ boundary, separating prograde
and retrograde orbits. The inner orbit flips quasi-periodically be-
tween prograde (i1 < 90◦) and retrograde (i1 > 90◦). We also
show the result of an N-body simulation (blue lines). The thin
horizontal dotted line in the bottom panel marks the solar radius
as 1 − e1 = R⊙/a1.

(Chambers & Migliorini 1997). We used both Bulirsch-
Stoer and symplectic integrators (Wisdom & Holman
1991). The results are depicted at Figure 8, which show
that the TPQ limit is indeed in adequate for the sys-
tem. In addition the octupole–level approximation has
some deviations from the direct N -body integration, and
does not follow the direct integration results in the high
eccentricity regime. Note that the evolution of the as-
teroid in the direct integration had resulted with a col-
lision with the Sun. In reality, highly eccentric asteroids
do not live very long in the solar system, also due to
planet-crossing. We also note that the assuming zero
eccentricity for Jupiter results in consistent results (we
tested the case for a1 = 2 AU) between the secular evo-
lution and the direct integration (Thomas & Morbidelli
1996, see also). Note also that Kozai mentions that the
TPQ limit may not be correct, both due to the relatively
large value of α and the non-negligable eccentricity of
Jupiter, but proceeds anyway with the theory because it
is analytically tractable.

5.4. Triple Stars

The evolution of triple stars has been studied by
many authors using the standard (TPQ) formal-
ism (e.g., Mazeh & Shaham 1979; Eggleton et al.
1998; Kiseleva et al. 1998; Mikkola & Tanikawa
1998; Eggleton & Kiseleva-Eggleton 2001;
Fabrycky & Tremaine 2007; Perets & Fabrycky 2009).
In some cases the corrected formalism derived here can
give rise to qualitatively different results. We show that
some of the previous studies should be repeated in order
to account for the correct dynamical evolution, and give
one example where the eccentric Kozi-Lidov mechanism
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Fig. 9.— An example of dramatically different evolution between
the quadruple and octupole approximations for a triple-star sys-
tem. The system has m1 = 1M⊙, m2 = 0.1M⊙ and m3 = 0.4M⊙,
with a1 = 2 AU and a2 = 11 AU. We initialize the system with
e1 = 0.01, e2 = 0.6, g1 = 145◦, g2 = 0◦ and itot = 65◦ accord-
ing to Fabrycky & Tremaine (2007) Monte-Carlo simulations. For
these initial conditions i1 = 58.1◦ and i2 = 6.9◦. We show both
the (correct) quadrupole-level evolution (light-blue lines) and the
octupole-level evolution (red lines). H1 and H2, the z-components
of the angular momenta of the orbits, are normalized to the total
angular momentum. Note that the octupole-level evolution pro-
duces periodic transitions from prograde to retrograde inner orbits
(relative to the total angular momentum), while at the quadrupole-
level the inner orbit remains prograde.

dramatically changes the evolution.
Fabrycky & Tremaine (2007) studied the distribution

of triple star properties using Monte-Carlo simulations.
We choose a particular system from their triple-star suite
of simulations to illustrate how the dynamics including
the octupole order can be qualitatively different from
what would be seen at quadrupole order, when ǫM is
not negligible7. We adopt the following parameters:
m1 = 1M⊙, m2 = 0.1M⊙ and m3 = 0.4M⊙, a1 = 2 AU
and a2 = 11 AU. We initialize the system at t = 0 with
e1 = 0.01, e2 = 0.6, g1 = 145◦, g2 = 0◦ and itot = 65◦,
corresponding to i1 = 58.1◦, i2 = 6.9◦ and ǫM = 0.14.
The evolution of the system is shown in Figure 9. At
octupole order, the inclination of the inner orbit oscil-
lates between about 40◦ and 140◦, often becoming ret-
rograde (relative to the total angular momentum), while
the quadrupole-order behavior is very different and the
inner orbit remains always prograde. The octupole-order
treatment also gives rise to much higher eccentricities
(Krymolowski & Mazeh 1999; Ford et al. 2000b). The
evolution shown in Figure 9 is for point-mass stars; in
reality, these high-eccentricity excursions would actually
drive the inner binary to its Roche limit, leading to mass
transfer.

The possibility of forming blue stragglers through secu-
lar interactions in triple star systems has been suggested
by Perets & Fabrycky (2009) and Geller et al. (2011).
As shown in Krymolowski & Mazeh (1999); Ford et al.

7 The extent of the Fabrycky & Tremaine (2007) phase space
over which ǫM is not negligible requires further investigation.

(2000b) and in the example above the minimum peri-
center that the inner binary can reach can vary (from
few percents to orders of magnitude depending on ǫM ).
Thus, it suggests that the correct formalism may increase
the likelihood of such a formation mechanism for blue
stragglers.

For many years CH Cygni was considered to be an
interesting triple candidate because it exhibits two clear
distinguishable periods (e.g. Donnison & Mikulskis
1995; Skopal et al. 1998; Mikkola & Tanikawa
1998; Hinkle et al. 1993). However, a triple sys-
tem model based on the TPQ Kozai mechanism
(Mikkola & Tanikawa 1998) did not reproduce the ob-
served masses of the system (Hinkle et al. 1993, 2009).
Applying the corrected formalism in this paper to the
system parameters derived in Mikkola & Tanikawa
(1998) gives a very different evolution than in the TPQ
formalism8. Therefore, it seems likely that an analysis
based on the formalism discussed in this paper would
give a significantly different fit. In Figure 10 we illustrate
the differences between the TPQ, correct quadrupole,
and octupole evolution of the system. The best-fit
parameters of the system from Mikkola & Tanikawa
(1998) are as follows: m1 = 3.51M⊙, m2 = 0.5M⊙ and
m3 = 0.909M⊙, a1 = 0.05 AU and a2 = 0.21 AU. We
initialize the system at t = 0 with e1 = 0.32, e2 = 0.6,
g1 = 145◦, g2 = 0◦ and itot = 72◦, corresponding to
i1 = 57.01◦, i2 = 14.98◦ and ǫM = 0.14. We allowed for
a freedom in our choice of e2, g1, g2 and itot since the the
best fit was found using the TPQ limit, at which e2 is
fixed. Note that the choice of the inner eccentricity does
not strongly influence the evolution while the choice of
the outer orbit’s eccentricity does.

6. COMPARISON WITH PREVIOUS STUDIES

Kozai (1962) studied the motion of an inclined aster-
oid due to perturbations from Jupiter. He derived the
Hamiltonian for this system to high order in α , assum-
ing a circular orbit for Jupiter. He then truncated the
expansion at quadrupole order in α to derive the secular
evolution equations for the asteroid; his equations thus
correctly describe the test-particle quadrupole (TPQ)
limit. However, Kozai’s equations were later applied in-
correctly in other studies. Kozai’s equations imply that
H1 = const, but outside the test-particle limit in the
quadrupole-order evolution we have seen that H1 is no
longer constant. Moreover, even when ǫM is small, the
octupole-order effects can lead to qualitatively different
orbits than predicted at quadrupole order.

6.1. Elimination of the Nodes and the Problem in
Previous Quadrupole-Level Treatments

Since the total angular momentum is conserved, the
ascending nodes relative to the invariable plane follow a
simple relation, h1(t) = h2(t) − π (see Appendix D). If
one inserts this relation into the Hamiltonian, which only
depends on h1 − h2, the resulting “simplified” Hamilto-
nian is independent of h1 and h2. One might be tempted
to conclude that the conjugate momenta H1 and H2 are

8 Mikkola & Tanikawa (1998) also found somewhat different set
of parameter when producing a fit for data set with less weight
for the data of 1983 due to large noise in the active phase of the
system.
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Fig. 10.— An example of dramatically different evolution
between the quadruple and octupole approximations for a
triple star system representing the best-fit parameters from the
Mikkola & Tanikawa (1998) analysis of CH Cygni. The system
has m1 = 3.51M⊙, m2 = 0.5M⊙ and m3 = 0.909M⊙, with
a1 = 0.05 AU and a2 = 0.21 AU. We initialize the system with
e1 = 0.32, e2 = 0.6, g1 = 145◦, g2 = 0◦ and itot = 72◦. For these
initial conditions i1 = 57.02◦ and i2 = 14.98◦. We show both the
(non-TPQ) quadrupole-level evolution (light-blue lines) and the
octupole-level evolution (red lines). H1 and H2, the z-components
of the angular momenta of the orbits, are normalized to the total
angular momentum. Note that the octupole-level evolution pro-
duces periodic transitions from prograde to retrograde inner orbits
(relative to the total angular momentum), while at the quadrupole-
level the inner orbit remains prograde. To avoid clatter in the figure
we omitted the TPQ limit result, we note however, that the evo-
lution of the inclination and eccentricity are similar to the general
quadrupole-level approximation, but with constant H1,2.

constants of the motion. However, that conclusion is
false. This incorrect argument has been made by a num-
ber of authors9.

We now show that H1 and H2 are constant only in
the TPQ limit. Outside of that limit they are not con-
stant, and taking them to be constant breaks the con-
servation of the total angular momentum of the system.
The quadrupole-level Hamiltonian (Eq. 19) depends on
the angles as follows: H = H(g1, h1 − h2); that is, it
is independent of g2 and only depends on the difference
between h1 and h2. Using the incorrect elimination of
the nodes discussed above, one would conclude that H1

is constant. Also, because the Hamiltonian is indepen-
dent of g2, G2 = const. From the geometric relation in
equation (7), H1 = (G2

tot + G2
1 − G2

2)/(2Gtot), and the
constantcy of the total angular momentum, Gtot, we have
that G1 = const, but this is inconsistent with the depen-
dence of H on g1. The error comes from assuming that
H1 = const; in fact, at the quadrupole level, we have

Ḣ1 =
G1

Gtot
Ġ1, (37)

which is consistent with both the geometric relation in

9 For example, Kozai (1962, p. 592) incorrectly argues that “As
the Hamiltonian F depends on h and h′ as a combination h− h′,
the variables h and h′ can be eliminated from F by the relation
(5). Therefore, H and H′ are constant.”

equation (7) and the dynamical equations (24) and (25).

When G1/Gtot → 0, or, equivalently G2 ≫ G1, Ḣ1 → 0,
and the TPQ result is achieved10. But, this is precisely
the TPQ limit, where the outer orbit dominates the an-
gular momentum of the system and therefore lies in the
invariable plane.

In general, using dynamical information about the
system—in this case that angular momentum is con-
served, implying that G1 + G2 = Gtot at all times and
therefore h1−h2 = π—to simplify the Hamiltonian is not
correct. The derivation of Hamilton’s equations relies
on the possibility of making arbitrary variations of the
system’s trajectory, and such simplifications restrict the
allowed variations to those which respect the dynamical
constraints. Once Hamilton’s equations are employed to
derive equations of motion for the system, however, dy-
namical information can be employed to simplify these
equations. See Appendix E for further discussion of this
point.

In our particular case, quations of motion for compo-
nents of the system that do not involve partial deriva-
tives with respect to h1 or h2 will not be affected by
the node-elimination substitution. For this reason, it is
correct to derive equations of motion for all components
except for H1 and H2 from the node-eliminated Hamil-
tonian; expressions for Ḣ1 and Ḣ2 can then be derived
from conservation of angular momentum. This approach
has been employed in at least one computer code for
octupole evolution, though the discussion in the corre-
sponding paper incorrectly eliminates the nodes in the
Hamiltonian (Ford et al. 2000b).

In some later studies, (Sidlichovsky 1983;
Innanen et al. 1997; Kiseleva et al. 1998;
Eggleton et al. 1998; Mikkola & Tanikawa 1998;
Kinoshita & Nakai 1999; Eggleton & Kiseleva-Eggleton
2001; Wu & Murray 2003; Valtonen & Karttunen
2006; Fabrycky & Tremaine 2007; Wu et al. 2007;
Zdziarski et al. 2007; Perets & Fabrycky 2009), the as-
sumption that H1 = const was built into the calculations
of quadrupole-level secular evolution for various astro-
physical systems, even when the condition G2 ≫ G1

was not satisfied. Moreover many previous studies
(Sidlichovsky 1983; Innanen et al. 1997; Kiseleva et al.
1998; Eggleton et al. 1998; Mikkola & Tanikawa 1998;
Kinoshita & Nakai 1999; Eggleton & Kiseleva-Eggleton
2001; Wu & Murray 2003; Valtonen & Karttunen
2006; Fabrycky & Tremaine 2007; Wu et al. 2007;
Perets & Fabrycky 2009) simply set i2 = 0. In fact,
given the mutual inclination i, the inner and outer
inclinations i1 and i2 are set by the conservation of total
angular momentum [see equations (9) and (10)].

In Figure 5 we show the ratio between the inner orbit’s

vertical angular momentum in the TPQ limit (HTPQ
1 =

G1 cos i) and the H1 in the correct quadruple-level ap-
proximation from the derivation shown here as a func-
tion of the ratio G1/G2. From this figure, it is clear that
the standard formalism is only valid in the TPQ limit,
where G1/G2 ∼< 10−4 (depending slightly on the mutual

10 This is true as long as Ġ1 is not larger then G1/Gtot. How-

ever, Ġ1 is proportional to C2 which is in turn proportional to
1/G3

2
∼ 1/G3

tot
. Therefore, Ġ1G1/Gtot → 0 in the test-particle

limit.
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Fig. 11.— Comparison between direct integration and the
octupole-level approximation. We consider both the wrong sign
(i.e., C3 > 0 for m1 > m2) and the correct sign (i.e., C3 < 0 for
m1 > m2) for the octupole term. The dotted curve represents
the result from the integration with C3 > 0, while the thick solid
curve depicts the integration with the C3 < 0. The thin curve,
overlapping the thick curve shows the result of direct numerical in-
tegration of the three-body system using Burlish-Stoer integrator.
We have used here the initial conditions in Figure 3.

inclination).
The quadrupole-level equations appearing com-

monly in the literature are correct only in the
limit of quadrupole-level test particle (Kozai 1962;
Lidov 1962). Nevertheless, these equations have
been applied outside this limit, to massive bodies in
the inner binary in many studies in the literature
(Sidlichovsky 1983; Innanen et al. 1997; Kiseleva et al.
1998; Eggleton et al. 1998; Mikkola & Tanikawa 1998;
Kinoshita & Nakai 1999; Eggleton & Kiseleva-Eggleton
2001; Wu & Murray 2003; Valtonen & Karttunen
2006; Fabrycky & Tremaine 2007; Wu et al. 2007;
Zdziarski et al. 2007; Perets & Fabrycky 2009).

6.2. Octupole-level Approximation and Truncation to
Quadrupole

The octupole-level Hamiltonian and equations
of motion were previously derived by Harrington
(1968, 1969); Sidlichovsky (1983); Marchal (1990);
Krymolowski & Mazeh (1999); Ford et al. (2000b);
Blaes et al. (2002) and Lee & Peale (2003b). Most of
the equations of motion can be derived correctly when
applying the elimination of the nodes—only the Ḣ1 and
Ḣ2 equations are affected. These authors calculated
the time evolution of the inclinations (i.e. H1 and H2

from the total (conserved) angular momentum, and
thus avoided the problem that arises when eliminating
the nodes from the Hamiltonian. In appendix C we
show the complete set of equations of motion for the
octupole-level approximation, derived from a correct
Hamiltonian, including the nodal terms.

As previously noted by Blaes et al. (2002, equa-
tion 24), Ford et al. (2000b) introduced a sign er-
ror in the octupole coefficient, C3, which was later
corrected in Ford et al. (2004). The same sign er-

ror also exists in Marchal (1990), Sidlichovsky (1983,
eq. 17), Krymolowski & Mazeh (1999, eq. 6b) and in

Laskar & Boué (2010, their equation for F (0,0)
3 ). We note

that Thompson (2010) and Lee & Peale (2003b,a) used
the correct sign. To settle this point we use the direct
N-body simulation shown in Figure 3 and compare it
to the integration of the octupole-level approximation
equations (see Appendix C) with and without the minus
sign. We show our results in Figure 11 and find that C3

as defined here [eq. (C1)] and in Blaes et al. (2002) is in
agreement with the direct N-body, and thus indeed this
is the correct sign. We note that this sign error can be
easily resolved if g2 → g2 + π (which may imply to the
source of this confusion).

As displayed here the octupole-level approximation
gives rise to a qualitatively different evolutionary
behavior for cases where ǫM [see eq. (35)] is not negli-
gible. We note that many previous studies applied the
quadrupole-level approximation, which may lead to sig-
nificantly different results (e.g., Mazeh & Shaham 1979;
Quinn et al. 1990; Bailey et al. 1992; Innanen et al.
1997; Eggleton et al. 1998; Mikkola & Tanikawa
1998; Eggleton & Kiseleva-Eggleton 2001;
Valtonen & Karttunen 2006; Fabrycky & Tremaine
2007; Wu et al. 2007; Zdziarski et al. 2007;
Perets & Fabrycky 2009). Neglecting the octupole-
level approximation can cause changes in the dynamics
varying from a few percent to completely different
qualitative behavior.

Some other derivations of octupole-order equations
of motion dealt with the secular dynamics in a gen-
eral way, without using Hamiltonian perturbation the-
ory or elimination of the nodes (Farago & Laskar
2010; Laskar & Boué 2010; Mardling 2010; Katz & Dong
2011). In these works there were no references to the
discrepancy between these derivations and the previous
studies. Also, note that the results of Holman et al.
(1997) are based on a direct N-body integration, and
thus are not subject to the errors mentioned above.

6.3. Comparisons with Specific Papers

Many previous studies applied the test particle
quadrupole-level equations (TPQ) in various astrophysi-
cal settings, even in situations where those equations are
not strictly applicable. We address some of these studies
here in more detail.

As discussed above, Kozai (1962) studied the effect of
Jupiter perturbations to an inclined asteroid. He specif-
ically assumed that Jupiter’s eccentricity is zero. How-
ever, as shown in Figure 8, taking into account Jupiters
eccentricity (∼ 0.05), produces a dramatically different
evolutionary behavior, including retrograde orbits for the
asteroid. Thomas & Morbidelli (1996) applied the same
limit to the asteroid-Jupiter setting (see for example their
Figure 2 for a1 = 3 AU, where they explicitly show
the (wrong) vertical angular momentum conservation).
Kinoshita & Nakai (2007) developed an analytical solu-
tion for the TPQ limit (see also Kinoshita & Nakai 1991,
1999), however, they have applied it to the asteroid-
Jupiter system, again assuming zero eccentricity for
Jupiter. Note that all these works used the secular ap-
proximation for somewhat high α, with a1 = 3 AU; for
this value the secular approximation breaks when the as-
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teroid’s apo-center crosses Jupiter’s orbit. In addition,
Kinoshita & Nakai (2007) assumed a1 = 1.814 AU, and
as shown in the numerical integration in Figure 8, using
the secular approximation for even this large value of α,
may result in in-accurate evolutionary behavior.

The Kozai-Lidov mechanism has been applied to the
study of the outer solar system. Kinoshita & Nakai
(2007) also applied their analytical solution to Nep-
tune’s outer satellite Laomedeia. This system has ǫ → 0
and thus the TPQ limit there is justified. In addition,
Perets & Naoz (2009) have studied the evolution of bi-
nary minor planets in the frame work of TPQ. In this
problem ǫ → 0 and thus the results presented there
and later applied in Naoz et al. (2010) and Grundy et al.
(2011) justify the application of the TPQ limit.

Lidov & Ziglin (1976, sections 3–4) also solved ana-
lytically the quadrapole-level approximation but, unlike
Kinoshita & Nakai (2007), they did not restrict them-
selves to the TPQ limit, and used the total angular mo-
mentum conservation law in order to calculate the in-
clinations. Later, Mazeh & Shaham (1979) also did not
restrict their derivation to the TPQ limit (their eqs. A1-
A8), and allowed for small eccentricities and inclinations
of the outer body.

Kiseleva et al. (1998) and
Eggleton & Kiseleva-Eggleton (2001) studied the
Algol triple system (Lestrade et al. 1993) using the
TPQ equations. The TPQ equations were also used
in the paper that introduced the influential KCTF
mechanism (Mazeh & Shaham 1979; Eggleton et al.
1998). Figure 12 compares the evolution computed in
the (incorrect) “standard” quadrupole formalism, the
correct quadrupole formalism, and the octupole-level
formalism applied to the Algol system of Kiseleva et al.
(1998). The correct quadrupole formalism decreases
the minimum value of 1 − e1 by almost a factor of 2
relative to the previous “standard” formalism. The
reduced pericenter distance would strongly increase
the effects of tidal friction (not included here), which
may lead to rapid circularization of the inner orbit.
The octupole-level computation decreases the minimum
pericenter distance by a further 40%.

Mikkola & Tanikawa (1998) analyzed the system CH
Cygni, assuming that it was a triple system11. They used
the TPQ limit to model the system and derive its orbital
parameters. They found that the best fitted model has
in fact comparable masses for the inner and outer or-
bits, and shorter periods for the outer and inner orbits
then found in the literature using spectroscopy and inter-
ferometry (e.g., Hinkle et al. 2009; Miko lajewska et al.
2010). As we showed in Figure 10 using the octapule-
level equations we found a dramatically different evo-
lutionary path for their best-fit parameters then the
quadrapole-level, and also the TPQ. It may even be that
the triple model for this system cannot be excluded based
on Mikkola & Tanikawa (1998) results, since the evolu-
tion is so different under the corrected formalism. We
suggest that this work should be repeated.

Wu & Murray (2003), Wu et al. (2007),
Fabrycky & Tremaine (2007) and Correia et al. (2011)

11 It was recently claimed by Hinkle et al. (2009);
Miko lajewska et al. (2010) that this system is in fact not a
triple.

Fig. 12.— The time evolution of the system Algol (Eggleton et al.
1998), with (m1,m2, m3) = (2.5, 2, 1.7) M⊙. The inner orbit has
a1 = 0.095 AU and the outer orbit has a2 = 2.777 AU. The initial
eccentricities are e1 = 0.01 and e2 = 0.23 and the initial relative
inclination i = 100◦. The z-components of the inner and outer
orbital angular momentum, H1 and H2 are normalized to the total
angular momentum. The initial mutual inclination of 100◦ cor-
responds to inner- and outer-orbit inclinations of 91.6◦ and 8.4◦,
respectively. We consider the (corrected) quadrupole-level evolu-
tion (blue lines), octupole-level evolution (dashed lines) and also
the standard (incorrect) quadrupole-level evolution. In the latter
we have assumed, as in previous papers, that itot = i1, which
results in the discrepancy between the inclination values.

studied the evolution of a Jupiter-mass planet in stellar
binaries in the framework of KCTF. The case of HD
80606b (Wu & Murray (2003); Fabrycky & Tremaine
(2007, their Fig. 1) and Correia et al. (2011, also Fig.
1)) was considered with an outer stellar companion at
1000 AU, and thus even if it that companion is assumed
to be eccentric, ǫM is negligible, and the system is
well described TPQ equations. However, the statistical
distribution for closer stellar binaries in Wu et al. (2007)
and Fabrycky & Tremaine (2007) is only valid in the
approximation where the outer orbit’s eccentricity is
zero. In fact for the eccentric and packed systems
considered in those studies, ǫM is not negligible, and the
the octupole-level approximation results in dramatically
different behavior (see §4.3). The same dramatic differ-
ence in behavior also exists in the analysis of triple stars
(e.g., Fabrycky & Tremaine 2007; Perets & Fabrycky
2009), and thus we suggest that these studies should be
repeated12.

7. CONCLUSIONS

We have shown that the “standard” Kozai formal-
ism had an error in the implementation of Hamilto-
nian mechanics (Kozai 1962; Lidov 1962). Correcting
the formalism we find that the z-components of the both
the inner and outer orbits’ angular momenta in general
change with time at both the quadrupole and octupole
level. The conservation of the inner orbit’s z-component

12 We note that if ǫM is too big the system becomes unstable,
which may suggests that the phase space for which the eccentric
Kozai is significant may be somewhat limited.
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of the angular momentum (the famous
√

1 − e21 cos i =
constant) only holds in the quadrupole-level test particle
approximation. We have explained in details the source
of the error in previous derivations (§6.1).

We have re-derived the secular evolution equations for
triple systems using Hamiltonian perturbation theory to
the octupole-level of approximation (Section 2 and Ap-
pendix A, 4 and Appendix C). We also showed that one
can use the simplified Hamiltonian found in the litera-
ture (e.g., Ford et al. 2000b) as long as the equations of
motion for the inclinations are calculated explicitly from
the total angular momentum.

The correction shown here has important implications
to the evolution of triple systems. We discuses a few
interesting implications in Section 5. We showed that
already at the quadrupole-level approximation the ex-
plicit assumption that the vertical angular momentum
is constant can lead to erroneous results, see for exam-
ple Figure 4. In this Figure we showed that far from the
test particle limit in the quadrupole-level one can already
find a significant difference in the evolutionary behavior.
The corrected dynamics converges with the test parti-
cle in the limit where G2/G1 < 10−4, (see Figure 5).
During the evolution the inclination and eccentricity of
both orbits oscillate. We show in Appendix B that at the
quadrupole level of approximation, the inner eccentricity
and the mutual inclination have a well defined maximum
and minimum. At the test particle limit these values
converge to the critical inclination (39.2◦ ≥ i0 ≤ 140.8◦)
for large oscillatory amplitudes.

We have derived the complete set of equations for the
octupole-level evolution, including the explicit equations
of motion for the evolution of the inclinations and the
z-component of the angular momentum of the inner and
outer orbits.

The most notable outcome of the results presented
here happens in the octupole-level of approximation,
when the inner orbit flips from prograde to retrograde
with respect to the total angular momentum (we call
this flip the “eccentric Kozai mechanism”). We point
out that, Krymolowski & Mazeh (1999); Ford et al.
(2000b); Blaes et al. (2002); Lee & Peale (2003b) and
Laskar & Boué (2010) had the correct equations of mo-
tion, and could, in principle, have observed this phenom-
ena. However, it seems that the assumption of a constant
vertical angular momentum was built into the commu-
nity understanding of Kozai mechanism that the eccen-
tric Kozai-Lidov effect was overlooked.

In Naoz et al. (2011) we suggested that this effect may
play an important role in the formation mechanism of
retrograde Hot Jupiters. There we showed the impor-
tance of this effect in a verity of planetary and stellar
triple systems. For some examples see Figures 6–9, and
Naoz et al. (2011) where we specifically discussed the
evolution of two planet systems, triple stars and asteroids
due to gravitational perturbations from Jupiter. We also
compared our derivation with direct N-body integration
and illustrated the same qualitative evolution. We also
emphasized the importance of higher-orders approxima-
tions, where ǫM is significant.
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APPENDIX

THE SECULAR AVERAGING AT THE QUADRUPOLE LEVEL

We develop the complete quadrupole-level secular approximation in this section. As mentioned, the main difference
between the derivation shown here and those of previous studies lies in the “elimination of nodes” (e.g., Kozai 1962;
Jefferys & Moser 1966), which relates to the transition the invariable plane (e.g., Murray & Dermott 2000) coordinate
system, where the total angular momentum lies along the z-axis.

Transformation to the Invariable Plane

We choose to work in a coordinate system where the total initial angular momentum of the system lies along the z
axis (see Figure 2),; the x-y plane in this coordinate system is known as the invariable plane (e.g., Murray & Dermott
2000), and therefore we call this coordinate system the invariable coordinate system. We begin by expressing the
vectors r1 and r2 each in a coordinate system where the periapse of the orbit is aligned with the x-axis and the orbit
lies in the x-y plane, called the “orbital coordinate system,” and then rotating each vector to the invariable coordinate
system. The rotation that takes the position vector in the orbital coordinate system to the position in the invariable
coordinate system is given by (see Murray & Dermott 2000, chapter 2.8, and Figure 2.14 for more details)

r1,inv = Rz(h1)Rx(i1)Rz(g1)r1,orb , (A1)

where the subscript ”inv” and ”orb” refer to the invariable and orbital coordinate systems, respectively. The rotation
matrices Rz and Rx as a function of rotation angle, θ, are

Rz(θ) =

(

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

)

(A2)

and

Rx(θ) =

(

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

)

. (A3)

Thus, the angle between r1 and r2 is given by:

cos Φ = r̂
T
2,orbR

−1
z (g2)R−1

x (i2)R−1
z (h2)Rz(h1)Rx(i1)Rz(g1)r̂1,orb, (A4)

where r̂1,2,orb are unit vectors that point along r1,2,orb. In the orbital coordinate system, we have

r̂1,2,orb =

(

cos (l1,2)
sin (l1,2)

0

)

. (A5)
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Note that R−1
z (h2)Rz(h1) = Rz(h1−h2) ≡ Rz(∆h), eso the Hamiltonian will depend on the difference in the longitudes

of the ascending nodes; in a similar manner, the Hamiltonian depends on l1 and l2 only through expressions of the
form l1 + g1 and l2 + g2. Replacing cos Φ in the Hamiltonian, eq. (15), with equation (A4) we find a general form of
the Hamiltonian in terms of the orbital elements.

Transformation to Eliminate Mean Motions

Because we are interested in the long-term dynamics of the triple system, we now describe the transformation that
eliminates the short-period terms in the Hamiltonian that depend of l1 and l2. The technique we will use is known as
the Von Zeipel transformation (for more detalis, see Brouwer 1959).

Write the triple-system Hamiltonian in eq. (15) as

H = HK
1 + HK

2 + H2, (A6)

where HK
1 and HK

2 are the Kepler Hamiltonians that describe the inner and outer elliptical orbits in the triple system
and H2 describes the quadrupole interaction between the orbits. Note that H2 is O

(

α2
)

, and is the only term in H
that depends on l1 or l2. Accordingly, we seek a canonical transformation that can eliminate the l1 and l2 terms from
H3. Such a transformation must be close to the identity, since H3 ≪ H; let the generating function be

S(L∗

j , G
∗

j , H
∗

j , lj , gj, hj) =
2
∑

j=1

[

L∗

j lj + G∗

jgj + H∗

j hj

]

+ α2S2(L∗

j , G
∗

j , H
∗

j , lj , gj, hj), (A7)

where we indicate the new momenta with a superscript asterix, and S2 is the non-identity piece of the transformation
that we will use to eliminate H2. The relationship between the new and old canonical variables is

pi =
∂S

∂qi
= p∗i + α2 ∂S2

∂qi
(A8)

and

q∗i =
∂S

∂p∗i
= qi + α2 ∂S2

∂p∗i
, (A9)

where the momenta pi ∈ {Li, Gi, Hi}, and the coordinates qi ∈ {li, gi, hi}. Because our generating function is time-
independent, the new and old Hamiltonians agree when evaluated at the corresponding points in phase space:

H(qi, pi) = H∗(q∗i , p
∗

i ) (A10)

when the phase space coordinates satisfy equations (A8) and (A9). Inserting these relations into the un-transformed
Hamiltonian, and expanding to lowest order in α2, we have

H(q∗i , p
∗

i ) + α2 ∂H
∂pi

∂S2

∂qi
− α2 ∂H

∂qi

∂S2

∂p∗i
= H∗ (q∗i , p

∗

i ) . (A11)

Equating terms order-by-order in α gives

HK
1 (q∗i , p

∗

i ) = H∗K
1 (q∗i , p

∗

i ), (A12)

HK
2 (q∗i , p

∗

i ) = H∗K
2 (q∗i , p

∗

i ), (A13)

and

H2 (q∗i , p
∗

i ) + α2
2
∑

i=1

∂H
∂pi

∂S2

∂qi
− α2

2
∑

i=1

∂H
∂qi

∂S2

∂p∗i
= H∗

2 (q∗i , p
∗

i ) . (A14)

Since the last two terms on the left-hand side of this latter equation are already O
(

α2
)

, only the HK
1 and HK

2 parts
of H contribute. These Kepler Hamiltonians only depend on L1 and L2, so there are only two non-zero partials of H
at order α2:

H2 (q∗i , p
∗

i ) + α2 ∂HK
1

∂L1

∂S2

∂l1
+ α2 ∂HK

2

∂L2

∂S2

∂l2
= H∗

2 (q∗i , p
∗

i ) . (A15)

We must use the terms that depend on S2 to cancel any terms in H2 that depend on l∗1 and l∗2. Note that H2 is
periodic in l∗1 and l∗2 with period 2π (see equations (A4) and (A5)), so we can write

H2 (q∗i , p
∗

i ) = α2h0 + α2
∞
∑

k1,k2=1

hk1k2
e−ik1l

∗

1
−ik2l

∗

2 , (A16)

with

hk1k2
=

1

4π2α2

∫ 2π

0

dl∗1dl
∗

2 H2 (q∗i , p
∗

i ) eik1l
∗

1
+ik2l

∗

2 . (A17)
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Now let ∂HK
1 /∂L1 ≡ ω1(L1), and ∂HK

2 /∂L2 ≡ ω2(L2). Suppose that S2 is periodic in l1 and l2 (which are equivalent,
at lowest order, to l∗1 and l∗2). Then

α2h0 + α2
∞
∑

k1,k2=1

hk1k2
e−ik1l

∗

1
−ik2l

∗

2 + α2ω1

∞
∑

k1,k2=1

−ik1sk1k2
e−ik1l1−ik2l2

+ α2ω2

∞
∑

k1,k2=1

−ik2sk1k2
e−ik1l1−ik2l2 = H∗

2 (q∗i , p
∗

i ) , (A18)

where

S2 = s0 +

∞
∑

k1,k2=1

sk1k2
e−ik1l1−ik2l2 . (A19)

The terms dependent on l1 will be eliminated from H∗
2 if

sk1k2
= −i

hk1k2

ω1k1 + ω2k2
. (A20)

Assuming than the system is far from resonance (that is, that ω1k1 + ω2k2 6= 0 for all k1 and k2), this gives us the
necessary S2 to eliminate all terms in H2 that depend on l1 or l2, leaving

H∗

2 (q∗i , p
∗

i ) = α2h0 =
1

4π2

∫ 2π

0

dl∗1dl
∗

2 H2 (q∗i , p
∗

i ) eik1l
∗

1
+ik2l

∗

2 . (A21)

That is, our canonical transformation to eliminate the rapidly-oscillating parts of H has left us with a Hamiltonian
that is the average over the oscillation period of the original Hamiltonian13.

The value of the Hamiltonian in equation (15) averaged over the mean motions is

H∗

2 =
C2

8
{[1 + 3 cos(2i2)]

(

[2 + 3e21][1 + 3 cos(2i1)] (A22)

+ 30e21 cos(2g1) sin2(i1)
)

+ 3 cos(2∆h)[10e21 cos(2g1)

× (3 + cos(2i1)) + 4(2 + 3e21) sin(i1)2] sin2(i2)

+ 12(2 + 3e21 − 5e21 cos(2g1)) cos(∆h) sin(2i1) sin(2i2)

+ 120e21 sin(i1) sin(2i2) sin(2g1) sin(∆h)

− 120e21 cos(i1) sin2(i2) sin(2g1) sin(2∆h)} ,

where C2 was defied in equation (20).

MAXIMUM ECCENTRICITY AND “KOZAI” ANGLES IN THE QUADRUPOLE APPROXIMATION

First note that setting ė1 = 0 also means that Ġ1 = 0. The values of the argument of periapsis that satisfy these
relations are: g1 = 0 + πn/2, where n = 0, 1, 2... . Also, setting Ġ1(e1,max,min) = 0 means that Ḣ1(e1,max,min) = 0 and

i̇1 = 0, i.e., an extremum of the eccentricity is also an extremum of both the inner and outer inclinations.
The conservation of the total angular momentum, i.e., G1+G2 = Gtot sets the relation between the total inclination

and inner orbit eccentricity. We re-write equation (6) as

L2
1(1 − e21) + 2L1L2

√

1 − e21

√

1 − e22 cos itot = G2
tot −G2

2 , (B1)

where in the quadrupole-level approximation e2 and G2 are constant. The right hand side of the above equation is set
by the initial conditions. In addition, L1, and L2 [see eqs. (3) and (4)] are also set by the initial conditions. Using the
conservation of energy we can write, for the minimum eccentricity case (i.e., setting g1 = 0)

E

2C2
= 3 cos2 itot(1 − e21) − 1 + 6e21 , (B2)

where we also used the relation ∆h = π. We find a similar equation if we set g1 = π/2:

E

2C2
= 3 cos2 itot(1 + 4e21) − 1 − 9e21 . (B3)

13 Note that the canonical variables are also transformed. They
differ from the original variables at O

(

α2
)

. However, this dif-
ference is irrelevant when evaluating the interaction between the

orbits described by H2, as this interaction is already O
(

α2
)

, and
so the differences between the original and transformed variables
contribute at sub-leading order.
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Fig. 13.— The total inclination and eccentricity relation. We show constant energy curves (solid curves, the “half” ellipses are for eq. (B5)
and two examples for i0 = 80◦ and i0 = 100◦ of eq. (B6)), and constant total angular momentum curves (eq. (B4) dashed curves). The
initial conditions considered here are e0

1
= 0, g0

1
and e0

2
= 0 and L1/L2 = 0.07, appropriate for the Algol system (see §5.4). We consider

four different initial inclinations and their symmetric 90◦ counterparts, from bottom to top 10, 30, 60 and 80 degrees. We also show an
example (highlighted curve) for the Algol system which is a result of integration of the quadrupole-level approximation equations.

Equations (B1), (B2) and (B3) give a simple relation between the total inclination and the inner eccentricity. The
remainder of the parameters in the equations are defined by the initial conditions. Thus, using equations (B2) and
(B1) we can find the minimum eccentricity reached during the oscillation and using equations (B3) and (B1) we can
find also the maximum and the minimum inclinations. The following example illustrates the relation defined by these
equations between the inclination and the eccentricity.

For simplicity we set initially e01 = 0, g01 and e02 = 0 (the superscript 0 stand for initial values). In this appendix we
consider only the quadrupole-level approximation, and thus e2 doesn’t change. Using these initial conditions (and for
some initial mutual inclination i0) we can write equation (B1) as

√

1 − e21 cos itot = cos i0 +
L1

2L2
e21 . (B4)

We show these curves for different i0 in Figure 13 (short dashed curves) for a hypothetical system with the parameters
of Algol (but with e2 = 0, see §5.4). Note that there is a slight asymmetry between the prograde and retrograde orbits
due to the L1/L2 factor (which is not the case for the test particle case, see Lithwick & Naoz 2011; Katz et al. 2011).
We also write equations (B2) and (B3) using the initial conditions. Equation (B2) can be simplified to

(1 − e21) cos2 itot = cos2 i0 + 2e21 , (B5)

depicted in Figure 13 (solid curves, for different i0). As can be seen from the Figure, this equation gives the minimum
eccentricity, which is the crossing point with equation (B4). For these choice of initial conditions the minimum
eccentricity is e01 = 0. Equation (B3) becomes

(4 + e21) cos2 itot = cos2 i0 − 3e21 , (B6)

which is depicted in Figure 13 (long dashed curves, for i0 = 80◦ and 100◦). We now use this equation and equation
(B4) to find the maximum eccentricity. After some algebra we find:

(

L1

L2

)2

e41 +

(

3 + 4
L1

L2
cos i0 +

(

L1

2L2

)2
)

e21 +

(

L1

2L2

)2

− 3 + 5 cos2 i0 = 0 . (B7)
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As we approach the TPQ limit, L2 ≫ L1, and this equation becomes

e21 = 1 − 5

3
cos2 i0 , (B8)

which gives the maximum eccentricity as a function of mutual initial inclination with zero initial inner eccentricity.
In Figure 13 we show that this approximation still hold fairly well even for the Algol system, where L1/L2 ∼ 0.07.
Equation (B8) has been found previously (e.g. Innanen et al. 1997; Kinoshita & Nakai 1999; Valtonen & Karttunen
2006) in the TPQ approximation, but in these works it is assumed to valid outside that limit. A solution exists only if
the right hand side of this equations is positive, thus we find the critical angles for large Kozai oscillation in the TPQ
limit:

39.2◦ ≥ i0 ≤ 140.8◦ . (B9)

For larger L1/L2 and/or for initial e1 > 0 this limit and emax are different and the full solution of equations (B1),B2)
and B3) is required. In fact for each initial set of e1 > 0 and itot, there is a specific L1/L2 that will produce an angular
momentum curve that crosses 90◦. Thus, for initial g1 > 90◦ the mutual inclination can oscillate from value below 90◦

to above. This happens because the inclination of the outer orbit i2 changes considerably, while the inner orbit remain
prograde (if started prograde). We emphasize that the “ocatpole-Kozai” behavior (§4) is of course present; and can
only be neglected when ǫM ≪ 1.

THE FULL OCTUPOLE-ORDER EQUATIONS OF MOTION

We define:

C3 = −15

16

k4

4

(m1 + m2)9

(m1 + m2 + m3)4
m9

3(m1 −m2)

(m1m2)5
L6
1

L3
2G

5
2

. (C1)

Note that this definition is with a different sign from Ford et al. (2000b), and consistent with Blaes et al. (2002);
Ford et al. (2004). For equal mass m1 and m2 this factor is zero. We also define:

A = 4 + 3e21 −
5

2
B sin i2tot , (C2)

where

B = 2 + 5e21 − 7e21 cos(2g1) , (C3)

and

cosφ = − cos g1 cos g2 − cos itot sin g1 sin g2 . (C4)

The time evolution of the argument of periapse for the inner and outer orbits are given by:

ġ1 = 6C2

{

1

G1
[4 cos2 itot + (5 cos(2g1) − 1) (C5)

× (1 − e21 − cos2 itot)] +
cos itot
G2

[2 + e21(3 − 5 cos(2g1))]

}

−C3e2

{

e1

(

1

G2
+

cos itot
G1

)

× [sin g1 sin g2(10(3 cos i2tot − 1)(1 − e21) + A)

− 5 cos itot cosφ] − 1 − e21
e1G1

× [sin g1 sin g2

× 10 cos itot sin i2tot(1 − 3e21)

+ cosφ(3A− 10 cos i2tot + 2)]

}

,
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and

ġ2 = 3C2

{

2 cos itot
G1

[2 + e21(3 − 5 cos(2g1))] (C6)

+
1

G2
[4 + 6e21 + (5 cos2 itot − 3)(2 + e21[3 − 5 cos(2g1)])

}

+C3e1

{

sin g1 sin g2

(

4e22 + 1

e2G2
10 cos itot sin2 itot(1 − e21)

− e2

(

1

G1
+

cos itot
G2

)

[A + 10(3 cos2 itot − 1)(1 − e21)]

)

+ cosφ

[

5B cos itote2

(

1

G1
+

cos itot
G2

)

+
4e22 + 1

e2G2
A

]}

The time evolution of the longitude of ascending nodes is given by:

ḣ1 =− 3C2

G1 sin i1

(

2 + 3e21 − 5e21 cos (2g1)
)

sin (2itot) (C7)

−C3e1e2[5B cos itot cosφ−A sin g1 sin g2 + 10(1 + 3 cos2 itot)

× (1 − e21) sin g1 sin g2]
sin itot
G1 sin i1

,

where in the last part we have used again the law of sines for which sin i1 = G2 sin itot/Gtot. The evolution of the
longitude of ascending nodes for the outer orbit can be easily obtained using:

ḣ2 = ḣ1 . (C8)

The evolution of the eccentricities is:

ė1 =C2
1 − e21
G1

[30e1 sin2 itot sin(2g1)] (C9)

+C3e2
1 − e21
G1

[35 cosφ sin2 itote
2
1 sin(2g1)

− 10 cos itot sin2 itot cos g1 sin g2(1 − e21)

−A(sin g1 cos g2 − cos itot cos g1 sin g2)] ,

and

ė2 =−C3e1
1 − e22
G2

[10 cos itot sin2 itot(1 − e21) sin g1 cos g2 (C10)

−A(sin g1 cos g2 − cos itot cos g1 sin g2)] .

We also write the angular momenta derivatives as a function of time; for the inner orbit

Ġ1 =−C230e21 sin(2g1) sin2(itot) + C3e1e2( (C11)

− 35e21 sin2(itot) sin(2g1) cosφ + A[sin(g1) cos(g2)

− cos(itot) cos(g1) sin(g2)] + 10 cos(itot) sin(itot)[1 − e21] cos(g1) sin(g2)) ,

and for the outer orbit (where the quadrupole term is zero)

Ġ2 =C3e1e2[A{cos(g1) sin(g2) − cos(itot) sin(g1) cos(g2)} (C12)

+ 10 cos(itot) sin2(itot)[1 − e21] sin(g1) cos(g2)] .

Also,

Ḣ1 =
G1

Gtot
Ġ1 −

G2

Gtot
Ġ2 , (C13)

where using the law of sines we write:

Ḣ1 =
sin i2

sin itot
Ġ1 −

sin i1
sin itot

Ġ2 . (C14)

The inclinations evolve according to

˙(cos i1) =
Ḣ1

G1
− Ġ1

G1
cos i1 , (C15)
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and

˙(cos i2) =
Ḣ2

G2
− Ġ2

G2
cos i2 . (C16)

Our equations are equivalent to those of Ford et al. (2000b), but we give the evolution equations for H1 and H2 (and
i1 and i2).

ELIMINATION OF THE NODES EQUATIONS DERIVATION

Here we show a derivation of equations (D7) which lead to the error in previous treatments. The angular momentum
vectors of the two orbits are given by

G1,2 = G1,2 (sin i1,2 sinh1,2,− sin i1,2 cosh1,2, cos i1,2) . (D1)

Thus the total angular momentum vector is then:

Gtot = (G1 sin i1 sinh1 + G2 sin i2 sinh2, (D2)

−G1 sin i1 cosh1 −G2 sin i2 cosh2, G1 cos i1 + G2 cos i2) .

Recall that the z-component of the angular momentum is Hj = Gj cos ij.
In the elimination of the nodes we set Gtot||ẑ thus,

G1 sin i1 sinh1 =−G2 sin i2 sinh2 , (D3)

G1 sin i1 cosh1 =−G2 sin i2 cosh2 , (D4)

H1 + H2 =Gtot . (D5)

Dividing Eqs (D3) and (D4), we obtain
tanh1 = tanh2, (D6)

implying that
h1 − h2 = π . (D7)

Because the dynamics of the system conserves total angular momentum, this result will always hold. This is, however,
a dynamical restriction, and does not imply any restriction on the partial derivatives that produce the equations of
motion from the Hamiltonian. In other words, we cannot substitute

h1 = h2 − π . (D8)

into the Hamiltonian before computing equations of motion that may involve terms with

∂H
∂hi

. (D9)

EXAMPLE

As a simple example to illustrate the source of the mistake, let us consider a 1-D system with two equal masses
connected by a spring. The Hamiltonian for such a problem is

H =
P 2
1

2m
+

P 2
2

2m
+

1

2
ks(x1 − x2)2 , (E1)

where ks is the spring constant. Qualitatively equivalent to the elimination of the nodes would be here to transform
to the center of mass of the system, so that x1 = −x2. If we now substitute this relationship between the coordinates
into the Hamiltonian, we get

H =
P 2
1

2m
+

P 2
2

2m
+

1

2
ks(2x1)2 . (E2)

But this is incorrect! This Hamiltonian implies, for example, that P2 = const.
Note that the error that leads to the incorrect secular three-body Hamiltonian is analagous: conservation of mo-

mentum gives a relation between two coordinates (h1 = h2−π), and substitution of this relation into the Hamiltonian
gives the incorrect relation

√
1 − e1 cos i1 = const.


