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ABSTRACT

We have developed a new numerical method for determining the dynamical evolution of a collisionless
system in full general relativity. The method exploits Liouville’s theorem to determine the evolution of the
distribution function of matter in phase space directly. The distribution function is governed by the collision-
less Boltzmann (Vlasov) equation coupled to Einstein’s equations for the gravitational field. The method accu-
rately tracks the increasingly complicated, fine-grained structure developed by the distribution function due to
phase mixing. It can be used to study Newtonian as well as fully relativistic systems. We restrict our analysis
to spherically symmetric systems in this paper, but the gravitational field can be arbitrarily strong and the
matter velocities arbitrarily close to the speed of light. Applications include violent relaxation, the stability of
relativistic star clusters, and the collapse of unstable relativistic star clusters to black holes.

Subject headings: galaxies: nuclei — gravitation — relativity — stars: stellar dynamics

I. INTRODUCTION

Recently, Shapiro and Teukolsky (19854, b, ¢, 1986; here-
after ST1, ST2, ST3, ST4, respectively) have demonstrated how
to calculate numerically (at least in spherical symmetry) the
dynamical evolution of self-gravitating, collisionless systems in
general relativity. Their method yields a solution to the colli-
sionless Boltzmann (Vlasov) equation coupled to Einstein’s
equations for the gravitational field.

Collisionless relativistic systems may very well exist in
nature. Quasars, active galactic nuclei (AGNs), and other
intense extragalactic radio sources are believed to be powered
by supermassive black holes (see, e.g., Begelman, Blandford,
and Rees 1984). But the formation of these supermassive black
holes remains a mystery. This is a topical issue, since there is
now solid observational evidence (see Dressler and Richstone
1988 ; Kormendy 1988) that the nuclei of some nearby galaxies
do indeed contain massive (M 2 10° M) black holes. It has
long been recognized (see Zel’dovich and Podurets 1965) that
such massive black holes can form as a consequence of the
dynamical instability of a relativistic star cluster. In ST3 (see
also Kochanek, Shapiro, and Teukolsky 1987; Quinlan and
Shapiro 1988), recent Newtonian Fokker-Planck calculations
of the gravothermal catastrophe, together with the relativistic
calculations of ST1 and ST2, were recombined to make such a
scenario more than plausible. Cosmology also provides us with
several possible candidates for astrophysical realizations of
relativistic collisionless systems. Dark galactic halos made of
weakly interactive massive particles (WIMPs) are but one
example.

In their previous papers, ST addressed several major unre-
solved issues concerning collisionless gases in general rela-
tivity. Among these were the stability criterion for spherical
relativistic star clusters and the nonlinear evolution and final
fate of unstable clusters, including gravitational collapse to
black holes and relativistic violent relaxation. It had been con-
jectured that the onset of instability for spherical relativistic
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star clusters coincides with the first maximum of the fractional
binding energy along an appropriately constructed one-
parameter sequence (see Fackerell 1970; Ipser and Thorne
1968; Ipser 1969a, b, 1980). This was indeed confirmed by the
numerical calculations (see ST2). Moreover, it was found that
most unstable clusters undergo gravitational collapse to black
holes on a dynamical time scale. The physical properties of
these resulting black holes could even be studied in detail (see
ST4). These results suggest that collisionless systems will
provide a wealth of new possibilities for numerical relativity
and constitute an essential complement to other studies focus-
ing mainly on fluid systems (see, e.g., Smarr 1979, or Centrella
1985 for discussion and references) and scalar fields (see
Choptuik 1986).

The computational method of ST combined the techniques
of numerical relativity with those of N-body particle simula-
tions. In their method, a statistical representation of the initial
distribution function is constructed by specifying initial posi-
tions and velocities for a large but finite number N of discrete
particles. The motion of these particles is then calculated by
integrating simultaneously N geodesic equations in the mean
gravitational field of the system. The source terms of the Ein-
stein equations, written in the ADM formalism, are determined
by smearing out each particle over a small spatial volume, and
adding up the contributions of all particles. This is basically a
relativistic generalization of the particle-mesh methods (also
called “particle-in-cell methods” in the context of plasma
physics) used to study Newtonian collisionless star clusters (see
Sellwood 1987 for an excellent review).

Particle methods have the characteristic feature that all
numerical calculations are done in real space, even though they
are used to solve the collisionless Boltzmann equation, which
expresses the evolution of a system in phase space. It is in fact
impossible, with particle methods, to determine the distribu-
tion function f of a system in phase space, since these methods
only produce moments of f. The information provided by parti-
cle methods is therefore very incomplete. The full knowledge of
fis required to define the dynamical state of a system uniquely.
Many complicated phenomena of great astrophysical interest,
such as violent relaxation or the collisionless damping of per-
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turbations by phase mixing, can only be understood by a
detailed study of the phase space evolution of a system.

It is usually assumed in particle methods that the particles
“naturally” provide an adequate statistical coverage of phase
space. However, it is not clear to what extent a particle simula-
tion (especially with small N) actually reproduces the solution
of the collisionless Boltzmann equation, which in some sense
should correspond to the N — co limit. For any finite value of
N, artificial random statistical fluctuations will be present in all
computed quantities. Recently there has been some indication
that these fluctuations can sometimes lead to spurious results.
For example, Nishida (1986) found that the bar instability of a
thin stellar disk can be suppressed by the presence of a small
bulge component, even though previous particle simulations
had led to the opposite conclusion (see also Sellwood 1986;
White 1988).

Another possibility to study collisionless systems is to use
what we will refer to as a “phase space method” (Sellwood
1987 uses the term “collisionless Boltzmann code” instead). A
phase space method does not rely on any statistical representa-
tion of the system by particles. Instead, a phase space method
explicitly constructs the (smooth) distribution function of matter
in phase space. The source terms of the field equations are
directly obtained by numerical quadratures of f over velocity
space. This has the great advantage of eliminating random
statistical fluctuations in the data while at the same time pro-
viding us with the full distribution function of the system.
Unfortunately, very few phase space methods have so far been
successfully developed, even in the much simpler framework of
Newtonian gravity, and all of them are still in their infancy.
The reason is the extreme complexity of working in phase
space instead of real space. The large number of dimensions in
phase space (already three in spherical symmetry where real
space has only one) would already discourage many attempts.
In addition, distribution functions often have rather irregular
structures that can be hard to accurately represent numerically
(e.g., on a grid in phase space). Such irregular structures can be
due to the presence of discontinuities in the initial data, but
even in the case of a very smooth initial data, phase mixing will
usually produce increasingly intricate “fine-grained” struc-
tures (see, e.g., Fig. 5 below).

Given these difficulties, it is not surprising that no one has
attempted to develop a phase space method in the framework
of general relativity, where further important complications are
introduced by the need to integrate forward in time Einstein’s
equations for the gravitational field. This paper demonstrates
how one can construct such a method and apply it to solve
various problems in astrophysics and general relativity. For
the first time we present the evolution of the distribution func-
tion of matter in phase space for several fully relativistic self-
gravitating systems. These first results are restricted to
spherical symmetry, but the matter velocity can approach the
speed of light and the gravitational field can become arbitrarily
strong. In particular, several cases include catastrophic col-
lapse of the system to a black hole.

In § II, we summarize previous approaches for developing
phase space methods and introduce a new scheme that proved
essential in our own (relativistic) calculations. In § III, we write
the basic equations of the problem and specialize them to
spherical symmetry. This is done using the ADM formalism of
general relativity. Section IV gives a detailed description of our
numerical code. In § V we present several applications involv-
ing both Newtonian and relativistic calculations.

1. PHASE SPACE METHODS
' a) Previous Approaches

We now briefly review previous attempts at developing
phase space methods. We will confine ourselves here to the
gravitational literature. However, most of the methods
described here were originally invented by plasma physicists in
a somewhat different context. It should be noted that today
phase space methods have been essentially abandoned by
plasma physicists, who systematically prefer particle simula-
tions (see review by Dawson 1983).

Following Lynden-Bell’s (1967) statistical theory of violent
relaxation, which predicted the most probable final state of a
collisionless self-gravitating system, a large effort was mounted
to develop numerical techniques to calculate the dynamical
evolution of such systems and verify directly Lynden-Bell’s
predictions (see Cuperman and Harten 1972; and references
therein). Since this requires following phase space densities in
detail, including all distortions due to phase mixing, phase
space methods were needed. The first to be developed were the
so-called “water bag” methods (Hohl and Feix 1967; Cuper-
mann, Harten, and Lecar 1971). These methods can only be
used to study one-dimensional systems. They are based on the
following picture: matter in the two-dimensional (x, v,) phase
space is subdivided into a small (typically just one or two)
number of domains. The distribution function f(x, v,, t),
viewed as the density of an incompressible “phase fluid” is
assumed to be constant within each domain (hence the name
“water bag”). By Liouville’s theorem, this density is conserved
in time, so that one only has to follow the motion of the
domain’s boundaries in order to determine the evolution of the
system. This is done numerically by taking a sufficiently large
number of points on the boundary curves and moving them as
test particles in the gravitational field of the system. With time,
each boundary curve stretches and the system spreads out in
phase space. Consequently, more and more points must be
added in order to maintain a given accuracy. Since the
computer-time consumption is a linearly increasing function of
the number of points to be moved, it can increase more than
linearly with physical time. This is not a defect of the method,
but simply reflects the actual rapid increase of complexity
taking place in the system. Water bag methods are the ideal
tool for studying collisionless systems up to the point where
they develop very large degrees of phase mixing. In spite of
their severe limitations, they are still in use today for this
purpose (see Luwel and Severne 1985).

A totally different approach consists in solving only the
lowest moments of the collisionless Boltzmann equation.
Recently this approach was followed by White and Woodward
(1983), who reported some preliminary one-dimensional calcu-
lations (White 1986). In their method, phase phase is divided
into a Eulerian (fixed) grid. In each zone of the grid, the dis-
tribution function is represented as a quadratic polynomial in
the phase space coordinates, the coefficients of which are deter-
mined by all the possible moments of the distribution function
up to second order. The moments are updated by calculating
their fluxes across zone boundaries, so that mass, momentum,
and energy are conserved exactly. This represents the major
advantage of this method. However, when the structure of the
distribution function in phase space is too fine for the grid to
resolve, this method does not give a correct solution to the
collisionless Boltzmann equation, since it imposes an artificial
coarse graining.
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A more straightforward approach to the problem is to resort
to finite difference techniques, constructing again the distribu-
tion function on an Eulerian grid in phase space plus time. This
is obviously limited to very low dimensions, and satisfactory
finite difference schemes for the collisionless Boltzmann equa-
tion have actually been developed only in two-dimensional
phase spaces. In more than two phase space dimensions, an
attempt was made by Shlosman, Hoffman, and Shaviv (1979;
see also Hoffman et al. 1979) in the context of spherically sym-
metric (Newtonian) star clusters. They used an explicit, two-
step Lax-Wendroff scheme to solve the collisionless Boltzmann
equation in a three-dimensional phase space. (By using the
conserved angular momentum as one of the coordinates, the
problem can actually be reduced to solving the collisionless
Boltzmann equation in a two-dimensional phase space, as
noted by Fujiwara 1983.) As expected, such a straightforward
approach in higher dimensions met important difficulties. Con-
servation of mass and total energy were hard to reproduce
numerically, because these are nonlocal quantities and cannot
be conserved locally by the difference scheme. Even the positiv-
ity of the distribution function could not be guaranteed
without resorting to a rather unnatural (at least unphysical)
numerical filtering technique.

We believe that none of the methods described above can be
generalized in a satisfactory way to study relativistic problems,
where most of the computational effort should be spent in
solving Einstein’s equations and not in determining the dis-
tribution of matter. Especially, the necessity of using a Eulerian
mesh in phase space appears to us as a most undesirable
feature.

b) Using Liouville’s Theorem

For both Newtonian and relativistic systems, the collision-
less Boltzmann equation can always be written in the generic
form:

=0, (M

of (x, v, t) +ulf] f(x, v, t) +alf] of(x, v, 1)
0x

ot ov

where the “velocity” u[ f] and “acceleration” a[ f] are known
functionals of the distribution function f. The four basic steps
to propagate the distribution function f from time ¢, to ¢, > t;
are typically: (1) compute the source terms for the field equa-
tions (e.g., the density) by integrating f at t, over velocity
space; (2) integrate the field equations, thereby determining
u[ f] and a[ f] at time ¢t,; (3) extrapolate to determine (guess)
the value of these quantities over the interval (¢,, t,); finally (4)
compute f at time t, using equation (1). A key idea in what
follows will be to use Liouville’s theorem for step (4), which we
write as

f(xza U2, t2) =f(x1’ Uy, tl) 5 (2)

where (x,, v,) is the position in phase space at time ¢, of a test
particle that will reach the position (x,, v,) at time t,. Since
u[ f] and a[ f] are known for all ¢t < ¢,, one can actually con-
struct the trajectory of such a test particle. Since fis also known
at all times t < t, one can therefore determine f(x,, v,, t,) for
all (x,, v,).

This idea was first implemented in a numerical scheme
developed by Fujiwara (1981, 1983). The elegance and simpli-
city of his method motivated us to develop its relativistic gen-
eralization. However, we quickly discovered that in many cases
this scheme presents numerical instabilities which can lead to
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totally inaccurate results. We now describe why this happens,
and how a more reliable scheme based on the ideas developed
above can still be obtained.

In Fujiwara’s method, the distribution function f is con-
structed on a grid of points in phase space. To get the value of f
at time ¢, and grid point position (x,, v,), equation (2) is used
with ¢, = t, — At, where At is the time step. The old position
(1, v4) is determined by placing a test particle at (x,, v,) and
moving it backward in time, from ¢, to t,, in phase space. In
general, this old position (x,, v,) is not a grid point at time t,.
Therefore one must perform a (multidimensional) interpolation
on the grid in order to get f(x,, vy, t,) and thereby the new grid
point value f(x,, v,, t,). The error due to the interpolation on
the grid at ¢, propagates to the new grid at ¢, where it becomes
an error on the values of f at the grid points. This leads inevita-
bly to an amplification of the error. In particular, mass or total
energy are not conserved, and the positivity of the distribution
function can be violated. When the distribution function pre-
sents discontinuities, or when it has developed even only a mild
degree of phase mixing, the error due to just one interpolation
can become quite large and the method breaks down almost
immediately. This can be quite spectacular, especially if one
uses spline interpolation, which tends to form large-amplitude
oscillations whenever the data to be interpolated present any
kind of strongly nonpolynomial behavior. (These severe prob-
lems were also recognized by Inagaki, Nishida, and Sellwood
1984; Nashida 1986; and White 1986.)

One very simple way of not having to use any interpolation
is to extend the value of ¢, in equation (2) to t = 0. Indeed, at
t = 0 to the distribution function f'is known to arbitrary accu-
racy, since it must be given as an initial condition. Moreover,
there is no need in this case to introduce any grid at all in phase
space, since intermediate values of f are never needed and
therefore need not be stored. One can directly compute all
quadratures over velocity space at any time by using a self-
adaptive quadrature routine. When the routine asks for the
value of f at some point in phase space, this point is simply
tracked along a dynamical path all the way back to t =0,
where f can be accurately evaluated from the initial data.
Moreover, such a self-adaptive quadrature routine is ideally
suited to problems involving discontinuous distribution func-
tions or large degrees of phase mixing: more points can be
added in phase space to maintain high accuracy whenever and
wherever required by the structure of the distribution function.
The only disadvantage of this scheme is its obviously large
computational cost. Indeed, the computation time per iteration
increases with time, since longer and longer trajectories have to
be constructed to evaluate f'at a given point. However, we have
already argued that, at least to some extent, this merely reflects
the real increase of complexity occurring in the physical
system.

In § IV, we will give a detailed description of how these ideas
have been implemented in our relativistic code. In particular,
we will discuss a series of refinements that can be used to keep
the total computation time within reasonable limits.

III. MATHEMATICAL FORMULATION
We adopt the notations of Misner, Thorne, and Wheeler
(1973; hereafter MTW) and set ¢ = G = 1 throughout.

a) Basic Equations

In general relativity, we define the distribution function as
follows (see, e.g., Ipser and Thorne 1968). Consider a small
element of matter near a particular event x in spacetime, and
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with four-momentum near a particular value p. As seen in its
own rest frame, this matter element occupies a three-
dimensional volume dV, in spatial coordinate space and a four-
dimensional volume dV, in momentum space. If there are dN
particles (or stars) in this matter element, then the number
density in phase space, or distribution function f(x, p), is
defined by

S, p) = ©)

dN
dv.av,’

In coordinate form dV, and dV, are given by

0
__—p; N —gdxtdx?dx?

—dpodp, dp, dp; @
Vv 9

where g is the determinant of the metric and m = (—p, p*/? is
the rest mass of a particle with four-momentum p. For colli-
sionless matter, particles move along geodesics, and Liouville’s
theorem implies the conservation of f along geodesics. This
may be written (following MTW)

Df
dt

where the Liouville operator D/dt is differentiation with
respect to proper time along a geodesic:

@,

=0, G

D_(&\3o (4.2 _g"p, 0 1 ., 0
dr ( )8x’+<dr)6p¢_ m ox* 2m? “”"”"apa'
(6

Equation (5) represents the relativistic generalization of the
collisionless Boltzmann equation. The metric g,,, is determined
by Einstein’s equations,

G,y = 8T, , ™

which couple to f through the definition of the stress-energy
tensor,

5= o Lay,. ®

Equations (5)}«8) are the fundamental equations describing
relativistic collisionless systems.

For computational convenience, we will consider only
systems where all particles have the same rest mass m. (By the
equivalence principle, this is not a physically significant
restriction for a collisionless system.) In this case equation (5)
can be rewritten in the familiar form of equation (1),

o, (& & y
6t+<dt>3x’+< >6u 0, ©)

or, explicitly,

S dwy L, 9 _
ot u ox w09 it "0 =0, (10)

where now f = f(t, X/, u;) = dN/(dV, dV)), w1th u, = p,/m, and
du, du, du,

u°\/——_g

dv, = # f"%é[(—p,p“)‘” —m] = (11)

is the volume element in velocity space.
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b) Choice of Coordinates

From now on we specialize to spherical symmetry. The
metric is written in the ADM form (Arnowitt, Deser, and
Misner 1962), with isotropic radial coordinate,

= —(a? — A2B?)dt® + 24%Bdrdt
+ AXdr* + r*d6* + r? sin? 0d¢?) . 12)
Here o and f are the lapse and shift functions of ADM; see also
Smarr and York (1978a, b).

As coordinates in phase space, we use the radial velocity u,,
the “angular momentum at infinity” j, defined by

. Uy
j= U+ sin? 0’ (13)
and the angle
Y =tan~! (__uo el 0) , (14
Uy

measuring the orientation of the transverse velocity. In spher-
ical symmetry, f cannot depend on i, and j is a conserved
quantity, so that equation (10) reduces to the simple form

o o of
+<dt> 6r+<dt>6u 0. (1)

since df/0y = 0 and dj/dt = 0. The coefficients dr/dt and du,/dt
can be written explicitly in terms of 7, ,, and the metric coeffi-
cients. After some calculation, one finds

dr u,
a= o 6
du’ u? A

uloo, +u, B, +—% +j2 ! + A 17
= = —ulan (2, Ar

dt ° A3 u® \r24%  r243)’
where

1 2 2
u = ; 1+ u_ + Ajz 5 - (18)

Equation (17) is simply the geodesic equation corresponding to
the metric (12), while equation (18) is obtained from the nor-
malization conditions u, u* = —1.

The field equations in the metric (12) have been discussed in
detail in ST1. We will therefore only mention those key results
that are used directly in our numerical scheme. An essential
consequence of spherical symmetry is that the metric coeffi-
cients can be determined entirely from the ADM constraint
equations. These are the Hamiltonian constraint equation
(ST1, eq. [26]), which here reduces to

la 1/2 15/2 § 2
r6r< S A= 2 A 8mp+ 2 K), (19)

and the momentum constraint equation (ST1, eq. [25]), which
can be integrated to give

8t ("
K= — yES LA3r3t,dr. (20)

In these expressions, K = K," is the radial component of the
extrinsic curvature, while p and ¢, are matter variables as mea-
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sured by the normal observers:

p=T,nn, 1)

t,=Yng T . (22)

The vector n* is the normal to the ¢ = constant hypersurfaces,
described by the three-metric y** = g** + n*n”. The normal has
components
1

n,=(—a,0,0,0), nt = p (1, —=5,0,0). (23)
As in ST1, we adopt maximal time slicing, which requires that
the trace of the extrinsic curvature tensor vanish. This gives an
equation for the lapse function a:

190 0 3 3 .,
2 6r<Ar o oc)—aA <8np+2K +4nT>, 24)

where T = T*,. Finally, a shift condition is obtained by
requiring that the spatial part of the metric be in the isotropic
(conformally flat) form of equation (12), which yields

ﬁ=—%rrﬁdr. (25)

Once the source terms p, K, and T have been determined
(see § Ilc), equations (19), (24), and (25) can be solved for the
metric coefficients o, 4, and B if one imposes appropriate
boundary conditions. These are «, = A, = f = 0 atr = 0 and
a=A=1,8=0atr= co. However, for numerical work, one
must replace the boundary conditions at r = co by asymptotic
expressions at large but finite r. These conditions can be
written (see ST1, but note the wrong sign in their eq. [41]):

M)\? M*
A=<1+5> +0<r—4>, (26)
1-—
M
a=m+0<~r—>, 27)

1 3
=——rK+O(A;1—3>, (28)

where the lowest order terms are used as boundary conditions
atr > M. Here M is the total mass-energy of the system, which
can be calculated from the values of the metric coefficients
outside the surface of the matter as (see ST1, § Ille for a
derivation)

I 1+1A>2 29)
T2 4 A7) |

This is not to be confused with the total rest mass of the system,
M, which by definition of f can be written

My =m dedeV,, . (30)

A very useful quantity derived from M and M, is the binding
energy per particle in the system, or fractional binding energy,
E/My=1—- M/M,.

¢) Source Terms

The source terms p, K, and T appearing in the field equa-
tions (19), (24), and (25) are now computed explicitly in terms of
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the distribution function f. Combining equations (8) and (21),
we get, after some calculation,

p=m J(au")zdeu . (31

Similarly, equations (8) and (22) give
t,=—m f(au°)(fu,)qu , (32)
T=—-m J‘de,,. (33)

This agrees with equations (43), (45), and (46) of ST1, if one
replaces their discrete sum over particles by a quadrature over
velocity space. The volume element in velocity space dV,,
defined by equation (11), must now be written in terms of our
phase space coordinates u,, j, and . Since for the metric (12),
(—g)'? = A3ar? sin 0, we get from the equations (11)(14),

du, dug du, n

dVv, =
A e sin 0 APau®

dj*du, (34)

where the integral over i has been carried out in the last
expression. Finally, if we combine equations (31)(34) and (20),
the calculation of the source terms is reduced to the three
following quadratures:

K =ii32§ J dr j +wdj2 J wdu,(fru,), (35)
/2
p= A32J dj* J duf( t 2t 55, 2) , (36)

u2 2\
T=- A3 2[ dj? J durf( A2 A2 z) - 37

Care must be taken of how these expressions are evaluated at
r = 0, where f # 0 only for j = 0. The coordinate singularity at
r =0 in equations (35){37) is eliminated by rewriting the
volume element in velocity space dV, = dv;dv;dv; instead of
equation (34), where carets indicate components in an orthon-
ormal frame of reference. Since r = 0 is a center of symmetry,
f there can depend only on the magnitude v = (v;2 + vA
+ v3%)'/? of the velocity vector. Therefore we can also write
dV, = 4nv? dv, so that we finally get

K. =0, (38)
+
p. = 4nm J dof(v)*(1 + v)"%, (39)
0
+ o
T. = —4nm f dvf.(0)*(1 + v}~ 12| (40)
0

Here a subscript ¢ indicates a value at r = 0 and f.(v) = f(r = 0,
Jj=0,u,=A.v)

d) Newtonian Limit

In the Newtonian limit, 4 > 1, u® > 1, >0, a — 1, and
o, — @, where @ is the Newtonian potcnt1a1 Therefore, equa-
tlons (15)«18) simply reduce to (Fujiwara 1983).

¥, of
0+'6 +< Q)@v 0, (41)

where now v, = dr/dt and j = rv, are the usual radial velocity
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and angular momentum in spherical coordinates. The force per
unit mass —®, can be directly calculated as

2 r @ b
_(I)_,, = _&gﬂ___ — 4n m\[drf djzf dvrf' (42)
0 (] —©

r r?

This is easily obtained by directly integrating equation (24) in
the Newtonian limit.

Finally, the Newtonian kinetic energy T and potential
binding energy W are computed as

<o} o0 e 22
T = 2m f ar j e j dv,(vs+j—2>f, 3)
0 0 -0

W =4z JwM(r)pr dr, (44)
0

and

so that the total (conserved) energy E = T — W.

IV. THE NUMERICAL SCHEME

We now discuss several new features of our numerical
method, especially those concerning the construction of the
distribution function and the calculation of the matter source
terms for the field equations. The reader is referred to ST1, § IV
for a description of how the field equations (19) and (24) can be
solved numerically.

Of all the refinements introduced in our code to make it
more efficient, the use of a self-adaptive quadrature routine (see,
e.g., Forsythe et al. 1977) proved to be most essential. Instead
of computing the values of f on a fixed grid of points in velocity
space and then summing these values by the trapezoidal rule, a
self-adaptive routine asks for values of f only at those points
where they are really needed to maintain a specified accuracy.
This clearly minimizes the number of points where the dis-
tribution function has to be evaluated. Moreover, any discon-
tinuity in the initial data will be automatically and accurately
treated. The self-adaptive routine will simply add a sufficiently
large number of points on either side of the discontinuity to
locate its position accurately enough before integrating across.

In our code we use the NAG (1980) routine DO1AJF for all
one-dimensional quadratures (egs. [39]-[40]) and DO1FCF
for all multidimensional quadratures (eqs. [35]-[37]). Both
routines call a user-defined function which returns the value of
the integrand at a given point. In this function, f is evaluated
numerically by integrating a trajectory backward in time, from
a point (r, u,, j) in phase space to ¢t = 0, in the known metric, as
discussed in § II. This trajectory is constructed by solving the
two ordinary differential equations (16) and (17) via a numeri-
cal scheme based on the Bulirch-Stoer algorithm (see, e.g.,
Press et al. 1986) which allows rather large step sizes to be
taken. Near turning points, however, the step size must be
reduced, and the scheme switches to a fourth-order Runge-
Kutta method for better efficiency.

The right-hand sides of equations (16) and (17) involve
values of the fields and their derivatives, which therefore must
be stored, for all iterations, on a radial grid. Methods for con-
structing such a radial grid and adapting its structure to the
evolving matter were discussed in ST1, § IV. Since this radial
grid is also used to solve the field equations by finite differ-
ences, the number of grid points must be rather large (typically
we used 512). However, by construction, the matter variables
change very little from one grid point to the next, so that it is,
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of course, not necessary to repeat the quadratures over velocity
space at every radial grid point. In practice, quadratures are
only computed at a relatively small number of representative
radial points (typically 16), and interpolation between represen-
tative points is used to determine the values of the source terms
at all other radial grid points. The interpolation scheme we use
is based on an algorithm by Fritsch and Carlson (1980). In
contrast to cubic splines, this very robust scheme automati-
cally conserves the monotonicity properties of the data to be
interpolated. A first representative point is always placed at
r = 0, where quadratures reduce to one dimension, equations
(39)+40), and are therefore especially easy to evaluate. Other
representative points must cover the matter up to its outer
surface. The actual number of representative points needed
depends on the degree of central condensation in the system
and on the desired accuracy (typically 1% in our calculations).
In Figure 1 we have sketched the logical flow in our code,
which consists of ~2500 FORTRAN lines broken up into 60
small subroutines.
Typically, relativistic initial conditions are given in the form

e {F(x), for x = ps/Emax < 1,

0, forx>1, “3)

where pg is the energy of a particle measured by a normal
observer, and E,_,, is the value of ps at the surface of the
matter. The initial matter and metric profiles are obtained by
integrating numerically the familiar equations of structure for
spherical equilibrium clusters (see, e.g., Ipser and Thorne 1968;
ST1).

Each main iteration consists in choosing a new time step,
radial mesh, and set of representative points, then computing
the source terms, and finally solving the field equations. As in
ST4, we choose the time step At = gty,,, where g is <1
(typically ¢ = 0.1) and t,,, is the central (minimum) free-fall
proper time scale:

130 (46)
.\ 32p,

The output of our code consists of the values of the metric
coefficient A4, a, and B, and the matter variables p, T, and K for
all radial grid points and all iterations. Postanalysis of this
output is done with a separate code which produces spacetime
diagrams containing Lagrangian matter tracers, light ray
tracers, and possible horizons, contour plots of the distribution
function in two-dimensional slices of phase space, and various
radial profiles of fields and matter variables (the equations
relevant to this postanalysis are given in ST1 § IIle). The only
diagnostic performed within the main code is the calculation of
the total mass-energy of the system (eq. [29]) which should be
conserved in time.

For all Newtonian calculations, we used a slightly modified
version of the code where equation (41) is used explicitly. In
particular, the three-dimensional quadrature of equation (42) is
performed numerically (using the same NAG routine as
above). This procedure gives the values of the force per unit
mass at representative points (typically 30) directly, eliminating
the evaluation of ¢, by finite differencing.

tdyn

V. APPLICATIONS

a) Newtonian Clusters

As a first test-bed calculation, we checked how accurately
our Newtonian code could maintain the structure of a stable
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t=0 (egn. 45).

L

Fic. 1.—Logical flow chart of relativistic code. Note the central role of the self-adaptive quadrature routine. See text for details.

equilibrium cluster. The initial condition was chosen to have
the form of an n =35 polytrope (a Plummer law) which is
known to be stable (Antonov 1962):

K|E|"?, for E<O0,
E =
J(E) {O, for E>0, “7)
where
GM ( P\ 1 2
E=——— — —|u2+=5
a (1 + a2> + 2 (“’ + r2) “8)

is the energy of a star per unit mass. This is a convenient choice
because equations (47) and (48) give f explicitly as a function of
coordinates in phase space, without having to integrate struc-
ture equations for spherical equilibrium (here the Lane-Emden
equation).

We compared the mass profile at t = 0 as computed from
equations (47)48),

r3 rZ —-3/2
M, = M(—3>(1 + —2) , 49)
a a

with the mass profile output by our code after the system has
been evolved for 15 dynamical times, where here the dynamical
time t,,, = (a*>/GM)'’2. We found that the structure was very
accurately maintained, the maximum difference between the
two profiles being AM,/M = 0.015 at r/a = 1.8. Conservation
of total mass and energy during this run were achieved to
better than 0.5%. Here all integration parameters had the
“typical” values mentioned in § IV, and the total computation
time was ~ 1.5 hr on an IBM 3090-600.

Next we turn to a nonequilibrium initial condition, i.e. one
with a virial ratio 2T/W < 1 at t = 0. We construct it by
reducing all velocities by a constant factor in the Plummer

model considered above. This is done by making the substitu-
tions u—>ou and j+>oj in equation (48), where a > 1. This
reduces the kinetic energy T of the system by a factor 1/a® but
leaves the mass profile M, and potential energy W unchanged.
Here we chose a = 21/2 so that 2T/W = 0.5 initially.

The time evolution of the virial ratio is presented in Figure 2.
As expected, the cluster collapses in a few dynamical times and
evolves, via phase mixing and violent relaxation, to a new
equilibrium state (2T/W — 1.0). In this case the collisionless
damping due to phase mixing is rapid, and virial equilibrium is
reached after essentially just one collective oscillation. We also
compare in Figure 2 the results of this run to those obtained by
an entirely different method: a concentric shell method (see
Henon 1964), first with 5000 shells (dotted line), then with
20,000 shells (dashed line). In both cases the agreement between
the two methods is very good, but it is striking to see that the
agreement is much better with 20,000 shells than with 5000
shells, suggesting that, as expected from a phase space method,
the solution constructed by our code does indeed correspond
to the N — oo limit. Figure 3 illustrates how large degrees of
phase mixing can be accurately treated by our method. Here
the time evolution of the distribution function is shown, inside
a plane of constant angular momentum. Finally, Figure 4
shows the relaxed mass profile obtained by our code, and a
comparison with those obtained by the concentric shell
method. Again the agreement is excellent, especially when a
large number of shells is used.

For completeness, we also examined the collapse of a homo-
geneous sphere with Maxwellian kinetic energy distribution:

3M O\ 1\ u? 4+ 2\
f= (ﬁ)(z“—) °XP<‘T’ fr=k:

0, itr>r. 0

© American Astronomical Society ¢ Provided by the NASA Astrophysics Data System


http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1989ApJ...344..146R&amp;db_key=AST

T, - 03447 TT4B6R0

R

9BIA

t /(a3 /6M)"2

FiG. 2—Evolution of the virial ratio 2T/W for a destabilized Plummer
model. Short-dashed line is from a concentric shell model with 4000 shells.
Long-dashed line is from the same concentric shell model, but with 20,000
shells. Solid line is from solving the collisionless Bolzmann equation by our
method. As expected, the agreement gets better when the number of shells is
increased.

Such an initial condition was also considered in previous
studies of Newtonian collisionless systems by Hénon (1964),
Hoffman et al. (1979), and Fujiwara (1983). However, it has the
rather unnatural features that a fraction of the matter is
unbounded initially and escapes from the system (no energy
cutoff), and that f has a sharp discontinuity, which is located at
r = 0 initially, but then propagates in phase space and is
present at all times. In Figures 5 and 6, we have compared our
results with those obtained by a direct N-body simulation, first
with 1000, then with 2000 particles. Again the agreement is
good, but becomes better when a larger number of particles is
used.

b) Relativistic Star Clusters

Following historical tradition {Zel’'dovich and Podurets
1965; Fackerell 1966; Ipser 1969; ST2), we first consider the
dynamical evolution of a collisionless system initially in equi-
librium and characterized by a truncated isothermal distribu-
tion function, i.e., with F(x) = K exp (—x/T’) in equation (45),
where K is a normalization constant and T" = T/E,_,_ is the
reduced temperature. As in the previous investigations, we
examine the one-parameter sequence of models obtained by
imposing the constraint E,_,, = m — 0.5T, where m is the rest
mass of a star.

Figure 7 shows the time evolution of the central redshift for
several models along the sequence. The transition between sta-
bility and instability is clearly located at central redshift Z, =
0.42, in complete agreement with the results of ST2. Figures 8
and 9 show the spacetime evolution of the unstable model with
Z, =0.517. In a few dynamic times, the system collapses to a
black hole, which is identified by the presence of an event
horizon and a region of trapped surfaces. The properties of the
limit surface are in excellent agreement with ST4. For example,
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the inner boundary of the region of trapped surfaces exactly
coincides with the Lagrangian matter tracer corresponding to
an interior rest-mass fraction of 0.5 (see ST4, Fig. 11).

The unique character of our method is revealed in Figure 10,
which shows how this collapse proceeds in phasespace. The
coordinates used here are not the same as in § IIL. Instead, we
use the Schwarzschild areal radius rg and the radial velocity
u’ = u,/(Aou®) measured by a normal observer. As shown in
ST4, rg and u” are freezing variables, i.c., they become constant
(with t) at late times wherever the lapse of proper time in the
normal observer’s reference frame goes to zero. Therefore we

j=0 j=05
2k ' = - T

F1G. 3.—Evolution of the distribution function for the destabilized
Plummer model considered in Fig. 2. This illustrates how our code can handle
distribution functions with complicated structures (in this case due to phase
mixing and violent relaxation). The nondimensional quantities used here are
defined as follows: ¥ = r/a, i, = u,(GM/a)'%, j = jAGMa)"?, T = t/(a3/GM)"/2.
Each plane (7, %,) is a two-dimensional slice taken from the three-dimensional
phase space by setting the angular momentum per unit mass j equal to a
constant. The sequence on the left shows the evolution in the j = 0 plane,
whereas that on the right corresponds to j = 0.5(GMa)'/?, a “typical” nonzero
value. Lines of constant f are shown, equally spaced between 0 and its
maximum value in the slice. (Note that for j # 0, the matter can never reach
r=20)
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Fi6. 4—Final (relaxed) mass profile for the destabilized Plummer model considered in Fig. 2. Notations are as in Fig. 2.
F1G. 5—Evolution of the virial ratio 2T/W for a cluster initially homogeneous and isothermal (eq. [50]). Short-dashed line is from a direct N-body simulation
with 1000 particles. Long-dashed line is from a similar N-body simulation with 2000 particles. Solid line is from our method.
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FiG. 6.—Final (relaxed) mass profile for the case considered in Fig. 5. Notations are as in Fig. 5.

FiG. 7.—Time evolution of the central redshift Z, for several clusters initially taken along the truncated isothermal sequence. Here the unit of time,,, (see eq.
[46]) is the central (minimum) free-fall proper time scale. (Note that its numerical value is different for each cluster along the sequence.) The three models at the
bottom are stable: our calculations reveal no change of structure on a dynamical time scale. The five models having initial redshifts larger than Z, = 0.42 are
unstable: they collapse to black holes in a few dynamical times.
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F1G. 8.—Spacetime diagram showing the evolution of an unstable cluster
undergoing catastrophic collapse to a black hole. Both the Schwarzschild
radius rg and the time ¢ are measured in units of the total mass-energy M of the
cluster. Initially, the cluster is in equilibrium and has a truncated isothermal
distribution with central redshift Z, = 0.52. Dotted lines are the world lines of
fictitious Lagrangian matter tracers labeled by their fixed interior rest-mass
fractions.
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Fi1G. 9.—Detail of the spacetime structure near the formation of an event
horizon for the unstable case shown in Fig. 8. Dotted lines are the world lines
of fictitious Lagrangian matter tracers labeled by their fixed interior rest-mass
fractions. Solid line is the event horizon. Shaded area is the region of trapped
surfaces.
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F1G. 10.—Time evolution of the distribution function for a cluster under-
going catastrophic collapse to a black hole. Initially, the cluster has a trun-
cated isothermal distribution with central redshift Z, = 0.52. The Schwarzs-
child radius rg (in units of the total mass-energy M) and the radial velocity u*
are used as phase space coordinates. Each plane (rg, ) is a two-dimensional
slice taken from the three-dimensional phase space by setting the angular
momentum j (see eq. [13]) equal to a constant. The series on the left corre-
sponds to j = 0, whereas that on the right corresponds to j = 0.5M2, which
represents the angular momentum of a “typical star” in this cluster (0 <j <
M? for f # 0). Lines of constant f are shown, equally spaced between 0 and its
maximum value in the slice. (Note that for j # 0, the matter never reaches
rs = 0.) In the final plots, the entire mass of the cluster has collapsed inside an
event horizon located at rg = 2M.

o
~N

expect the distribution function expressed in these variables to
exhibit a steady configuration at late coordinate time,
wherever o — 0. This is indeed what we find: once all the
matter with a given value of j has collapsed inside the horizon,
the distribution function very slowly evolves toward a final
steady structure, symmetric with respect to +u’. It is striking
to see how different this relativistic collapse is from the typical
Newtonian collapse depicted in Figure 3. There is essentially
no phase mixing here, and the distribution function evolves
very “quietly ” toward its final state.
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FiG. 11.—Time evolution of the central redshift Z_ for several clusters ini-
tially taken along the n = 4 polytropic sequence. As before, the unit of time,
L4y (sc€ €q. [46]), is the central free-fall proper time of each cluster. All models
having at t = 0 a central redshift larger Z, = 0.42 are found to be unstable. The
onset of instability therefore appears to coincide with the first maximum of the
fractional binding energy along the sequence.

We also looked at the stability of the n = 4, relativistic, poly-
tropic equilibrium sequence originally examined by Fackerell
(1970). In this case F(x) = Kx~ (1 — x?)>? in equation (45).
These clusters are important because, unlike the truncated iso-
thermal models, they are characterized by extreme core-halo
structures. Apart from their unique computational aspects,
these structures may be of significant astrophysical relevance.
Indeed, as discussed in ST3, if relativistic star clusters ever form
in nature, they are likely to be very centrally condensed. In
Figure 11 we show the time evolution of the central redshift for
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several models along the sequence. The models having an
initial central redshift Z, > 0.42 are found to be unstable and
collapse to black holes. This is just past the first maximum of
the fractional binding energy (E,/M) along the sequence (see,
e.g., Fackerell 1970). Our results completely confirm those
obtained in previous investigations, thereby providing again
compelling numerical evidence that Ipser’s (1980) conjecture,
that, as in the case of fluid stars, the instability sets in precisely
at the first fractional binding energy maximum along the
sequence, is in fact true.

In all the equilibrium sequences that we studied, the clusters
become unstable when their central redshift Z, 2 0.5. This had
already been found in the semianalytical calculations of Ipser
(19694, b) and Fackerell (1970). It had generally been believed
since then that all relativistic star clusters with central redshift
Z. 2 0.5 should be dynamically unstable. One may wonder,
however, whether it is possible to construct an equilibrium
sequence of relativistic clusters where the fractional binding
energy monotonically increases with redshift. Would all clus-
ters, in such a sequence, remain stable even when Z, » 0.5? We
have addressed these important questions using our new code
and found that it is indeed possible to construct stable rela-
tivistic star clusters with arbitrarily large central redshifts. A
detailed description of the construction procedure, together
with a complete stability analysis, have been published else-
where (see Rasio et al. 1989).
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