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1. Imtroduction

The coalescence and merging of two stars into a single object is the almost
inevitable end point of close-binary evolution. Dissipation mechanisms such
as friction in common envelopes, tidal dissipation, or the emission of grav-
itational radiation, are always present and cause the orbits of close binary
systems to decay. Examples of the binary coalescence process that are of
great current interest include the formation of blue stragglers in globular
clusters from mergers of contact main-sequence binaries, and the nuclear ex-
plosion or gravitational collapse of white dwarf mergers with total masses
above the Chandrasekhar limit (for other examples and discussions, see,
e.g., Bailyn 1993; Chen & Leonard 1993; Iben, Tutukov & Yungelson 1996;
Rasio 1995; Segretain, Chabrier & Mochkovitch 1997).

For binary neutron stars (hereafter NS), the terminal stage of orbital
decay is always hydrodynamic in nature, with the final merging of the two
stars taking place on a time scale comparable to the orbital period. Indeed,
in addition to the angular momentum loss to gravitational radiation, global
hydrodynamic instabilities will drive the binary system to rapid coalescence
once the tidal interaction between the two stars becomes sufficiently strong.
The existence of these global instabilities for close-binary equilibrium con-
figurations containing a compressible fluid was demonstrated for the first
time by Rasio & Shapiro (1992, 1994, 1995; hereafter RS1-3) using numer-
ical hydrodynamic calculations. In addition, the classical analytic work for

Figure 1. Final coalescence of two neutron stars. The initial binary configuration is
in quasi-hydrostatic equilibrium at the onset of dynamical instability. The binary mass
ratio is ¢ = 0.85. The total time elapsed between the first and last frames is roughly 5 ms.
See §4 for details.
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close binaries containing an incompressible fluid (Chandrasekhar 1969) was
recently extended to compressible fluids in the work of Lai, Rasio & Shapiro
(1993a,b, 1994a,b,c, hereafter LRS1-5). This new analytic study confirmed
the existence of dynamical and secular instabilities for sufficiently close bi-
naries containing polytropes. Although the simplified analytic studies have
given us much physical insighv into difficult questions of global fluid in-
stabilities, fully numerical calculations remain essential for establishing the
stability limits of close binaries accurately and for following the non-linear
evolution of unstable systems all the way to complete coalescence. Given
the absence of any underlying symmetry in the problem, these calculations
must be done in 3D and therefore require supercomputers.

A number of different groups have now performed such calculations,
using a variety of numerical methods and focusing on different aspects of
the problem. Nakamura and collaborators (see Nakamura 1994, and refer-
ences therein) were the first to perform 3D hydrodynamic calculations of
binary NS coalescence, using a traditional Eulerian finite-difference code.
Instead, RS have been using the Lagrangian method SPH (Smoothed Par-
ticle Hydrodynamics). They focused on determining the stability properties
of initial binary models in strict hydrostatic equilibrium and calculating the
emission of gravitational waves from the coalescence of unstable binaries.
Many of the results of RS have now been independently confirmed in the
work of New & Tohline (1997), who used completely different numerical
methods but also focused on stability questions, and by Zhuge, Centrella
& McMillan (1994, 1996), who also used SPH. Zhuge et al. (1996) also
explore in details the dependence of the gravitational-wave signals on the
initial NS spins. Davies et al. (1994) and Ruffert et al. (1996, 1997) have
incorporated a treatment of the nuclear physics in their hydrodynamic cal-
culations (done using SPH and PPM codes, respectively), motivated by
cosmological models of v-ray bursts.

In close NS binaries, general-relativistic effects combine non-linearly
with Newtonian tidal effects so that close binary configurations can become
dynamically unstable earlier during the spiral-in phase (i.e., at larger bi-
nary separation and lower orbital frequency) than predicted by Newtonian
hydrodynamics alone. The combined effects of relativity and hydrodynam-
ics on the stability of close compact binaries have only very recently begun
to be studied. Preliminary results have been obtained using both analytic
approximations (basically, post-Newtonian generalizations of LRS; see Lai
1996; Taniguchi & Nakamura 1996; Lai & Wiseman 1997; Lombardi, Rasio
& Shapiro 1997) as well as numerical hydrodynamics calculations in 3D
incorporating simplified treatments of relativistic effects (Wilson & Math-
ews 1995; Shibata 1996; Baumgarte et al. 1997; Mathews & Wilson 1997).
A NASA Grand Challenge project is under way (Seidel 1997; Swesty &
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Saylor 1997) that will ultimately attempt a fully relativistic calculation of
the final coalescence, combining the techniques of numerical relativity and
numerical hydrodynamics in 3D.

2. Astrophysical Motivation

Coalescing compact binaries are the most promising known sources of grav-
itational radiation that could be detected by the new generation of laser
interferometers now under construction. These include the Caltech-MIT
LIGO (Abramoviciet al. 1992; Cutler et al. 1992) and the European projects
VIRGO (Bradaschia et al. 1990) and GEO (Danzmann 1997). In addition to
providing a major new confirmation of Einstein’s theory of general relativ-
ity, including the first direct proof of the existence of black holes (Flanagan
& Hughes 1997; Lipunov et al. 1997), the detection of gravitational waves
from coalescing binaries at cosmological distances could provide accurate
independent measurements of the Hubble constant and mean density of the
Universe (Schutz 1986; Chernoff & Finn 1993; Markovi¢ 1993). For a recent
review on the detection and sources of gravitational radiation, see Thorne
(1996).

Expected rates of NS binary coalescence in the Universe, as well as ex-
pected event rates in forthcoming laser interferometers, have now been cal-
culated by many groups. Although there is some disparity between various
published results, the estimated rates are generally encouraging. Statistical
arguments based on the observed local population of binary radio pulsars
with probable NS companions lead to an estimate of the rate of NS binary
coalescence in the Universe of order 1077 yr~! Mpc™* (Narayan et al. 1991;
Phinney 1991). Using this estimate, Finn & Chernoff (1993) predict that
an advanced LIGO detector could observe as many as 70 events per year.
These numbers are based on a Galactic merger rate B ~ 107 %yr~' de-
rived from radio pulsar surveys. More recently, however, Van den IHeuvel &
Lorimer (1996) revised this number to B ~ 0.8 X 10~® yr~!, using the latest
galactic pulsar population model of Curran & Lorimer (1995). This value
is consistent with the upper limit of 107" yr~' for the Galactic binary NS
birth rate derived by Bailes (1996) on the basis of very general statistical
considerations about pulsars. In addition, theoretical models of the binary
star population in our Galaxy also suggest that the NS binary coalescence
rate may be as high as = 107 ¢ yr—! Mpc 2 (Tutukov & Yungelson 1993;
see also the more recent studies by Portegies Zwart & Spreeuw 1996, and
by Lipunov et al. 1997).

Most recent calculations of the gravitational radiation waveforms from

coalescing binaries have focused on the signal emitted during the last few
thousand orbits, as the frequency sweeps upward from about 10Hz to
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1000 Hz. The waveforms in this regime can be calculated fairly accurately
by performing high-order post-Newtonian (hereafter PN) expansions of the
equations of motion for two point masses (Lincoln & Will 1990; Junker &
Schafer 1992; Kidder, Will & Wiseman 1992; Wiseman 1993; Will 1994;
Blanchet et al. 1996). High accuracy is essential here because the observed
signals will be matched against theoretical templates. Since the templates
must cover ~ 10° — 10" orbits, a phase error as small as ~ 10™? could in
principle prevent detection (Cutler et al. 1993; Cutler & Flanagan 1994;
Finn & Chernoff 1993).

Near the end of the inspiral, when the binary separation becomes com-
parable to the stellar radii, hydrodynamic effects become important and
the character of the waveforms will change. Special-purpose narrow-band
detectors that can sweep up frequency in real time will be used to try to
catch the corresponding final few cycles of gravitational waves (Meers 1988;
Strain & Meers 1991; Danzmann 1997). In this terminal phase of the co-
alescence, the waveforms contain information not just about the effects of
general relativity, but also about the internal structure of the stars and the
nuclear equation of state (hereafter EOS) at high density. Extracting this
information from observed waveforms, however, requires detailed theoreti-
cal knowledge about all relevant hydrodynamic processes.

Many theoretical models of y-ray bursts (GRB) have postulated that
the energy source for the bursts could be coalescing NS binaries at cosmo-
logical distances (Paczynski 1986; Eichler et al. 1989; Narayan, Paczynski
& Piran 1992). The isotropic angular distribution of the bursts detected
with the BATSE experiment on the Compton GRO satellite (Meegan et
al. 1992) strongly suggests a cosmological origin, as does the distribution
of number versus intensity of the bursts. In addition, the rate of GRBs
detected with BATSE, of order one per day, is in rough agreement with
theoretical predictions for the rate of NS binary coalescence in the Uni-
verse (cf. above). In the past few months the first optical counterparts of
several GRBs have been identified (Groot et al. 1997; Van Paradijs et al.
1997; Bond 1997), after their positions were measured accurately with the
BeppoSAX satellite (e.g., Costa et al. 1997). As of this writing, in one case
(GRB 970508), absorption features corresponding to a redshift of z = 0.84
have been reported (Metzger et al. 1997). If confirmed, these observations
would clearly establish that at least some GRBs originate at cosmological
distances.

To model the y-ray emission realistically, the complete hydrodynamic
and nuclear evolution during the final merging of the two NS, especially
in the outermost, low-density regions of the merger, must be understood
in details. This is far more challenging than understanding the emission
of gravitational waves, which is mostly sensitive to the bulk motion of the
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fluid, but is totally insensitive to nuclear processes taking place in low-
density regions. Numerical calculations of NS binary coalescence including
some treatment of the nuclear physics have been performed by Davies et
al. (1994) and Ruffert et al. (1996, 1997). The most recent results from
these calculations indicate that, even under the most favorable conditions,
the energy provided by v annihilation is too small by at least an order of
magnitude, and more probably two or three orders of magnitude, to power
typical y-ray bursts at cosmological distances (Janka & Ruffert 1996).

3. Hydrodynamic Instabilities

Hydrostatic equilibrium configurations for binary systems with sufficiently
close components can become dynamically unstable (Chandrasekhar 1975;
Tassoul 1975). The physical nature of this instability is common to all bi-
nary interaction potentials that are sufficiently steeper than 1/r (see, e.g.,
Goldstein 1980, §3.6). It is analogous to the familiar instability of test parti-
cles in circular orbits sufficiently close to a black hole (Shapiro & Teukolsky
1983, §12.4). Here, however, it is the tidal interaction that is responsible for
the steepening of the effective interaction potential between the two stars
and for the destabilization of the circular orbit (LRS3). The tidal inter-
action exists of course already in Newtonian gravity and the instability is
therefore present even in the absence of relativistic effects. For sufficiently
compact binaries, however, the combined effects of relativity and hydro-
dynamics lead to an even stronger tendency towards dynamical instability
(see §7).

The stability properties of close NS binaries depend sensitively on the
NS EOS. Close binaries containing NS with stiff EOQS (adiabatic exponent
['2 2if P = Kp', where P is pressure and p is density) are particularly sus-
ceptible to a dynamical instability. This is because tidal effects are stronger
for stars containing a less compressible fluid (i.e., for larger I'). As the dy-
namical stability limit is approached, the secular orbital decay driven by
gravitational wave emission can be dramatically accelerated (LRS2, LRS3).
The two stars then plunge rapidly toward each other, and merge together
into a single object in just a few rotation periods. This dynamical insta-
bility was first identified in RS1, where the evolution of Newtonian binary
equilibrium configurations was calculated for two identical polytropes with
I' = 2. It was found that when r» < 3R (r is the binary separation and
R the radius of an unperturbed NS), the orbit becomes unstable to radial
perturbations and the two stars undergo rapid coalescence. For r > 3R,
the system could be evolved dynamically for many orbital periods with-
out showing any sign of orbital evolution (in the absence of dissipation).
Many of the results derived in RS and LRS concerning the stability proper-
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ties of NS binaries have been confirmed recently in completely independent
work by New & Tohline (1997) and by Zhuge, Centrella & McMillan (1996).
New & Tohline (1997) used completely different numerical methods (a com-
bination of a 3-D Self-Consistent Field code for constructing equilibrium
configurations and a grid-based Eulerian code for following the dynamical
evolution of the binaries), while Zhuge et al. (1996) used SPH, as did RS.

The dynamical evolution of an unstable, initially synchronized (i-e.,
rigidly rotating) binary containing two identical stars can be described Lypi-
cally as follows (RS1, RS2). During the initial, linear stage of the instahility,
the two stars approach each other and come into contact after about one or-
bital revolution. In the corotating frame of the binary, the relative velocity
remains very subsonic, so that the evolution is adiabatic at this stage. This
is in sharp contrast to the case of a head-on collision between two stars on
a free-fall, radial orbit, where shocks are very important for the dynamics
(RS1). Here the stars are constantly being held back by a (slowly receding)
centrifugal barrier, and the merging, although dynamical, is much more
gentle. After typically two orbital revolutions the innermost cores of the
two stars have merged and the system resembles a single, very elongated
ellipsoid. At this point a secondary instability occurs: mass shedding sets
in rather abruptly. Material is ejected through the outer Lagrange points of
the effective potential and spirals out rapidly. In the final stage, the spiral
arms widen and merge together. The relative radial velocities of neighbor-
ing arms as they merge are supersonic, leading to some shock-heating and
dissipation. As a result, a hot, nearly axisymmetric rotating halo forms
around the central dense core. The halo contains about 20% of the total
mass and the rotation profile is close to a pseudo-barotrope (Tassoul 1978,
§4.3), with the angular velocity decreasing as a power-law ) oc w ¥ where
v 5 2 and w is the distance to the rotation axis (RS1). The core is rotating
uniformly near break-up speed and contains about 80% of the mass still in
a cold, degenerate state. If the initial NS had masses close to 1.4 Mg, then
most recent stiff EOS would predict that the final merged configuration is
still stable and will not immediately collapse to a black hole, although it
might ultimately collapse to a black hole as it continues to lose angular
momentum (see Cook, Shapiro & Teukolsky 1994).

The emission of gravitational radiation during dynamical coalescence
can be calculated perturbatively using the quadrupole approximation (RS1).
Both the frequency and amplitude of the emission peak somewhere during
the final dynamical coalescence, typically just before the onset of mass
shedding. Immediately after the peak, the amplitude drops abruptly as the
system evolves towards a more axially symmetric state. For an initially
synchronized binary containing two identical polytropes, the properties of
the waves near the end of the coalescence depend very sensitively on the
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stiffness of the EOS.

When I' < 'y, with Ty =~ 2.3, the final merged configuration is per-
fectly axisymmetric. Indeed, a polytropic fluid with I' < 2.3 (polytropic
index n > 0.8) cannot sustain a non-axisymmetric, uniformly rotating con-
figuration in equilibrium (see, e.g., Tassoul 1978, §10.3). As a result, the
amplitude of the waves drops to zero in just a few periods (RS1). In contrast,
when I' > I'., the dense central core of the final configuration remains
triazial (its structure is basically that of a cornpressible Jacobi ellipsoid; cf.
LRS1) and therefore it continues to radiate gravitational waves. The am-
plitude of the waves first drops quickly to a non-zero value and then decays
more slowly as gravitational waves continue to carry angular momentum
away from the central core (RS52). Because realistic NS models have effec-
tive I' values precisely in the range 2-3 (LRS3), i.e., close to I'e;jp >~ 2.3, a
simple determination of the absence or presence of persisting gravitational
radiation after the coalescence (i.e., after the peak in the emission) could
place a strong constraint on the stiffness of the EOS.

4. Mass Transfer and the Dependence on the Mass Ratio

Clark & Eardley (1977) suggested that secular, stable mass transfer from
one NS to another could last for hundreds of orbital revolutions before the
lighter star is tidally disrupted. Such an episode of stable mass transfer
would be accompanied by a secular increase of the orbital separation. Thus
if stable mass transfer could indeed occur, a characteristic “reversed chirp”
would be observed in the gravitational-wave signal at the end of the inspiral
phase (Jaranowski & Krolak 1992).

The question was later reexamined by Kochanek (1992) and Bildsten
& Cutler (1992), who both argued against the possibility of stable mass
transfer on the basis that very large mass transfer rates and extreme mass
ratios would be required. Moreover, in LRS3 it was pointed out that mass
transfer has in fact little importance for most NS binaries (except perhaps
those containing a very low-mass NS). This is because for I' 2 2, dynamical
instability always arises before the Roche limit along a sequence of binary
configurations with decreasing separation r. Therefore, by the time mass
transfer begins, the system is already in a state of dynamical coalescence
and it can no longer remain in a nearly circular orbit. Thus stable mass
transfer from one NS to another appears impossible.

In R52 a complete dynamical calculation was presented for a system
containing twe polytropes with I' = 3 and a mass ratio ¢ — 0.85. This
value corresponds to the most likely mass ratio for the binary pulsar PSR
2303446 (Thorsett et al. 1993) and represents the largest observed depar-
ture from ¢ — 1 in any known binary pulsar with likely NS companion. For
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comparison, ¢ = 1.386/1.442 = 0.96 in PSR 1913416 (Taylor & Weisberg
1989) and ¢ = 1.32/1.36 = 0.97 in PSR 1534412 (Wolszczan 1991). For the
system with ¢ = 0.85, RS2 found that the dynamical stability limit is at
7/R ~ 2.95, whereas the Roche limit is at 7/ R ~ 2.85. The dynamical evo-
lution turns out to be quite different from that of a system with ¢ = 1. The
Roche limit is quickly reached while the system is still in the linear stage of
growth of the instability. Dynamical mass transfer from the less massive to
the more massive star begins within the first orbital revolution. Because of
the proximity of the two components, the fluid acquires very little velocity
as it slides down from the inner Lagrange point to the surface of the other
star. As a result, relative velocities of fluid particles remain largely sub-
sonic and the coalescence proceeds quasi-adiabatically, just as in the ¢ = 1
case. In fact, the mass transfer appears to have essentially no effect on the
dynamical evolution. After about two orbital revolutions the smaller-mass
star undergoes complete tidal disruption. Most of its material is quickly
spread on top of the more massive star, while a small fraction of the mass
is ejected from the outer Lagrange point and forms a single-arm spiral
outflow. The more massive star, however, remains little perturbed during
the entire evolution and simply becomes the inner core of the merged con-
figuration. This type of dynamical evolution, which is probably the most
typical one for the final merging of two NS with slightly different masses,
is illustrated in Figure 1.

The dependence of the peak amplitude h,,,, of gravitational waves on
the mass ratio ¢ appears to be very strong, and non-trivial. In RS2 an ap-
proximate scaling ., o g was derived. This is very different from the
scaling obtained for a detached binary system with a given binary sepa-
ration. In particular, for two point masses in a circular orbit with separa-
tion 7 the result would be 2 o Q%ur®, where Q* = G(M + M’)/7* and
p=MM'[(M + M'). At constant r, this gives h o g. This linear scaling
is obeyed (only approximately, because of finite-size effects) by the wave
amplitudes of the various systems at the onset of dynamical instability. For
determining the mazimum amplitude, however, hydrodynamics plays an
essential role. In a system with ¢ # 1, the more massive star tends to play
a far less active role in the hydrodynamics and, as a result, there is a rapid
suppression of the radiation efficiency as g departs even slightly from unity.
For the peak luminosity of gravitational radiation RS found approximately
Loy o g% Again, this is a much steeper dependence than one would ex-
pect based on a simple point-mass estimate, which gives L o ¢%(1+ ¢) at
constant r. The results of RS are all for initially synchronized binaries, but
very similar results have been obtained more recently by Zhuge et al. (1996)
for binaries containing initially nonspinning stars with unequal masses.
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5. What Can We Learn about Neutron Stars with LIGO/VIRGO?

The most important parameter that enters into quantitative estimates of
the gravitational wave emission during the final coalescence is the ratio
M/R for a NS (here we take G = ¢ = 1). In particular, for two identi-
cal point masses we know that the wave amplitude h obeys (ro/M)h x
(M/R), where r¢ is the distance to the observer, and the total luminos-
ity L o« (M/R)®. Similarly the wave frequency fpax during final merging
should satisfy approximately fiax (M/R):”!?' since it is roughly twice the
Keplerian frequency for two NS in contact (binary separation » ~ 2 — 3R).
Thus one expects that any quantitative measurement of the emission near
maximum should lead to a direct determination of the NS radius R, assum-
ing that the mass M has already been determined from the low-frequency
inspiral waveform (Cutler & Flanagan 1994). Most current NS EOS give
M/R ~ 0.1, with R ~ 10km nearly independent of the mass in the range
0.8My < M < 1.5M (see, e.g., Baym 1991; Cook et al. 1994; LRS3).

However, the details of the hydrodynamics also enter into this deter-
mination. The importance of hydrodynamic effects introduces an explicit
dependence of all wave properties on the EOS (which we represent here by
a single dimensionless parameter I'), and on the mass ratio ¢. If relativistic
effects were taken into account for the hydrodynamics itself, an additional,
non-trivial dependence on M /R would also be present. This can be written
conceptually as

(32) e = 0, M/R)x () )
LL_“ = E(q,P,M/R)X(%)S (2)

where L, = ¢®/G = 3.6 x 10°?ergs~'. Combining all the results of RS, we
can write, in the limit where M /R — 0 and for ¢ not too far from unity,

H(g,T, M/R) ~ 2.2 ¢* L(g,T,M/R)~ 0.5¢° (3)

essentially independent of I in the range I' ~ 2-3 (RS2). The results of RS
were for the case of synchronized spins. Zhuge et al. (1996) have performed
calculations for non-synchronized binaries and obtained very similar results
(but see §6 below). For example, for the coalescence of two non-spinning
stars with ¢ = 1 they found H ~ 1.9 — 2.3 and £ ~ 0.29 — 0.59, where
the range of values corresponds to I' between 5/3 and 3. Note that the
calculations of Zhuge et al. (1996) included an approximate treatment of
PN effects by setting up an initial inspiral trajectory for two NS of mass
M = 1.4 My and radius in the range R = 10 — 15km. Varying the radius
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of the stars in this range appears to leave the coefficients M and £ practi-
cally unchanged within their approximation. Zhuge et al. (1994, 1996) also
compute frequency spectra for the gravitational wave emission and discuss
various ways of defining precisely the characteristic frequency fiay.

6. Non-synchronized Binaries

It is very likely that the synchronization time in close NS binaries always
remains longer than the orbital decay time due to gravitational radiation
(Kochanek 1992; Bildsten & Cutler 1992). In particular, Bildsten & Cutler
(1992) show with simple dimensional arguments that one would need an
implausibly small value of the effective viscous time, .isc ~ R/c, in order to
reach complete synchronization just before final merging. In the opposite
limiting regime where viscosity is completely negligible, the fluid circu-
lation in the binary system is conserved during the orbital decay and the
stars behave approximately as Darwin-Riemann ellipsoids (Kochanek 1992;
LRS3). Of particular importance are the irrotational Darwin-Riemann con-
figurations, obtained when two initially non-spinning (or, in reality, slowly
spinning) NS evolve in the absence of significant viscosity. Compared to
synchronized systems, these irrotational configurations exhibit smaller de-
viations from point-mass Keplerian behavior at small . However, as shown
in LRS3 and RS4, irrotational configurations for binary NS with I' 2 2
can still become dynamically unstable near contact. Thus the final coa-
lescence of two NS in a non-synchronized binary system is also driven by
hydrodynamic instabilities.

The details of the hydrodynamics are very different, however. Because
the two stars appear to be counter-spinning in the corotating frame of the
binary, a vortez sheet (where the tangential velocity jumps discontinuously
by Av = vy — v_| ~ Qbr) appears when the stellar surfaces come into con-
tact. Such a vortex sheet is Kelvin-Helmholtz unstable on all wavelengths
and the hydrodynamics is therefore extremely difficult to model accurately
given the limited spatial resolution of 3D calculations. The breaking of the
vortex sheet generates a large turbulent viscosity so that the final config-
uration may no longer be irrotational. In numerical simulations, however,
vorticity is generated mostly through spurious shear viscosity introduced
by the spatial discretization (Lombardi, Rasio & Shapiro 1998).

An additional difficulty is that non-synchronized configurations evolv-
ing rapidly by gravitational radiation emission tend to develop significant
tidal lags, with the long axes of the two components becoming misaligned
(LRS5). This is a purely dynamical effect, present even if the viscosity
is zero, but its magnitude depends on the entire previous evolution of the
system. Thus the construction of initial conditions for hydrodynamic calcu-
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lations of non-synchronized binary coalescence must incorporate the grav-
itational radiation reaction self-consistently. Instead, previous calculations
of non-synchronized binary coalescence by Shibata et al. (1992), Davies et
al. (1994), and Zhuge et al. (1994, 1996) used very crude initial conditions
consisting of two spherical stars placed on an inspiral trajectory calculated
for two point masses.

7. General-Relativistic Effects on the Stability of Compact Bi-
naries

Over the last two years, various efforts have started to calculate the stability
limits for NS binaries including both hydrodynamic finite-size (tidal) effects
and relativistic effects. Note that, strictly speaking, equilibrium circular or-
bits do not exist in general relativity because of the emission of gravitational
waves. However, the stability of quasi-circular orbits can still be studied in
the framework of general relativity by truncating the radiation-reaction
terms in a PN expansion of the equations of motion (Lincoln & Will 1990;
Kidder et al. 1992; Will 1994). Alternatively, one can solve the full Einstein
equations numerically in the 3 + 1 formalism on time slices with a spa-
tial 3-metric chosen to be conformally flat (Wilson & Mathews 1989, 1995;
Wilson et al. 1996; Baumgarte et al. 1997). This effectively minimizes the
gravitational wave content of space-time. The field equations then reduce
to a set of coupled elliptic equations (for the 3 4 1 lapse and shift functions
and the conformal factor).

Several groups are now working on PN generalizations of the semi-
analytic Newtonian treatment of LRS based on ellipsoids. Taniguchi &
Nakamura (1996) consider NS-BH binaries and adopt a modified version
of the pseudo-Newtonian potential of Paczynski & Wiita (1980) to mimic
general-relativistic effects near the BH. Lai & Wiseman (1997) concentrate
on NS-NS binaries and the dependence of the results on the NS EOS. They
add a restricted set of PN orbital terms to the dynamical equations given
in Lai & Shapiro (1995) for a binary system containing two NS modeled
as Riemann-S ellipsoids (cf. LRS), but they neglect relativistic corrections
to the fluid motion, self-gravity and tidal interaction. Lombardi, Rasio &
Shapiro (1997) include PN corrections affecting both the orbital motion and
the interior structure of the stars and explore the consequences not only for
orbital stability but also for the stability of each NS against collapse. The
most important result, on which these various studies all seem to agree, is
that neither the relativistic effects nor the Newtonian tidal effects can be
neglected if one wants to obtain a quantitatively accurate determination of
the stability limits. In particular, the critical frequency corresponding to the
onset of dynamical instability can be much lower than the value obtained
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when only one of the two effects is included. This critical frequency for
the “last stable circular orbit” is potentially a measurable quantity (with
LIGO/VIRGO) and can provide direct information on the NS EOS (cf. §5).

A surprising result coming from the numerical 3 4 1 relativistic calcu-
lations of Wilson & Mathews (1995; Wilson, Mathews & Marronetti 1996;
Mathews & Wilson 1997) is the appearance of a “binary-induced collapse
instability” of the NS, with the central density of each star increasing by an
amount proportional to 1/7. This must be a purely relativistic effect, since
the Newtonian tidal effects in fact tend to stabilize the NS against collapse
(making the central density decrease by an amount proportional to 1/7°; cf.
Lai 1996). In effect, the maximum stable mass of a NS in a relativistic close
binary system could be slightly lower than that of a NS in isolation. An ini-
tially stable NS close to the maximum mass could then collapse to a black
hole well before getting to the final phase of binary coalescence! It should
be noted, however, that the numerical results of Wilson & Mathews (here-
after WM) have yet to be confirmed independently by other studies. Even
if it is real, the WM effect would be of importance only if the NS EOS is
very soft, and the maximum stable mass for a NS in isolation is not much
larger than 1.4 M. In addition, the numerical results of WM have been
criticized by many authors on theoretical grounds. Brady & Hughes (1997)
show analytically that, in the limit where the NS companion becomes a
test particle of mass m, the central density of the NS remains unchanged
to linear order in m/R, in contrast to what would be expected from the
WM results. Lombardi, Rasio & Shapiro (1997) and Wiseman (1997) argue
that there should be no destabilizing relativistic effect to first PN order. In
contrast, WM claim that their effect is at least partially caused by a non-
linear first PN order enhancement of the gravitational potential. Lombardi
et al. (1997) also find that, to first PN order, the mazimum equilibrium
mass of a NS in a binary increases as the binary separation r decreases, in
agreement with the fully relativistic numerical calculations of Baumgarte
et al. (1997).
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