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ABSTRACT
We present the results of Monte Carlo simulations for the dynamical evolution of star clusters con-

taining two stellar populations with individual masses and and total masses andm1 m2[ m1, M1 M2\
We use both King and Plummer model initial conditions, and we perform simulations for a wideM1.

range of individual and total mass ratios, and We ignore the e†ects of binaries, stellarm2/m1 M2/M1.evolution, and the galactic tidal Ðeld. The simulations use N \ 105 stars and follow the evolution of the
clusters until core collapse. We Ðnd that the departure from energy equipartition in the core follows
approximately the theoretical predictions of Spitzer and Lightman & Fall, and we suggest a more exact
condition that is based on our results. We Ðnd good agreement with previous results obtained by other
methods regarding several important features of the evolution, including the precollapse distribution of
heavier stars, the timescale on which equipartition is approached, and the extent to which core collapse
is accelerated by a small subpopulation of heavier stars. We brieÑy discuss the possible implications of
our results for the dynamical evolution of primordial black holes and neutron stars in globular clusters.
Subject headings : celestial mechanics, stellar dynamics È globular clusters : general È

instabilities È methods : n-body simulations

1. INTRODUCTION

Remarkable advances have been made over the last three
decades in our understanding of globular cluster dynamics
(see, e.g., Meylan & Heggie 1997 for a recent review). The
simple case of a two-component cluster is traditionally
regarded as the second level of sophistication and therefore
a logical challenge for new methods that have tackled the
single-component case. Two-component clusters were orig-
inally examined because they better resemble real clusters,
which contain a continuous spectrum of masses. While
somewhat more realistic in this regard, clusters with only
two mass components still represent a simpliÐcation with
respect to real clusters. It has been suggested recently,
however, that for a range of conÐgurations in mass types
and the relative size of the two populations, two-component
clusters can resemble real clusters that are mostly composed
of compact objects and main-sequence stars (Kim, Lee, &
Goodman 1998). Similarly, clusters containing both single
main-sequence stars and primordial binaries can be
modeled, in Ðrst approximation, as two-component
systems, although dynamical interactions involving binaries
are expected to play an important role for these systems
(Gao et al. 1991). Perhaps the best reason to examine a
simpliÐed model of any stellar system, however, is to obtain
a more profound understanding of individual physical pro-
cesses.

Much of the discourse regarding two-component systems
has focused on the following questions. First, for what con-
Ðgurations of the cluster is dynamical equilibrium preclud-
ed (i.e., the system is not stable on dynamical timescales) ?
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Second, for what conÐgurations of the cluster is thermal
equilibrium precluded (i.e., equipartition of kinetic energies
between each component is not allowed)? Both questions
originate from an analysis by Spitzer (1969), in which he
noticed that simultaneous thermal and dynamical equi-
librium is impossible for some clusters. In particular, the
heavier stars sink into the center as they lose kinetic energy
to the lighter stars during the approach to equipartition. If
equipartition is not attained, then the heavier stars will con-
tinue sinking until their self-gravity dominates the clusterÏs
potential in the core. Shortly thereafter, the heavier com-
ponent will undergo a gravothermal collapse, forming a
small dense core composed mainly of the heavier stars
(Spitzer 1969). ReÐnements to this analysis have obtained
similar constraints on the conÐgurations of two-component
clusters in dynamical and thermal equilibrium (Lightman &
Fall 1978).

Several methods have been used to address questions
about dynamical and thermal equilibrium in two-
component systems. These include the construction and
study of one-parameter families of models in dynamical
equilibrium (KondratÏev & Ozernoy 1982 ; Katz & Ta†
1983), Monte Carlo approaches to the numerical integra-
tion of the Fokker-Planck equation (Spitzer & Hart 1971),
direct integration of the Fokker-Planck equation in phase
space (Inagaki & Wiyanto 1984 ; Kim, Lee, & Goodman
1998), and direct N-body simulations (Portegies Zwart &
McMillan 2000). The majority of work using any one of
these methods has been undertaken at least partly in order
to conÐrm SpitzerÏs conclusion (Yoshizawa et al. 1978) or
refute it (Merritt 1981).

Dynamical equilibrium is attained and maintained on
timescales that are very short compared to the amount of
time needed for relaxation or equipartition. A so-called
equilibrium model (i.e., whose phase-space distribution
function satisÐes the equation for hydrostatic equilibrium)
therefore resembles a possible stage or snapshot in the evol-
ution of a dynamically stable cluster. It is interesting to
construct a parameterized family of equilibrium models for
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which either equipartition is assumed or the temperature
ratio is allowed to vary, in order to determine under what
conditions the dynamical equilibrium becomes impossible.
In the majority of previous work, the distribution functions
of such families take the form of lowered Maxwellians or
spatially truncated isothermal spheres.

Yoshizawa et al. (1978) examined a linear series of equi-
librium models of two-component isothermal spheres with
reÑecting walls and found that turning points of the total
energy (stability limits) were positive for some clusters. In
such cases, a cluster was not self-bounded and would disso-
ciate if the walls were removed. These conÐgurations, which
were interpreted to preclude dynamical equilibrium,
occurred under conditions corresponding closely to the
ones Spitzer proposed. Katz & Ta† (1983) examined the
limits of stability for a linear series of equilibrium models of
self-bounded two-component clusters with a lowered Max-
wellian velocity distribution. They found that the number of
possible conÐgurations for clusters in dynamical and
thermal equilibrium were diminished dramatically in the
regime that Spitzer proposed. KondratÏev & Ozernoy (1982)
constructed a family of equilibrium models, based on a gen-
eralization of the single-component King models, for which
equipartition of kinetic energies was generally impossible.
By contrast, Merritt (1981) described a one-parameter
family of equilibrium models for which equipartition in the
core is possible for all cluster conÐgurations within SpitzerÏs
unstable regime. It seems clear, however, that these models
violate an important assumption of SpitzerÏs analysis and
that they are highly unrealistic (Merritt 1981).

Few studies that examine the evolution of two-component
systems have been undertaken for a wide range of cluster
conÐgurations and using the other methods mentioned
above. Among the more notable e†orts are the Monte
Carlo calculations of Spitzer & Hart (1971 ; later extended
to three-component systems by Spitzer & Shull 1975),
which were interpreted to partially conÐrm SpitzerÏs orig-
inal analysis, and the direct Fokker-Planck integrations of
Inagaki & Wiyanto (1984 ; see also Inagaki 1985), which
also partially support SpitzerÏs claim, although by examin-
ing a limited range of clusters that do not totally satisfy his
assumptions. The former study Ðnds that a single model,
which belongs to the unstable regime in which equipartition
is precluded, develops a collapsing subsystem of heavier
stars. Both studies Ðnd that central equipartition of kinetic
energies is never attained throughout the evolution of some
clusters.

In this paper we present the results of calculations used to
model the evolution of two-component clusters with a wide
range of conÐgurations. We examine several features of the
evolution, including the tendency toward equipartition, the
evolution of mass densities in the core, and the tendency for
core collapse to be accelerated by the presence of a small
subpopulation of heavier stars. Our aim is partly to assess
the accuracy of SpitzerÏs analysis and the reÐnement sup-
plied by Lightman & Fall (1978). We have used a new
Monte Carlo code for modeling the evolution as a sequence
of equilibrium models whose velocities are perturbed
according to the average e†ect of long-range stellar encoun-
ters (Joshi, Rasio, & Portegies Zwart 2000b). Our initial
two-component systems are isolated King and Plummer
models with a subpopulation of heavier stars.

Our paper is organized as follows. In ° 2 we review the
theoretical arguments that suggest conditions under which

simultaneous dynamical and thermal equilibrium are not
allowed. In ° 3 we discuss our numerical method and the
quantities we calculate, and in ° 4 we present our main
results. In ° 5 we discuss some additional comparisons
between our Ðndings and those of other studies as well as
some astrophysical implications of our results for sub-
populations of compact objects in globular clusters.

2. EQUIPARTITION OF KINETIC ENERGIES IN

TWO-COMPONENT CLUSTERS

According to Spitzer (1969), simultaneous dynamical and
thermal equilibrium is impossible for two-component star
clusters within a certain range of conÐgurations. Let us
consider a cluster with stars of two masses, andm1 m2,where Moreover, let and be the total massm2[ m1. M2 M1in each component. Spitzer assumed that whichM2> M1,is normally the case for real clusters. He concluded that for
certain values of the ratios and equi-M2/M1 m2/m1,partition will not be attained as the heavier and lighter stars
exchange kinetic energy, and hence the heavier stars will
sink very far into the center. Moreover, the heat exchange
with lighter stars promotes them to higher orbits, so that
eventually insufficient numbers will remain in the center to
conduct heat rapidly away from the heavier stars. If the
mass stratiÐcation proceeds far enough, then the self-gravity
of the heavier stars will dominate the potential in the core,
and this subsystem will undergo gravothermal collapse. The
result is a very dense core composed exclusively of heavier
stars.

In his analysis, Spitzer begins by assuming global equi-
partition. Global equipartition is not realistic, however,
because the relaxation and equipartition times vary greatly
throughout the cluster, becoming longer than the age of the
universe in the outer halo. In fact, we expect equipartition
only in the inner region, where relaxation times are shortest.
His discussion is mostly unchanged by this, so long as we
conÐne its relevance to processes in this inner region. We
shall reproduce here only the main strategy of his argument
and its conclusions. Let and represent the meanv

m12 v
m22

square velocities of stars in each component. As mentioned,
the assumption of equipartition implies that the tem-
perature ratio m is equal to unity :

m 4
(1/2)m2 v

m22
(1/2)m1 v

m12 \ 1 . (1)

Spitzer then applies a component-wise virial theorem,
which for the heavier component gives

v
m22 \ (2/5)GM2

r2
] G

M2

P
0

= o2M1(r)dV
r

, (2)

where the Ðrst term represents the gravitational self-binding
energy of the heavier stars, is the virial radius of ther2heavier stars, is the density of the heavier stars at ao2distance r from the center, is the total mass of theM1(r)heavier stars contained within the radius r, and dV is the
volume element. Spitzer assumes that, since theM2> M1,second term in the corresponding equation for can bev

m12
ignored and also that, since the heavier stars willm2? m1,be concentrated in the center of the system and mayM1(r)be approximated by in equation (2). Spitzer &4no1(0)r3/3
Hart (1971) noticed that the second assumption often does
not hold strictly. In particular, even far into the evolution
many heavier stars can still reside well outside the core.
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Merritt (1981) constructed equilibrium models that violate
this assumption by great amounts and discovered that equi-
partition is possible for some (admittedly unrealistic) con-
Ðgurations that can be realized for all values of andm2/m1M2/M1.Under SpitzerÏs assumptions, after a series of manipula-
tions, one obtains the following expression for the quantity
S as a direct consequence of equation (1) :

S 4
AM2
M1

BAm2
m1

B3@2\ (o
h1/oh2)1@2

(1] ao
h1/oh2)3@2

, (3)

where and are the densities within the half-masso
h1 o

h2radii for each component and where a depends on the dis-
tribution of mass within the cluster. In particular, if we
denote by and the rms and half-mass radius for ther

m2 r
h2heavier component, respectively, then a is given by

a \ 5o1(0)
4o

h1

Ar
m2
r
h2

B2
. (4)

Spitzer estimates a value of 5.6 for a. Merritt (1981) contests
the value 3.5 assigned by Spitzer to for polytropeso1(0)/o

h1with n between 3 and 5 but Ðnds that it corresponds
approximately to its minimum value, which, as we shall see,
does not change SpitzerÏs conclusion. In particular, since
the right-hand side of equation (3) has a maximum value
0.38a~1@2 with respect to variation in it follows thato

h1/oh2,equipartition is possible only if S does not exceed a critical
value b 4 0.38a~1@2,

S \ b , where b \ 0.16 for a \ 5.6 . (5)

Spitzer suggests that for smaller values of the individual
mass ratio the inequality (5) remains valid, exceptm2/m1,that b ] 1 as m2/m1] 1.

While it is useful to assess under what conditions simulta-
neous dynamical and thermal equilibrium are not expected,
it is also interesting for our purposes to estimate the extent
of departure from thermal equilibrium where dynamical
equilibrium holds. To that end, let us maintain the condi-
tion stated in equation (2), while not insisting that m \ 1 in
equation (1). By following the value m through SpitzerÏs
analysis, we Ðnd that the temperature ratio has a lower
bound for a given value of S,

m [
AS
b
B2@3

. (6)

Inagaki & Wiyanto (1984) performed an analysis similar
to SpitzerÏs, except by casting equations (1) and (2) in terms
of core values for the component-wise total mass, mean
square velocity, and density. They obtained a minimum
di†erence between the core temperatures of each com-
ponent. Letting and denote the total mass con-M

c2 M
c1tained within the core for the heavier and lighter

components, respectively, and letting represent the corer
c1radius of the lighter stars, this di†erence is given by
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(7)

For now, we note that the minimum ratio (given by the
inequality [6]) and di†erence (given by eq. [7]) of

component-wise temperatures increases with increasing
values of the total mass ratio and that this increase is
steeper for increasing (in eq. [6], recall that b ] 1 asm2/m1m2/m1] 1).

Lightman & Fall (1978) developed an approximate
theory for the core collapse of two-component clusters that
resembles that of Spitzer. They examined two constant-
density isothermal spheres representing the cores of the
heavier and lighter components, where the radius of the
former is smallest. By applying a component-wise virial
theorem and several simplifying assumptions, they Ðnd a set
of four ordinary di†erential equations for the virial radii
and total masses in each component. They obtain the fol-
lowing condition for equipartition of energies between the
two components, where we let andm8 4 m2/m1 M3 4
M2/M1 :

!(m8 , M3 ) 4 m8 3M3 2
C27

4
A
1 ] 3M3

2m8
BA

1 ] 5
2

M3
B~3D

¹ 1 . (8)

Solutions to the di†erential equations exhibit a minimum
temperature ratio which they suggest bears the follow-mmin,ing approximate relation to !,

mmin^ !1@3 . (9)

In this case also, the minimum temperature ratio increases
with increasing values of the individual and total mass
ratios.

The majority of attempts to evaluate the theoretical pre-
dictions of Spitzer (1969) and Lightman & Fall (1978) have
met with moderate success. For example, Yoshizawa et al.
(1978) obtained 0.25 for the value of b in the case of spatially
truncated two-component isothermal spheres. Nevertheless,
few investigations have examined models with a com-
prehensive range of individual and total mass ratios
(outside studies based on turning points along a sequence of
equilibrium models). In the next two sections we discuss the
methods we used and results we obtained for a relatively
broad survey of the parameter space determined by M2/M1and m2/m1.

3. NUMERICAL METHODS AND DEFINITIONS

We used a Monte Carlo method for modeling the
dynamical evolution of clusters as a sequence of equilibrium
models subject to regular velocity perturbations. The veloc-
ity perturbations represent the average e†ect of long-range
stellar encounters 1971). Our Monte Carlo code has(He� non
been described in detail by Joshi et al. (2000b) and Joshi,
Nave, & Rasio (2000a). The code allows us to perform
dynamical simulations for realistic clusters containing up to
N D 105È106 stars on a parallel supercomputer. In the
present study, we ignore the e†ects of binaries, stellar evolu-
tion, and the galactic tidal Ðeld. Our units are deÐned in
Joshi et al. (2000b, ° 2.8). The unit of length is close to the
virial radius of the cluster, the mass is measured in units of
the total initial cluster mass, and the unit of time is of order
the initial half-mass relaxation time In this paper, whentrh.reporting times in units of we have adopted the sametrh,deÐnition used in previous studies of two-component clus-
ters since Spitzer & Hart (1971),

trh \ 0.06M1@2r
h
3@2

G1@2m log10 (0.4N)
, (10)
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where is the total cluster mass, is theM \ M1] M2 r
hinitial cluster half-mass radius, and m\ M/N is the average

stellar mass.
We undertook two sets of calculations, hereafter called

sets A and B. All calculations are performed for a cluster
containing N \ 105 single stars. The initial model used in
each calculation of set A was a two-component King model
(King 1966). In particular, the velocities and positions for all
stars with a mass were chosen according to the Kingm1model distribution function with dimensionless central
potential Although the initial King model is trun-W0 \ 6.
cated at its Ðnite tidal radius, we do not enforce that tidal
boundary during the evolution, allowing the cluster to
expand indeÐnitely. In each case, some fraction of the stars
was then changed to a mass according to a chosenm2[m1

value of the total mass ratio The initial ratio ofM2/M1.mean temperatures in the heavier and lighter components
was therefore The initial models for calculations inm2/m1.set B were generated in a similar way, except using the
Plummer distribution function (polytrope with n \ 5 ; see,
e.g., Binney & Tremaine 1989). Both sets of calculations are
listed in Table 1. Set A includes calculations undertaken for
a range of total mass ratios and[M2/M1\ (3 ] 10~3)È0.6]
a range of individual mass ratios Set B(m2/m1\ 1.5È6).
comprises only nine systems, including four studied by
Inagaki & Wiyanto (1984), all with Every calcu-m2/m1\ 2.
lation is terminated at core collapse, measured at the instant
that a number density of 108 (in our units) is attained in the
core. Our results are not sensitive to the exact value of the
core density used to terminate the calculation. However, the

TABLE 1

MODELS AND RESULTS

S m2/m1 M2/M1 N2 mmin to/trh tcc/trh Model

0.05 . . . . . . . . 1.50 0.0272 1782 1.010 12.8 12.8 King
0.05 . . . . . . . . 1.75 0.0216 1219 1.020 12.0 12.0 King
0.05 . . . . . . . . 2.00 0.0176 876 1.028 11.2 11.2 King
0.05 . . . . . . . . 3.00 0.00962 320 1.027 9.2 9.2 King
0.05 . . . . . . . . 4.00 0.00625 156 1.016 8.7 9.0 King
0.05 . . . . . . . . 6.00 0.00340 57 1.018 8.2 8.2 King
0.10 . . . . . . . . 1.50 0.0544 3502 1.023 12.3 12.3 King
0.10 . . . . . . . . 1.75 .0432 2409 1.035 10.9 11.1 King
0.10 . . . . . . . . 2.00 0.0354 1737 1.043 9.2 9.6 King
0.10 . . . . . . . . 3.00 0.0192 637 1.039 5.9 6.4 King
0.10 . . . . . . . . 4.00 0.0125 311 1.053 4.9 5.5 King
0.10 . . . . . . . . 6.00 0.00680 113 1.061 3.7 4.3 King
0.15 . . . . . . . . 1.50 0.0816 5162 1.027 11.5 11.7 King
0.15 . . . . . . . . 1.75 0.0648 3570 1.043 9.7 10.1 King
0.15 . . . . . . . . 2.00 0.0530 2583 1.044 7.5 8.5 King
0.15 . . . . . . . . 3.00 0.0289 953 1.082 4.4 5.3 King
0.15 . . . . . . . . 4.00 0.0188 467 1.094 3.3 3.9 King
0.15 . . . . . . . . 6.00 0.0102 170 1.128 2.4 2.6 King
0.20 . . . . . . . . 1.50 0.109 6767 1.021 11.0 11.5 King
0.20 . . . . . . . . 1.75 0.0864 4704 1.049 8.4 9.5 King
0.20 . . . . . . . . 2.00 0.0707 3415 1.052 6.8 7.8 King
0.20 . . . . . . . . 3.00 0.0385 1267 1.090 3.8 4.6 King
0.20 . . . . . . . . 4.00 0.0250 621 1.124 2.6 3.2 King
0.20 . . . . . . . . 6.00 0.0136 226 1.138 1.6 1.9 King
0.25 . . . . . . . . 1.50 0.136 8318 1.035 10.3 11.0 King
0.25 . . . . . . . . 1.75 0.108 5812 1.049 8.1 9.2 King
0.25 . . . . . . . . 2.00 0.0883 4232 1.072 6.2 7.6 King
0.25 . . . . . . . . 3.00 0.0481 1578 1.104 3.2 4.2 King
0.25 . . . . . . . . 4.00 0.0313 775 1.154 2.0 2.6 King
0.25 . . . . . . . . 6.00 0.0170 283 1.175 1.2 1.5 King
0.50 . . . . . . . . 1.50 0.272 15358 1.043 6.9 10.2 King
0.50 . . . . . . . . 1.75 0.216 10986 1.057 5.0 8.4 King
0.50 . . . . . . . . 2.00 0.176 8121 1.079 3.8 6.6 King
0.50 . . . . . . . . 3.00 0.0962 3108 1.173 2.0 3.2 King
0.50 . . . . . . . . 4.00 0.0625 1539 1.312 1.4 2.0 King
0.50 . . . . . . . . 6.00 0.0340 564 1.355 1.0 1.2 King
1.10 . . . . . . . . 1.50 0.599 28529 1.046 1.64 10.2 King
1.24 . . . . . . . . 5.0 0.111 2172 1.60 0.7 1.2 King
0.0042 . . . . . . 2.00 0.0015 74 1.008 14.5 14.5 Plummer
0.0057 . . . . . . 2.00 0.0020 101 1.021 14.3 14.3 Plummer
0.0085 . . . . . . 2.00 0.0030 150 1.021 14.0 14.0 Plummer
0.0101 . . . . . . 2.00 0.0036 178 1.008 13.9 13.9 Plummer
0.0141 . . . . . . 2.00 0.0050 249 1.021 13.7 13.7 Plummer
0.0286 . . . . . . 2.00 0.0101 503 1.005 12.8 12.8 Plummer
0.113 . . . . . . . 2.00 0.040 1960 1.049 9.0 9.3 Plummer
0.314 . . . . . . . 2.00 0.111 5262 1.066 5.6 7.5 Plummer
2.824 . . . . . . . 2.00 1.000 33333 1.127 0.014 7.5 Plummer
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value of the core collapse time determined numericallytcccan have a large statistical uncertainty, particularly when
the core is dominated by a small number of heavier stars
near the end of the evolution (in those cases we estimate
that the statistical uncertainty on the values of report-tcc/trhed in Table 1 can be as large as D5%). The majority of our
calculations require 10È20 central processing unit hours on
an SGI/Cray Origin2000 supercomputer to reach core col-
lapse.

The range of values we consider for andm2/m1 M2/M1includes a number of astrophysically relevant cases. In par-
ticular, a subpopulation of neutron stars in a dense globular
cluster might have (e.g., corresponding tom2/m1^ 2 m2\
1.4 for an average background stellar massM

_
m1\ 0.7

and depending on the neutronM
_

) M2/M1D 10~3È10~2
star retention fraction. A subpopulation of black holes
might have andm2/m1^ 5È10 M2/M1D 10~3È10~2.
Massive blue stragglers or primordial binaries containing
main-sequence stars near the turn-o† mass would have

andm2/m1^ 2È3 M2/M1D 10~3È10~1.
For each calculation we record several quantities at each

program time step (the time steps are proportional to a
fraction of the core relaxation time ; see Joshi et al. 2000b).
These continuous measurements include the total cluster
core radius and several component-wise Lagrange radii.
Within each of these radii we also count the number of stars
and calculate the mean temperature and mean mass density
for each component. Of particular interest are the quantities
calculated inside the core radius, where relaxation times are
shortest and where thermal equilibrium is the most likely to
occur. We use the customary deÐnition for the total cluster
core radius (Spitzer 1987),r

c

r
c
\
C 3v

m
(0)2

4nGo(0)
D1@2

, (11)

where is the mean square velocity and o(0) is thev
m
(0)2

mean density of stars at the center. We calculate the ratio of
core densities in each component and the ratio of(o

c2/oc1)core temperatures. We also calculate the minimum core
temperature ratio that is reached after approximatelymmin90% of the precollapse evolution in all cases. SpeciÐcally,

is calculated as the average temperature ratio frommmin90% to 95% of the core collapse time. The core collapse
time and the time at which the core mass densities oftcc toeach component become equal (i.e., are alsoo

c2/oc1 \ 1)
measured. We report our main results in Table 1, and we
discuss these in the following section.

4. RESULTS

The evolution of the core temperature ratio m is shown in
Figure 1 for three calculations in set A (two-component
King models), namely, for S \ 0.05 (top), S \ 0.5 (middle),
and S \ 1.24 (bottom). Figure 2 shows the core tem-
peratures of the lighter stars (top) and the heavier stars
(bottom) for the case S \ 1.24. Several features that we
expect and that have been mentioned already in ° 2 are
easily recognizable. The temperature ratio begins with a
value and then decreases gradually as equipartitionm2/m1is approached. It is clear that m reaches a minimum value
that is greater than 1 for the case S \ 1.24, so that equi-
partition is clearly never attained. Equipartition is nearly
attained for S \ 0.5, and to within 5% formmin\ 1
S \ 0.05. It is clear from Figure 2 that the heavier com-

FIG. 1.ÈEvolution of the temperature ratio in the core for S \ 0.05 and
(top), S \ 0.5 and (middle), and S \ 1.24 andm2/m1\ 1.5 m2/m1\ 3
(bottom). The minimum temperature ratio attained in eachm2/m1\ 5.0

calculation increases with S. Time is displayed in units of the initial half-
mass relaxation time In each case the evolution is shown until shortly(trh).before core collapse. Equipartition is clearly not reached prior to core
collapse for large S. Notice also that core collapse occurs sooner with
increasing S. The initial condition in each case was a two-component King
model with W0\ 6.

ponent cools initially, then maintains a constant mean
kinetic energy, and then begins to heat prior to core col-
lapse. At the same time, the lighter component steadily
becomes hotter as it receives energy from the heavier com-
ponent. The temperature ratio in the last time steps
becomes very noisy because the temperatures are computed
using the relatively few stars that remain in the core.

The temperature ratio m reaches a minimum value at
di†erent times with respect to core collapse for each of the
models shown in Figure 1. In cases where the minimum
value is greater than 1, it sometimes appears that the gravo-
thermal catastrophe has beaten the approach to equi-
partition. In such cases, one may ask whether an initial
model with a less concentrated spatial distribution and a
di†erent initial relaxation time would yield a di†erent
minimum temperature ratio. In fact, we Ðnd that ismminrobust with respect to changes in the initial value of the
dimensionless potential The evolution of the tem-W0.
perature ratio for three calculations, where 5, andW0\ 1,
10 for S \ 1 and are shown in Figure 3. In allm2/m1\ 5,
three cases the minimum temperature ratio is approx-
imately 1.55.

The evolution of the core mass density ratio iso
c2/oc1shown in Figure 4 for the same three clusters and in the

same order. The core mass densities of each component are
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FIG. 2.ÈEvolution of the core temperature for the lighter stars [T1(r \
top] and the heavier stars bottom] for the case S \ 1.24 andr

c
) ; [T2(r \ r

c
),

(the ratio of these is shown in Fig. 1, bottom). Time is dis-m2/m1\ 5.0
played in units of the initial half-mass relaxation time (trh).

shown in Figure 5 for the model with S \ 1.24. One can see
clearly that, as S increases, the core mass densities in each
component become equal sooner with respect to core col-
lapse. That is, for larger S the self-gravity of the heavier
stars dominates the potential in the core for a longer period
prior to the onset of the gravothermal catastrophe. More-
over, we can see that, although the core density is initially
dominated by the lighter stars, the heavier stars overtake
and exceed the density of lighter stars by more than an
order of magnitude prior to core collapse for S \ 0.5 and
S \ 1.24.

Approximate values of the minimum core temperature
ratio are plotted using three symbols in the parametermminspace determined by and in Figure 6 for 37M2/M1 m2/m1calculations in set A. Also drawn are the Spitzer and
Lightman-Fall ““ stability boundaries, ÏÏ above which simul-
taneous dynamical and thermal equilibrium are supposedly
prohibited (S \ 0.16 and !\ 1, respectively ; cf. eqs. [5]
and [8]). Our simulations allow us to determine with amminnumerical accuracy of about 5%. SpeciÐcally, is calcu-mminlated as the average core temperature ratio from 90% to
95% of the precollapse evolution, and this average has a
standard deviation of approximately 0.05 in our calcu-
lations for N \ 105 stars. Therefore, those calculations
marked with an open square in Figure 6 have been deter-
mined to reach equipartition within our numerical accu-
racy. One can see that the Spitzer boundary S \ 0.16 is
approximately respected for By comparison, them2/m1º 2.
Lightman-Fall boundary falls well inside the range of clus-

FIG. 3.ÈEvolution of the core temperature ratio for three calculations
with di†erent initial values of the dimensionless King model potential W0,but all with S \ 1 and From left to right :m2/m1\ 5 (M2/M1^ 0.09).

and While the relaxation and core collapseW0\ 10, W0\ 5, W0\ 1.
times for these calculations span a wide range, in each case the temperature
ratio reaches the same minimum value of approximately 1.55. The evolu-
tion is shown until shortly before core collapse in each case. Note that the
logarithmic timescale has compressed the shapes of these curves, so that
the leveling in the temperature ratio prior to core collapse is not as clearly
apparent as in Fig. 1.

ters that have clearly not attained equipartition. In spite of
this, the Lightman-Fall boundary better reproduces the
shape of boundaries between regions of constant Ammin.more properly drawn Spitzer boundary has a similar shape,
recalling that b ] 1 as Based on the resultsm2/m1] 1.
shown in Figure 6, we propose our own condition for equi-
partition,

"4
AM2
M1

BAm2
m1

B2.4
º 0.32 . (12)

The boundary determined by equation (12) is strictly valid
for and is also drawn in Figure 6. For1.75\m2/m1\ 7

equipartition is achieved for all clusters con-m2/m1\ 1.75,
sidered. For extrapolation of equation (12)m2/m1 [ 7,
seems reasonable.

The dependence of on S for several values of ismmin m2/m1shown in Figure 7. Also drawn is the Spitzer stability
boundary. These curves are broadly consistent with trends
anticipated by the inequality (6). In particular, mminincreases with S, and the initial slope of this increase
becomes larger with increasing (again recalling thatm2/m1b ] 1 as The dependence of on ! form2/m1 ] 1). mminseveral values of is shown in Figure 8. Also drawn ism2/m1



 

 

 
 
        

No. 1, 2000 EQUILIBRIUM IN TWO-COMPONENT STAR CLUSTERS 337

FIG. 4.ÈEvolution of the mass density ratio in the core for the(o
c2/oc1)

same three cases as in Fig. 1 : S \ 0.05 and (top), S \ 0.5 andm2/m1\ 1.5
(middle), and S \ 1.24 and (bottom). The evolutionm2/m1\ 3 m2/m1\ 5.0

is shown until shortly before core collapse in two cases (middle, bottom) and
until core collapse in one case (top). As S increases, the time at which equal
mass densities are attained in the core occurs sooner with respect to(to)core collapse for the case S \ 0.05).(to ^ tcc

the value of anticipated by equation (9), and themminLightman-Fall stability boundary. One can see that, while
the numerical results are displaced from the predicted
curve, they have the same curvature and display a similar
trend. The minimum temperature di†erence for calculations
in set B (two-component Plummer models) are shown in
Figure 9, where they are compared with the results of
Inagaki & Wiyanto (1984). Here agreement is excellent
except in the limit of small where the temperatureM2/M1,of the heavier component is calculated using very few stars,
so that the di†erence is characterized by a large amount of
noise. As a last comparison, we note that, using a Monte
Carlo scheme di†erent from ours, Spitzer & Hart (1971)
found that for a Plummer model with S \ 1.24mmin\ 1.34
and whereas for the same system we obtainm2/m1\ 5,
mmin\ 1.60.

Recall that is the time at which the mass densities oftoeach component become equal in the core. Approximate
values of the time as a fraction of the core collapse timetoare plotted using three symbols in the parameter spacetccdetermined by and in Figure 10 for 37 calcu-M2/M1 m2/m1lations in set A. This plot conÐrms the trend anticipated by
the previous examination of three individual clusters (Fig.
4), namely, the amount of timeÈas a fraction of the core
collapse timeÈduring which the heavier stars dominate the
potential in the core increases with S. The trends appear not

FIG. 5.ÈEvolution of the core mass density for the lighter stars (top)
and the heavier stars (bottom) for the same case as in Fig. 2 : S \ 1.24 and

(the ratio of these is shown in Fig. 4, bottom). The evolution ofm2/m1\ 5.0
is shown until no lighter stars remain in the core, whereas the evolutiono

c1of is shown until core collapse.o
c2

FIG. 6.ÈMinimum temperature ratio in the core for the 37 calculations
in set A, represented here using three symbols at points in the parameter
space determined by and Also drawn are the Spitzer andM2/M1 m2/m1.Lightman-Fall stability boundaries (S \ 0.16 and !\ 1, respectively) and
the boundary "\ 0.32 suggested by these results (eq. [12]). Calculations
marked with an open square are determined to have reached equipartition
within our numerical accuracy.



0 0.1 0.2 0.3 0.4 0.5 0.6
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

 S

ξ m
in

m
2
/m

1
=1.5

m
2
/m

1
=2.0

m
2
/m

1
=3.0

m
2
/m

1
=4.0

m
2
/m

1
=6.0

0 0.5 1 1.5 2
0.9

1

1.1

1.2

1.3

1.4

1.5

Γ

ξ m
in

m
2
/m

1
=1.5

m
2
/m

1
=2.0

m
2
/m

1
=3.0

m
2
/m

1
=4.0

m
2
/m

1
=6.0

Γ1/3

10
−2

10
0

10
−3

10
−2

10
−1

M
2
/M

1

[T
c2

 −
 T

c1
] m

in
/(

G
m

1M
/r

0)

 

  

 
  

 
  

 
  

 

338 WATTERS, JOSHI, & RASIO Vol. 539

FIG. 7.ÈMinimum temperature ratio in the core vs. S for several values
of Also drawn is the Spitzer stability boundary (S \ 0.16).m2/m1.

to respect any of the previous stability boundaries very well,
but our condition given by equation (12) fares best. They
may nevertheless shed light on the related question of
whether a dense subsystem of heavy stars collapses indepen-
dently, since the self-gravity of the heavier stars must domi-
nate the potential in the core in order for this to happen.
Where equipartition is attained, the mass segregation is
retarded or stopped, so that equal mass densities may not
occur until core collapse (i.e., to^ tcc).All of the calculations were terminated at core collapse, at
which time the radius containing 1% of the mass in the
heavier component diminishes sharply. The time is mea-tccsured at the instant when a number density of 108 in our
units is attained within the core (see ° 3). The variation of
the core collapse time with S for several values oftcc m2/m1is shown in Figure 11. The trends conÐrm that the onset of
core collapse is accelerated by the presence of a small and
heavier subpopulation, in agreement with the Ðndings of
others (Inagaki & Wiyanto 1984 ; Inagaki 1985 ; Quinlan
1996).

FIG. 8.ÈMinimum temperature ratio in the core vs. ! for several values
of Also drawn is the Lightman-Fall stability boundary (!\ 1) andm2/m1.a theoretical estimate of the minimum core temperature ratio, !1@3
(Lightman & Fall 1978).

FIG. 9.ÈMinimum temperature di†erence in the core vs. the total mass
ratio as found in the present study (asterisks) and by Inagaki & Wiyanto
(1984) (diamonds). Each of these calculations was begun with a two-
component Plummer model (set B) where Here is them2/m1\ 2. r0Plummer scale length and M is the total cluster mass. Agreement is very
good except in the vicinity of small In this domain, the tem-M2/M1.perature of the heavier component is calculated using very few stars, so
that the di†erence is characterized by a large amount of noise.

5. DISCUSSION

In this section we discuss several features of the evolution
in more detail, and we mention some possible astrophysical
applications of our results to the evolution of compact
stellar remnants in globular clusters.

The temperature ratio m in Figure 1 initially has the value
While this is an artifact of the way our initial modelsm2/m1.were constructed, happens to be also the most realis-m2/m1tic value of m for equilibrium models with a relatively

shallow potential. In families of equilibrium models it is

FIG. 10.ÈFraction of the core collapse time when equal mass density is
attained in the core for the 37 calculations in set A, represented here(to/tcc)using three symbols at points in the parameter space determined by

and Also drawn are the Spitzer and Lightman-Fall stabil-M2/M1 m2/m1.ity boundaries (S \ 0.16 and !\ 1, respectively) and the boundary sug-
gested by the results shown in Fig. 6 ("\ 0.32). Note that our boundary
appears to apply approximately throughout the range (in1 \m2/m1\ 7
contrast to Fig. 6, where it does not apply below m2/m1^ 1.75).
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FIG. 11.ÈCore collapse times vs. S for several values of for 30m2/m1,calculations in set A. The initial condition in each case was a two-
component King model with The times are displayed in units ofW0\ 6.
the initial half-mass relaxation time (trh).

typical to Ðnd that as (KondratÏev &m ] m2/m1 W0] 0
Ozernoy 1982 ; Katz & Ta† 1983). In trials for which initial
models were modiÐed so that m had some value other than

a brief period of rapid relaxation ensued that resto-m2/m1,red the value This e†ect has been observed inm2/m1.simpler models of the evolution calculated using other
methods (Lightman & Fall 1978).

In the core, the initial behavior of the temperature ratio is
mostly determined by the temperature of the heavier com-
ponent, while the mean kinetic energy of the lighter stars,
which are more abundant at Ðrst, increases gradually (Fig.
2). Spitzer (1969) suggested that the approach to equi-
partition is characterized by the exponential decay of
kinetic energy in the heavier component, with a time con-
stant equal to twice the so-called equipartition time,

teq\ t
r1

3n1@2
16

m1
m2

A
1 ] v

m2
v
m1

B3@2
, (13)

where is a relaxation time for the stars of mass In thet
r1 m1.case where the mean square velocities of each component

are initially equal, the initial equipartition time is teq^
(It should be noted that decreases as equi-t

r1(m1/m2). teqpartition is approached.) This characterization of the
decline in kinetic energy of heavier stars agrees very well
with our results for stars contained within the half-mass
radius, where we assume the initial half-masst

r1 ^ trh,relaxation time for the cluster as a whole. In particular, the
kinetic energy of the heavier component diminishes to a
fraction 1/e of its initial value (after subtracting its
minimum value for the entire evolution) within for0.39trhS \ 1, and within for S \ 0.5,m2/m1\ 5, 1.3trh m2/m1\
1.5, in good agreement with the theory [which predicts a
time However, we Ðnd that equi-2teq^ 2(m1/m2)trh].partition is approached on a similar timescale in the core,
where the theory predicts that should be shorter byteqapproximately and hence agreement is poor (the ratio of15,initial core and half-mass relaxation times for King models
with is approximately see Quinlan 1996).W0\ 6 15 ;

A leveling in the temperature ratio at a minimum value
greater than 1 has been observed in calculations using other

methods as well (Inagaki & Wiyanto 1984 ; Lightman &
Fall 1978). We Ðnd that this leveling is approximately coin-
cident with the heavier stars reaching their maximum
numbers within the core. Inagaki & Wiyanto (1984) found
that an increase in the core temperature ratio prior to or
during collapse is coincident with the time at whichto,equal mass densities are attained in the core. While we are
not able to resolve adequately the late-collapse behavior of
m (because our calculation loses accuracy in this regime), it
is clear from Figure 2 that the heavier component begins to
heat prior to collapse. Indeed, we Ðnd that the temperature
of the heavier component does not begin to rise until t [ to.Katz & Ta† (1983) examined the turning points in a
linear series of equilibrium models. In particular, they
studied a one-parameter family of self-bounded isolated
equilibrium models with a lowered Maxwellian velocity dis-
tribution. Turning points representing the limits of stability
for dynamical equilibrium were obtained for several values
of and in terms of maximum possible valuesm2/m1 M2/M1of the dimensionless potential k. Katz & Ta† also calculated
the core temperature ratio m that corresponds to each
maximum value of k. Since for their models m was found to
approach 1 for large values of k, the core temperature ratios
calculated for each turning point represent the minimum
allowed value of m for given values of andm2/m1 M2/M1.These are plotted with respect to S for several values of

in Figure 12 and should be compared with ourm2/m1results, shown in Figure 7. While these numbers exhibit a
similar trend with S for given the trend inm2/m1, m2/m1evidently disagrees with our results and therefore also the
prediction of the inequality (6). It is important to bear in
mind, however, that these ratios are obtained for only the
members of this particular family, which do not necessarily
represent states that can be obtained by real dynamical
processes. Our results contradict those of Katz & Ta†
(1983) insofar as we Ðnd clusters with smaller values of mminfor identical values of and that appear to bem2/m1 M2/M1stable on dynamical timescales. Katz & Ta† found that the
number of possible conÐgurations for their models in
dynamical equilibrium diminish sharply for S [ 0.16. It is
interesting to note also that the values they obtain for mminappear not to diminish below 1.10 for small values of
M2/M1.

FIG. 12.ÈMinimum core temperature ratio for turning points in a
linear series of equilibrium models (Katz & Ta† 1983). Also drawn is the
Spitzer stability boundary (S \ 0.16).
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We concur with the Ðndings of Spitzer & Hart (1971) that
many heavier stars remain outside the core throughout the
evolution. This is clear from plots of Lagrange radii as a
function of time for the heavier component (Fig. 13). This
casts doubt on the assumption, committed in SpitzerÏs orig-
inal analysis, that all of the heavier stars quickly become
concentrated in the core (see ° 2). In particular, we Ðnd that
for S \ 1.24, and the radiusM2/M1\ 0.111, m2/m1\ 5,
containing 75% of the mass in the heavier component
diminishes to only 50% of its initial value (and hence
remains larger than the core radius) throughout the evolu-
tion. Nevertheless, by the onset of core collapse, we fre-
quently observe for calculations with large that nom2/m1lighter stars remain in the core.

Our results may have important implications for the
dynamical evolution of various subpopulations of inter-
esting objects in globular clusters. In particular, a sub-
component of primordial black holes with ism2/m1^ 10
expected to remain far from energy equipartition with the
rest of the cluster and to evolve very quickly to core collapse
on its own relaxation timescale. For a typical cluster initial
mass function, and assuming that all black holes formed
initially by the stellar population are retained in the cluster,
we expect well above our stabilityM2/M1^ 10~3È10~2,
boundary in Figure 6. Recent N-body simulations for clus-
ters containing primordial black holes indicate that, after
reaching core collapse, the dense subcluster of black holes
evaporates quickly in the background cluster potential.

FIG. 13.ÈEight Lagrange radii for the heavier component in the two-
component King model with S \ 1.24, (same model as in Fig.m2/m1\ 5
2). From top to bottom : The radii containing 90%, 75%, 50%, 25%, 10%,
5%, 1%, and 0.1% of the total mass in the heavier component. Also drawn
are several points in the evolution of the cluster core radius ( Ðlled circles).
Note that many stars in the heavier component remain well outside of the
core throughout the precollapse evolution.

Three-body processes occurring in the postcollapse phase
produce a signiÐcant number of tight black hole binaries
that will coalesce in a few billion years, making these
binaries important sources of gravitational waves for
current ground-based laser interferometers (Portegies
Zwart & McMillan 2000 ; see also Kulkarni, Hut, &
McMillan 1993 and Sigurdsson & Hernquist 1993). For
neutron stars, with our results suggest that equi-m2/m1^ 2,
partition can be reached if the fraction of the total cluster
mass in neutron stars is This fraction is higher than[5%.
would be predicted for a standard cluster initial mass func-
tion and neutron star progenitor masses (even if, in contrast
to what is suggested by many observations, neutron stars
were born without the kicks that might eject a large fraction
from the cluster). However, many multimass King models
and dynamically evolving Fokker-Planck models of globu-
lar clusters based on Ðts to both photometric and kinematic
data suggest that much higher fractions of neutron stars
may be present in many clusters. For example, the recent
Fokker-Planck models of Murphy et al. (1998) for 47 Tuc
suggest that 4.6% of the total cluster mass is in the form of
dark stellar remnants of mass 1.4 With such a highM

_
.

mass fraction, it is possible that the neutron stars in 47 Tuc
may remain out of energy equipartition with the rest of the
cluster. More sophisticated dynamical simulations taking
into account the full mass spectrum of the cluster, stellar
evolution, and binaries will be necessary to resolve the issue.

6. SUMMARY AND CONCLUSIONS

Although we have omitted the e†ects of binaries (which
have been shown to retard the onset of core collapse ; see,
e.g., Gao et al. 1991) and stellar evolution (which can have
important implications for the early evolution ; see Joshi et
al. 2000a), the following observations and conclusions seem
justiÐed.

1. For some two-component clusters the core tem-
perature ratio becomes constant over some fraction of the
evolution at a minimum value greater than 1, in agreement
with previous results obtained using other methods.

2. The departure from equipartition calculated for a
range of individual and total mass ratios approximately
respects the theoretical predictions of Spitzer (1969) and
Lightman & Fall (1978). The agreement with Spitzer is rea-
sonable for and the Lightman-Fall stabilitym2/m1º 2,
boundary (!\ 1) appears to reÑect the shape of regions of
constant in the parameter space determined bymminand although it lies well inside the regionM2/M1 m2/m1,occupied by clusters for which equipartition is clearly not
attained. A more accurate boundary suggested by our
results is given by equation (12). The trend in the minimum
values predicted for the temperature ratio by Lightman &
Fall (1978) is similar to what we observe.

3. Stars in the heavier component do not immediately
fall into the cluster core, as assumed by Spitzer in his
analysis, and instead many remain well outside the core
throughout the evolution.

4. The approach to equipartition within the half-mass
radius appears to occur on the timescale as suggested2teq,by Spitzer (1969 ; see eq. [13]).

5. A core temperature ratio of appears to be am2/m1robust quantity for equilibrium models with a relatively
shallow potential, in agreement with previous results
obtained using other methods.
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6. For clusters with and core col-M2/M1> 1 m2/m1[ 1,
lapse times decrease with increasing and inM2/M1 m2/m1,agreement with previous results.
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