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Abstract. Using our Post-Newtonian SPH (smoothed particle hydrodynamics) code,
we study the final coalescence and merging of neutron star (NS) binaries. We find that
the gravity wave signals can be computed accurately for irrotational systems in calcu-
lations of sufficient resolution, even in the presence of Kelvin-Helmholtz instabilities.

INTRODUCTION

Coalescing binary neutron stars (NS) are among the most promising sources of
gravitational radiation that should be detectable by future generations of gravity
wave detectors. LIGO, VIRGO, GEO, and TAMA may ultimately not only serve
to test the predictions of the theory of general relativity (GR), but could also yield
important information on the interior structure of neutron stars, which cannot be
obtained directly in any other way.

Essentially all recent calculations agree on the basic picture that emerges during
the final coalescence (see [1] and [2] for a complete list of references). As the binary
approaches the dynamical stability limit, located at separations of r = 3—4:RNS, the
NS plunge together rapidly and merge within a few rotation period. Mass shedding
typically commences immediately after first contact, especially for initially synchro-
nized systems. This material forms a pair of spiral arms before dissipating to form
a dusty torus around the merger remnant. For stiff equations of state (EOS), the
merger remnant can support a long-lived ellipsoidal (triaxial) deformation, which
will radiate a significant level of gravity waves well after the merger is completed.
Softer EOS relax toward spheroidal, non-radiating configurations on a dynamical
timescale.

Of course, all statements about merger remnants assume that the remnant formed
does not immediately collapse to a black hole (BH). Unfortunately Newtonian sim-
ulations are incapable of demonstrating such an effect. Instead, Newtonian calcula-
tions, using both Eulerian, grid based codes [3-9], and particle-based SPH methods
[10-14], have studied many aspects of coalescing binaries, including the dependence
of gravity wave signals on the initial spins, binary mass ratio, and NS EOS. Un-
fortunately, Newtonian gravity is a poor approximation to the physical situation
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being studied. NS have extremely deep gravitational potentials, especially in their
cores, even for very stiff EOS, and reach relativistic speeds during coalescence.
Thus, proper treatment of the problem requires taking into account GR effects.
Perhaps the most important effect of general relativity is to change the location of
the dynamical stability limit, since relativistic corrections, even when small, can
greatly affect the location of the minimum equilibrium energy Eequu as a function
of separation, altering the point at which the binary begins its final rapid plunge
toward merger.

Several groups have been working on full GR calculations [15], but only prelimi-
nary results have been reported so far. Extracting waveforms from the boundaries
of grids has proves to be particlarly difficult. The middle ground between Newto-
nian calculations and full GR lies with PN hydrodynamics treatments. We [1,16],
as well as Ayal et al. [17], have constructed a PN SPH code to calculate binary
mergers. Our code uses the formalism of Blanchet, Damour, and Schaefer [18],
adapted to a Lagrangian SPH framework. While it has proven impossible to in-
clude full-strength first-order (1PN) relativistic corrections, since they are often
of comparable magnitude to Newtonian quantities for realistic NS parameters, we
have devised a formalism whereby 1PN corrections are treated at reduced strength,
while radiation reaction effects (2.5PN) are included at their physical values. This
formalism is described in detail in [16].

IRROTATIONAL BINARY COALESCENCE

Our most detailed calculation performed to date uses N = 500,000 particles per
NS, corresponding to the highest spatial resolution ever for a binary coalescence
calculation. The calculation was performed using an irrotational initial condition.
This is generally thought to be the most realistic case since the viscous tidal lock-
ing timescale for two NS is expected to be considerably longer than the inspiral
timescale [19]. We model the initial density and velocity profile of the NS as tidally
stretched ellipsoids, with parameters drawn from the PN equlibrium calculations
of Lombardi, Rasio, and Shapiro [20]. We choose equal mass NS, and use a F = 3
poly tropic EOS. Particle plots showing the evolution of the equal-mass irrotational
binary system are shown in Fig. 1.

Immediately prior to merger, we see that a large tidal lag angle develops, as the
inner edge of each NS leads the axis connecting the respective centers of mass,
with the outer regions lagging behind. This is seen in Newtonian calculations, but
is greatly enhanced by the addition of 1PN terms. Unlike the standard results
from synchronized calculations, we do not see significant mass shedding from the
system. The rotational speed of particles on the outer half of each NS is reduced
in the irrotational case with respect to the synchronized case, and such particles
are never ejected. The amount of mass shed is extremely small, much less than
1% of the total mass, and the velocities of the particles ejected are not sufficient to
escape the gravitational potential of the remnant.
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FIGURE 1. Final merger of two identical F = 3 polytropes with an irrotational initial condition.
SPH particles are projected onto the equatorial plane of the binary. The orbital rotation is
counterclockwise. Spatial coordinates are given in units of the NS radius R. Times are given in
units of the dynamical timescale of the system, which here is to = 0.07ms = 1.

Density contours and velocity profiles in the equatorial plane of the binary are
shown in Fig. 2. Velocities are shown in a frame corotating with the material,
which highlights the Kelvin-Helmholtz unstable vortex sheet which forms along
the surface of contact between the two NS. Large vortices form along this sheet,
mixing material from the two NS, from t = 20 — 25. However, during this time the
respective NS cores continue to inspiral toward the center of the forming remnant,
until by t = 30 they have merged to form a single core, the vortices having merged
together as well. This produces a characteristic differential rotation pattern, with
the core spinning approximately twice as fast as the outer regions.
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FIGURE 2. Density contours and velocities along the equatorial plane in the corotating frame
of the binary, for the same times as in Fig. 1.

GRAVITY WAVE SIGNALS AND SPECTRA

We calculate the gravity wave signal for our mergers in the quadrupole approx-
imation. The gravity wave strain h seen by an observer located a distance d from
the center of mass of the system along the rotation axis is given for the two polar-
izations by

= Qxx - Q,yy (1)
(2)

where Q, the second time derivative of the quadrupole moment tensor, is given in
SPH terms by
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FIGURE 3. Gravity wave signals calculated for coalescences with the same initial parameters
but different numerical resolutions. The solid, dashed, and dot-dashed lines correspond to runs
with 106, 105, and 104 SPH particles, respectively.

where the summation is taken over all the particles in the calculation. In Fig. 3, we
show the gravity wave signals in both polarizations, /i+ and /ix, for the irrotational
run described above, as well as for runs with N = 50,000 particles and N = 5,000
particles per NS, calculated as described in [10]. It is immediately apparent that
the lowest resolution run shows significant discrepancies from the other two, which
agree with each other quite well over the entire time history of the merger. This
is a welcome result, given that the vortex sheet appearing at the contact surface
is Kelvin-Helmholtz unstable on all size scales, including those much smaller than
our numerical resolution. Even though differences in the exact location and size
of vortices were apparent for runs of differing resolution, we found that the paths
traced out by the respective NS cores, which make up the dominant contribution to
the GW signal, were almost identical. The conclusion to be drawn is that numerical
convergence for a given set of initial conditions and physical assumptions is possible
without requiring excessive computational resources, even for this difficult problem
involving small-scale instabilities.
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