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ABSTRACT

Collisions of main-sequence stars occur frequently in dense star clusters. In open and globular clusters,
these collisions produce merger remnants that may be observed as blue stragglers. Detailed theoretical mod-
els of this process require lengthy hydrodynamic computations in three dimensions. However, a less compu-
tationally expensive approach, which we present here, is to approximate the merger process (including shock
heating, hydrodynamic mixing, mass ejection, and angular momentum transfer) with simple algorithms
based on conservation laws and a basic qualitative understanding of the hydrodynamics. These algorithms
have been fine-tuned through comparisons with the results of our previous hydrodynamic simulations. We
find that the thermodynamic and chemical composition profiles of our simple models agree very well with
those from recent SPH (smoothed particle hydrodynamics) calculations of stellar collisions, and the subse-
quent stellar evolution of our simple models also matches closely that of the more accurate hydrodynamic
models. Our algorithms have been implemented in an easy-to-use software package, which we are making
publicly available.* This software could be used in combination with realistic dynamical simulations of star
clusters that must take into account stellar collisions.

Subject headings: blue stragglers — globular clusters: general — hydrodynamics — stars: evolution —
stars: interiors — stellar dynamics

1. INTRODUCTION AND MOTIVATION

Blue stragglers are stars that appear along an extension of
the main sequence (MS), beyond the turnoff point in the
color-magnitude diagram (CMD) of a cluster. All observa-
tions suggest that blue stragglers are indeed more massive
than a turnoff star and are formed by the merger of two or
more parent MS stars. In particular, Shara, Saffer, & Livio
(1997) and Sepinsky et al. (2000) have directly measured the
masses of several blue stragglers in the cores of 47 Tuc and
NGC 6397 and confirmed that they are well above the MS
turnoff mass, some even with masses apparently above twice
the turnoff mass. Furthermore, Gilliland et al. (1998) have
demonstrated that the masses estimated from the pulsation
frequencies of four oscillating blue stragglers in 47 Tuc are
consistent with their positions in the CMD.

Stellar mergers can occur through either a direct collision
or the coalescence of a binary system (Leonard 1989; Livio
1993; Stryker 1993; Bailyn 1995). Single-single star colli-
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sions occur with appreciable frequency only in the cores of
the densest clusters (Hills & Day 1976), but in lower density
clusters collisions can also happen indirectly, during reso-
nant interactions involving binaries (Leonard 1989; Leo-
nard & Fahlman 1991; Sigurdsson, Davies, & Bolte 1994;
Sigurdsson & Phinney 1995; Davies & Benz 1995; Bacon,
Sigurdsson, & Davies 1996). Merger rates depend directly
on cluster properties, such as the local density, velocity dis-
persion, mass function, and binary fraction. When mergers
do occur, all of these cluster properties are affected. The
dynamics of a cluster, including mass segregation and the
rate of core collapse, are consequently influenced, leading to
an intricate relation between individual stellar interactions
and cluster evolution (Hut et al. 1992; Rasio, Fregeau, &
Joshi 2002). By studying stellar mergers, we are therefore
able to probe the dynamics of globular clusters. Results
from ongoing Hubble Space Telescope surveys of nearby
globular clusters continue to expand the statistics of blue
straggler populations, making it timely for a detailed com-
parison between observations and theory.

The final structure and chemical composition profiles of
merger remnants are of central importance, because they
determine the subsequent observable properties and evolu-
tionary tracks of merger products in a CMD (Sills & Bailyn
1999). Three-dimensional hydrodynamic simulation is one
means by which we can focus on fluid mixing during stellar
mergers and determine the structure of a remnant. Many
such simulations of stellar mergers have been presented in
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the literature (Lombardi, Rasio, & Shapiro 1996; Sandquist,
Bolte, & Hernquist 1997; Sills & Lombardi 1997; Sills et al.
2001). The problem with these simulations, if they were to
be coupled with calculations of the cluster as a whole, is the
prohibitive computing time: high-resolution hydrodynamic
simulations can typically take hundreds or even thousands
of hours to complete.

In this paper, we develop a method for computing the
structure and composition profiles of zero-age blue strag-
glers without running hydrodynamic simulations. Because
our method takes considerably less than a minute to gener-
ate a model on a typical workstation, we are able to explore
the results of collisions in a drastically shorter time. Our
approach can be generalized to work for more than two
parent stars, simply by colliding two stars first and then col-
liding the remnant with a third parent star. Most impor-
tantly, such algorithms will make it possible to incorporate
the effects of collisions in simulations of globular clusters as
a whole.

2. PROCEDURE

We begin with two (nonrotating) parent-star models,
specifying initial profiles for the stellar density p, pressure P,
and abundance of chemicals as a function of mass fraction.
The profile for the entropic variable 4 = P/pl, a quantity
closely related (but not equal) to thermodynamic entropy,
can also be calculated easily and is of central importance.
Here I' is the adiabatic index of the gas. Because the quan-
tity A depends directly upon the chemical composition and
the entropy, it remains constant for each fluid element in the
absence of shocks.

Fluid elements with low values of 4 sink to the bottom of
a gravitational potential well, and the A profile of a star in
stable dynamical equilibrium increases radially outward.
Indeed, it is straightforward to show that the condition dA/
dr > 0 is equivalent to the usual Ledoux criterion for con-
vective stability of a nonrotating star (Lombardi et al.
1996). The basic idea here can be seen by considering a small
fluid element inside a nonrotating star in dynamical equili-
brium. If this element is perturbed outward adiabatically
(that is, with constant A), then it will sink back toward equi-
librium only if its new density is higher than that of its new
environment. If, instead, the element is less dense than its
surroundings, it will continue to float away from the equili-
brium, an unstable situation. Likewise, if an element is per-
turbed inward, its density must be less than the
environment’s in order to return toward equilibrium.
Because pressure equilibrium between the element and its
immediate environment is established nearly instantane-
ously, the ratio of densities satisfies pejem/Peny = (Aetem/
Aeny)” VT, by the definition of A. Therefore, if the perturbed
element has a higher A4 than its new environment, it has a
lower density, and buoyancy will push the element outward.
Similarly, a fluid element with a lower A then its surround-
ings will sink. As a result, a stable stratification of fluid
requires that the entropic variable 4 increase outward: d4/
dr > 0. In such a star, a perturbed element will be subject to
restoring forces that cause it to oscillate about its equili-
brium position. For a detailed discussion of the stability
conditions within rotating stars, see § 7.3 of Tassoul (1978)
or Tassoul (2000). In practice, even in rapidly rotating stars,
fluid distributes itself in such a way that the entropic varia-
ble 4 increases outward.
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During a collision, the entropic variable 4 of a fluid ele-
ment can increase as a result of shock heating (see § 2.2).
However, the relative impact speed of two MS stars in a
globular cluster is comparable to the speed of sound in these
parents: both of these speeds are of order (GM/R)!/2, where
G is Newton’s gravitational constant and M and R are,
respectively, the mass and length scales of a parent star.
Consequently, the resulting shocks have Mach numbers of
order unity and shock heating is relatively weak. Therefore,
to a reasonable approximation, a fluid element maintains a
constant A throughout a collision.

The underlying principle behind our method exploits the
two special properties of 4 that were just discussed.
Namely, the entropic variable 4 will (1) increase outward in
a stable star and (2) be nearly conserved during a collision.
Therefore, to a good approximation, the distribution of fluid
in a collisional remnant can be determined simply by sorting
the fluid from both parent stars in order of increasing A: the
lowest-A fluid from the parent stars is placed at the core of
the remnant and is surrounded by shells with increasingly
higher A4. In this paper, we will further improve upon this
approximation by also modeling mass loss, shock heating,
fluid mixing, and the angular momentum distribution.

Our algorithms are calibrated from the results of
smoothed particle hydrodynamic (SPH) calculations pre-
sented in Lombardi et al. (1996) (for collisions of polytropic
stars), as well as in Sills & Lombardi (1997) and Sills et al.
(2001) (for collisions of more realistically modeled stars).
For details and tests of our SPH code, see Lombardi et al.
(1999). For reviews of SPH, see Monaghan (1992) or Rasio
& Lombardi (1999). Characteristics of the various parent
stars used in our calculations are summarized in Table 1,
with thermodynamic profiles shown in Figure 1. The vari-
ous collision scenarios we have considered are listed, along
with mass-loss information, in Table 2.

The realistically modeled parent stars are based on calcu-
lations performed with the Yale Rotating Evolution Code
(YREC), as discussed in Sills & Lombardi (1997). In partic-
ular, we evolved nonrotating MS stars with a primordial
helium abundance Y = 0.25 and metallicity Z = 0.001 for
15 Gyr, the amount of time needed to exhaust the hydrogen
in the center of a 0.8 M, star. We note that P/p°/? decreases
slightly in the outermost layers of the 0.4 and 0.6 M, stars
modeled by YREC (see Fig. 1). The adiabatic index I is
actually less than the ideal gas value of 5/3 in these regions,
because of the relative importance of ionization and radia-
tion pressure. In this paper, however, we neglect these effects
and instead simply force the A profile to increase by some

TABLE 1
PARENT-STAR CHARACTERISTICS

M R Ry s Ros6

Structure Type (M) (R (R (Ro)

n = 3 polytrope.............. 0.8 0.955 0.270 0.443
Composite polytrope ...... 0.6 0.535 0.253 0.382
n = 1.5polytrope........... 0.4 0.353 0.184 0.261
0.16 0.153 0.080 0.113

YREC.....cooiiniiinne 0.8 0.955 0.198 0.395

0.6 0.517 0.203 0.332
0.4 0.357 0.182 0.272
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FiG. 1.—Thermodynamic profiles of 4, P/p/3, pressure P, and density p as a function of enclosed mass m. Our three realistically modeled parent stars are

displayed in the left panels, and the four polytropic models are displayed on the right. The dotted, short-dashed, long-dashed and solid curves refer to parent
stars 0f 0.8, 0.6, 0.4, and 0.16 M., respectively. Logarithms are base 10 and units are cgs.

negligibly small amount in these regions. Figure 2 displays
chemical abundance profiles of these parent stars.

2.1. Mass Loss

The velocity dispersion of globular cluster stars is typi-
cally only ~10 km s~!, which is much lower than the escape
velocity from the surface of an MS star; for example, a star
of mass M = 0.8 M. and radius R = R has an escape
velocity (2GM/R)!/? = 552 km s~ 1. For this reason, colli-
sional trajectories are well approximated as parabolic, and
the mergers are relatively gentle: the mass lost is never more
than about 8% of the total mass in the system (mass loss
with hyperbolic trajectories is treated by Lai, Rasio, & Sha-
piro 1994). Furthermore, most MS stars in globular clusters
are not rapidly rotating, and it is a good approximation to
treat the initial parent stars as nonrotating.

Given models for the parent stars (see Table 1), we first
determine the mass lost during a collision. Inspection of
hydrodynamic results for collisions between realistically
modeled stars, as well as for collisions between polytropes,
suggests that the fraction of mass ejected can be estimated
approximately by

— u Ry,0.86 + R2,0.86
M+ M>Ri 05+ Roos+carp’

fu (1)

where ¢y and ¢, are dimensionless constants that we take to

be ¢; =0.157 and ¢, = 1.8, u= Mle/(Ml + M) is the
reduced mass of the parent stars, R; o5 and R; (g are the
radii in parent star 7 enclosing a mass fraction m/M; = 0.5
and 0.86, respectively, and r, is the periastron separation for
the initial parabolic orbit. While developing equation (1) we
searched for a relation that accounted for the mass distribu-
tion (not just the total masses and radii) of the parent stars
in some simple way. The more diffuse the outer layers of the
parents, the longer the stellar cores are able to accelerate
toward each other after the initial impact: the sum of half-
mass radii, Ry o5 + R, o5, in the denominator of equation
(1) accounts for this increased effective collision speed for
parents whose mass distributions are more centrally concen-
trated. The dependence on x in equation (1) arises from the
expectation that the mass loss will be roughly proportional
to the kinetic energy at impact and from the fact that a sim-
ple rescaling of the stellar masses (M;—kM;) in a hydrody-
namic simulation leaves f; unchanged.

The final (postshock) value of a fluid element’s entropic
variable will be higher than its initial value, as discussed in
§ 2.2. The mass loss must be distributed between the two
parent stars in such a way that the outermost fluid layers
retained from each parent have the same final entropic vari-
able A, so that the layers can merge together into a stable
equilibrium. We solve for this maximum value of 4 in the
remnant by requiring that the mass of the fluid with higher
final 4 be the desired ejecta mass. This constraint deter-
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TABLE 2
Mass Loss
M, M, Mgpy' M2
Case® (Mz)  (Mo) /(R + Ry)  foser® ff Sr.spu® Ji° (M) (M)
0.8 0.8 0.00 0.50 0.50 0.064 0.064 1.50 1.497
0.8 0.8 0.25 0.51 0.50 0.023 0.025 1.56 1.560
0.8 0.8 0.50 0.50 0.50 0.012 0.015 1.58 1.577
0.8 0.6 0.00 0.24 0.24 0.057 0.061 1.32 1.315
0.8 0.6 0.25 0.19 0.26 0.024 0.027 1.37 1.363
0.8 0.6 0.50 0.26 0.30 0.008 0.017 1.39 1.376
0.8 0.4 0.00 0.049 0.042 0.056 0.054 1.13 1.135
0.8 0.4 0.25 0.059 0.065 0.028 0.024 1.17 1.172
0.8 0.4 0.50 0.11 0.12 0.008 0.015 1.19 1.182
0.6 0.6 0.00 0.50 0.50 0.049 0.059 1.14 1.129
0.6 0.6 0.25 0.50 0.50 0.028 0.030 1.17 1.164
0.6 0.6 0.50 0.51 0.50 0.022 0.020 1.17 1.175
0.6 0.4 0.00 0.11 0.13 0.054 0.055 0.95 0.945
0.6 0.4 0.25 0.14 0.18 0.029 0.029 0.97 0.971
0.6 0.4 0.50 0.16 0.26 0.010 0.020 0.99 0.980
0.4 0.4 0.00 0.50 0.50 0.037 0.056 0.77 0.756
0.4 0.4 0.25 0.51 0.50 0.029 0.030 0.78 0.776
0.4 0.4 0.50 0.54 0.50 0.010 0.020 0.79 0.784
0.4 0.4 0.75 0.47 0.50 0.008 0.015 0.79 0.788
0.4 0.4 0.95 0.51 0.50 0.011 0.013 0.79 0.790
0.8 0.16 0.00 0.015 0.001 0.027 0.035 0.93 0.927
0.8 0.16 0.25 0.016 0.003 0.025 0.014 0.94 0.946
0.8 0.16 0.50 0.024 0.014 0.021 0.009 0.94 0.951
0.8 0.8 0.00 0.50 0.50 0.079 0.078 1.47 1.475
0.8 0.6 0.25 0.19 0.20 0.029 0.026 1.36 1.363
0.8 0.6 0.50 0.21 0.21 0.014 0.016 1.38 1.377
0.8 0.4 0.00 0.098 0.039 0.062 0.061 1.13 1.127
0.6 0.6 0.25 0.50 0.50 0.032 0.030 1.16 1.164

a Capital letters refer to collisions of polytropic stars, lowercase letters to those of more realistically modeled

parents.

b Fraction of ejecta originating in star 2, as determined by SPH.
¢ Fraction of ejecta originating in star 2, as determined by method of this paper.

d Total fractional mass loss, as determined by SPH.
¢ Total fractional mass loss, as estimated by eq. (1).

f Remnant mass, as determined by SPH.

¢ Remnant mass, as estimated by (1 — f;) (M| + M>).

mines what fraction of the ejecta comes from each of the
parent stars.

2.2. Shock Heating

Shocks increase the value of a fluid element’s entropic
variable 4 = P/p". The distribution and timing of shock
heating during a collision involve numerous complicated
processes: each impact generates a recoil shock at the inter-
face between the stars, the oscillating merger remnant sends
out waves of shock rings, and finally the outer layers of the
remnant are shocked as gravitationally bound ejecta fall
back to the remnant surface. For off-axis collisions this may
be repeated several times. Our goal is not to derive approxi-
mations describing the shock heating during each of these
stages, but rather empirically to determine physically rea-
sonable relations that fit the available SPH data.

Let 4 and A;,; be, respectively, the final and initial values
of the entropic variable for some particular fluid element.
We used the results of hydrodynamic calculations to exam-
ine how the change A — A;,;;, as well as the ratio A/ Ay,
depended on a variety of functions of P, (the initial pres-
sure) and A;,;. Our search for a simple means of modeling
this dependence was guided by a handful of features evident
from hydrodynamic simulations: (1) fluid deep within the

parents is shielded from the brunt of the shocks; (2) in head-
on collisions, fluid from the less massive parent undergoes
less shock heating than fluid with the same initial pressure
from the more massive parent; (3) in off-axis collisions with
multiple periastron passages before merger, fluid from the
less massive parent undergoes more shock heating than fluid
with the same initial pressure from the more massive parent;
and (4) the shock heating within each parent clearly must be
the same if the two parent stars are identical. In all the
hydrodynamic calculations considered, we model the fluid
in our system using an adiabatic index I' = 5/3, corre-
sponding to an ideal gas equation of state.

We find that when log;o(A4—A;n;) s plotted versus log;o
Piit, the resulting curve for each parent star is fairly linear
(see Fig. 3), with a slope of approximately ¢; = —1.1
throughout most of the remnant in the ~25 simulations we
examined:

log)o(A — Ainit) = bi(rp) + c3logyg P, i=1,2. (2)

Here the intercept b(r,) is a function of the periastron sepa-
ration r, for the initial parabolic trajectory, as well as the
masses M| and M, of the parent stars. Higher values of b;
correspond to larger amounts of shock heating in star i,
where the index i = 1 for the more massive parent and 2 for
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FiG. 2.—Fractional chemical abundance (by mass) as a function of enclosed mass m for various chemical elements in our three realistically modeled parent

stars. Line types are as in Fig. 1.

the less massive parent (M, < M;). For simplicity of nota-
tion, we have suppressed the index i on the A, Ajn;, and Py
in equation (2).

The SPH data suggest that the intercepts b;(r,) can be fit-
ted according to the relations

bi(rp) = b1(0) — ca[rp/(R1 + Ra)| logyo(M1/M>) , (3)

ba(ry) = b1(0) + {cs[ry/(Ri + Ra)| — c6} logyo(My/ M) ,
4)

where ¢4 = 0.5, ¢s =5, ¢ = 2.5, and b;(0) is the intercept
for a head-on collision (r, = 0) between the two parent stars
under consideration.

Although equations (2)—(4) describe how to distribute the
shock heating, the overall strength of the shock heating
hinges on the value chosen for 5{(0). To determine b,(0), we
consider the head-on collision between the parent stars
under consideration and exploit conservation of energy:
more specifically, we choose the value of »(0) that ensures
that the initial energy of the system equals the final energy
during a head-on collision. Because we are considering par-
abolic collisions, the orbital energy is zero and the initial
energy is simply E,,; = E; + E,, the sum of the energies for
each of the parent stars. The final energy of the system
includes energy associated with the ejecta and the center-of-
mass motion of the remnant, in addition to the energy E, of
the remnant in its own center-of-mass frame. In this paper

we consider nonrotating parent stars, so the remnant of a
head-on collision also is nonrotating, and its structure
quickly approaches spherical symmetry. The values of E|,
E,, and E, are therefore simply the sum of the internal and
self-gravitational energies calculated while integrating the
equation of hydrostatic equilibrium. Because the energy E,
depends on the thermodynamic profiles of the remnant, it is
therefore a function of a shock-heating parameter 5;(0)
(see § 2.3 for the details of how the remnant’s structure is
determined).

The energy E, of the remnant is nearly equal to the initial
energy E;, of the system. However, the ejecta do carry away
a portion of the total energy, suggesting that the energy con-
servation equation be written as

Etot =E — C7fLEtot s (5)

where the coefficient ¢; is of order unity and f; is the fraction
of mass lost during the collision (see § 2.1). We use a value
of ¢; = 2.5, which is consistent with the available SPH data
(see Table 3). In equation (5), the left-hand side is the initial
energy of the system, and the right-hand side is its final
energy. The second term on the right-hand side accounts for
the energy associated with the ejecta and with any center-of-
mass motion of the remnant (note that this term is positive
because E,, < 0). In practice, we iterate over b((0) until
equation (5) is solved. It is necessary to solve equation (5)
only once for each pair of parent-star masses M; and M:
once b1(0) is known, we can model shock heating in a colli-
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sion with any periastron separation r, by first calculating
bi(ry) and by(r,) from equations (3) and (4) and by then
using these values in equation (2).

2.3. Merging and Fluid Mixing

As with any star in stable dynamical equilibrium, the rem-
nant will have an A4 profile that increases outward. In our
model, fluid elements with a particular postshock 4-value in

TABLE 3
ToTAL ENERGY

E‘loli11 Er‘ SPHb Erc
Case (10*8 gcm?s—2) (10*8 gcm?s—2) (10" gcm?s72)
A...... —3.81 —4.5 —4.43
D.... -3.09 -3.6 —3.56
G.... —2.64 -3.1 —3.00
Joi —2.37 -2.6 —2.72
M.... —1.92 -2.2 -2.19
P..... —1.47 —-1.6 —1.68
U.... —2.18 2.3 —-2.37
[ DO —-5.23 —6.3 —6.25
o 3235 _39 ~3.86

2 The total energy in the system’s center-of-mass frame.

b The energy of the remnant in its center-of-mass frame, as deter-
mined by an SPH simulation.

¢ The energy of the remnant in its center-of-mass frame, as deter-
mined by eq. (5).

both parent stars will merge to become the fluid in the rem-
nant with the same value of the entropic variable. Further-
more, if the fluid in the core of one parent star has a lower
A-value than any of the fluid in the other parent star, the
former’s core must become the core of the remnant, because
the latter cannot contribute at such low entropies. When
merging the fluid in the two parent stars to form the rem-
nant, we use the postshock entropic variable 4, as deter-
mined from equation (2).

Within the merger remnant, the mass m, enclosed within
a surface of constant 4 must equal the sum of the corre-
sponding enclosed masses in the parents,

(6)

It immediately follows that the derivative of the mass in the
remnant with respect to 4 equals the sum of the correspond-
ing derivatives in the parents: dm,/dA, = dm/dA| + dm;/
dAz, or dA,/der = [(dAl/dWll)_l + (dAz/dle)_l]_l. In
practice, we calculate these derivatives using simple finite
differencing. If we partition the parent stars and merger
remnant into mass shells, then two adjacent shells in the
remnant that have enclosed masses that differ by Am, will
have entropic variables that differ by

dA\ "' [da\ 7!
AA, = Am, kt§ ada
m/ (d’m) +<dm2>

The value of A at a particular mass shell in the remnant is

Myy_y = mlAI:A + m2A2:A .

(7)
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then determined by adding A4, to the value of 4 in the pre-
vious mass shell.

In the case of the (nonrotating) remnants formed in head-
on collisions, knowledge of the A profile is sufficient to
determine uniquely the pressure P, density p, and radius r
profiles. While forcing the 4 profile to remain as determined
from sorting the shocked fluid, we integrate numerically the
equation of hydrostatic equilibrium with dm = 4mr2p dr to
determine the p and P profiles [which are related through
p = (A4/P)*"]. This integration is an iterative process,
because we must initially guess at the central pressure. Our
boundary condition is that the pressure must be zero when
the enclosed mass equals the desired remnant mass
M, = (1—f1)(M| + M,). During this numerical integration
we also determine the remnant’s total energy E, and check
that the virial theorem is satisfied to high accuracy. The
total remnant energy E, appears in equation (5), and if this
equation is not satisfied to the desired level of accuracy, we
adjust our value of ;(0) accordingly and redo the shocking
and merging process.

As was done in Sills et al. (2001), the structure of a rotat-
ing remnant can be determined by integrating modified
equations of equilibrium (see eq. [9] of Endal & Sofia 1976),
once the entropic variable 4 and specific angular momen-
tum j distribution are known (see § 2.4). To do so, one can
implement an iterative procedure in which initial guesses at
the central pressure and angular velocity are refined until a
self-consistent model is converged upon. Even for the case
of off-axis collisions and rotating remnants, the chemical
composition profiles can still be determined, even without
solving for the pressure and density profiles, as we will now
discuss.

Once the A profile of the remnant has been determined,
we focus our attention on its chemical abundance profiles.
Not all fluid with the same initial value of A,y is shock-
heated by the same amount during a collision, because, for
example, fluid on the leading edge of a parent star is typi-
cally heated more violently than fluid on the trailing edge.
Consequently, fluid from a range of initial shells in the
parents can contribute to a single shell in the remnant. To
model this effect, we first mix each parent star by spreading
out its chemicals over neighboring mass shells, using a
Gaussian-like distribution that depends on the difference in
enclosed mass between shells. Let X; be the chemical mass
fraction of some species X in a particular shell 7, and let the
superscripts “pre”” and “post”’ indicate pre- and postmix-
ing values, respectively. Then

XISOSt = Z (leregikAm,»/ZgﬁAmj) , (8)
i J

—&-exp{—%(m,- + my,) }
+exp {— % (mj + my, — 2M)2} , 9)
o = cg[In(Amax/Amin)]* (10)

where Am; is the mass of shell i, m; is the mass enclosed by
shell i, M is the total mass of the parent star, cg is a dimen-
sionless coefficient that we choose to be ¢g = 5, and A
and A.;, are the maximum and minimum postshock
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entropic variables of fluid that will be gravitationally bound
to the remnant. We have suppressed an additional index in
equations (8)—(10) that would label the parent star. The
summand in equation (8) is the contribution from shell i to
shell k. The second term in the distribution function, equa-
tion (9), is important only for mass shells near the center of
the parent, while the third term becomes important only for
mass shells near the surface; these two correction terms
guarantee that an initially chemically homogeneous star
remains chemically homogeneous during this mixing proc-
ess (X[ = X' = constant, for any shell k). The depend-
ence of « on A,y / Amin €nsures that stars with steep entropy
gradients are more difficult to mix (see Table 4 of Lombardi
et al. 1996).

Consider a fluid layer of mass dm, in the merger remnant
with a postshock entropic variable 4 that ranges from 4, to
A, + dA,. The fraction of that fluid dm;/dm, that originated
in parent star i can be calculated as (d4,/dm,)/(dA;/dm;).
Therefore, the composition of this fluid element can be
determined by the weighted average

dA, /dm,
dAl/dml

dA, /dm,
dAz/dle ’

Xr _ Xpost,l post, 2 (1 1)
where all derivatives are evaluated at A,, the postshock
value of the entropic variable under consideration. With the
postshock A profiles given by equation (2) and the
smoothed composition profiles given by equation (8), equa-
tion (11) allows us to merge the parent stars and determine
the final composition profile of the remnant.

2.4. Angular Momentum Distribution

To estimate the total angular momentum J, of the rem-
nant in its center-of-mass frame, we use angular momentum
conservation in the same way that energy conservation was
used in § 2.2. In particular, because the parent stars are non-
rotating, the total angular momentum in the system is just
the orbital angular momentum,

Jtot = M1M2 [ZGrp/(Ml + MZ)]]/Z ) (12)

which we set equal to J, plus a contribution due to mass loss
(compare with eq. [5]):

Jiot = Jr + cof Ldior - (13)

The SPH simulations demonstrate that J, is always slightly
larger than J,, and the choice ¢g = 2 leads to good agree-
ment with the SPH results. Equation (13) can be solved for
J,, and the results are compared with those of SPH simula-
tions in Table 4. The agreement (between the numbers in the
last two columns) is excellent for all cases with M/ M, < 2.
For cases V and W, which have a relatively large mass ratio
(M,/ M, = 5), the approximation begins to falter, although
the predicted J,-value still agrees with SPH results to within
10%.

The structure of the rotating remnants formed in off-axis
collisions depends on the distribution of the specific angular
momentum within the remnant. Even though the collisional
remnants are axisymmetric around the rotation axis, with
angular velocities {2 that are constant on isodensity surfaces,
the specific angular momentum distribution can neverthe-
less be quite complicated (see Fig. 12 of Lombardi et al.
1996 or Fig. 3 of Sills et al. 2001). The goal here is to simplify
this complicated distribution into an average one-dimen-
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TABLE 4
TOTAL ANGULAR MOMENTUM

‘]lot‘d Jh SPHb Jrc
Case (1037 gem?s~1h) (103" g cm?s1) (1057 gcm?s71)

B.... 2.99 2.84 2.84
C...... 4.23 4.13 4.10
E.... 2.12 2.04 2.00
F.... 2.99 2.93 2.89
H... 1.43 1.34 1.36
T 2.02 1.97 1.96
N.... 0.97 0.91 0.91
O........ 1.37 1.33 1.31
Q.o 0.64 0.61 0.60
R..... 0.91 0.90 0.87
S 1.11 1.10 1.08
T.... 1.25 1.21 1.22
Vo 0.59 0.54 0.57
W... 0.83 0.75 0.82
[T 2.10 1.99 1.99
2.97 2.85 2.87
ko 1.43 1.36 1.34

2 The total angular momentum in the system’s center-of-mass
frame.

b The angular momentum of the remnant in its center-of-mass
frame, as determined by an SPH simulation.

¢ The angular momentum of the remnant in its center-of-mass
frame, as determined by eq. (13).

sional profile. The specific angular momentum j for the SPH
remnants increases outward and is typically concave
upward throughout most of the remnant when averaged
over isodensity surfaces and plotted against enclosed mass.

Once an approximate analytic form for the average j pro-
file is specified, the profile can be constrained to satisfy

M,
J = /O J(m)dm (14)

where m corresponds to the mass enclosed within a con-
stant-density surface and J, is determined from equation
(13). We find that the relation

or(m/ M) M,
jm) = {cloc r(m/M,) m < ki ,

(15)
ko (Gmr)' 2 (m/ M) + ks m > kM,

with ¢;o = 0.6, is able to reproduce the important features
of the specific angular momentum profile. Here, M, is the
remnant mass, ¢, = (I'P/p)!/2 is the local sound speed, r is
the local radius, and G is Newton’s gravitational constant.
Other forms for j(m) could also be used and normalized
through equation (14). One advantage of equation (15) is
that for m near 0 the specific angular momentum j(72) scales
as m?/3, in agreement with both simple analytic treatments
and SPH results. Equation (15) is chosen because the rota-
tion in the innermost regions (m < ki M,) of remnants is not
strongly affected by r, and because of the equation’s loose
resemblance to the j profile of a Keplerian disk for m close
to M,. The ¢, and r profiles used in equation (15) are eval-
uated for a nonrotating equilibrium star with the same A4
profile as the star under consideration, a simplification that
both eases and quickens the necessary computations. The
coefficients ky, k,, and k3 are not free parameters, but
instead are determined by equation (14) and by the two
additional constraints that j(m2) and its derivative be contin-

uous at m = k;M,. We always choose the smallest positive
value of k| that meets these constraints. If no solution with
ky > 0 exists, we set k; = k3 = 0 and solve for k,. For a non-
rotating star, clearly k; = k, = k3 = 0.

3. RESULTS

3.1. Comparison with Three-Dimensional
Hydrodynamic Calculations

To test further the accuracy of our simple models, we
compare their structure and composition against models
generated directly from the results of SPH calculations.
These SPH calculations include both collisions between
polytropic parent models (referred to with a capital letter as
the case name) and collisions between realistically modeled
parent stars (referred to with a lowercase letter).

3.1.1. Shock Heating

Clearly, expressions for describing shock heating, such as
equations (2)—(4), are rather crude approximations that
lump together complicated effects from the various stages of
the fluid dynamics. However, these expressions do work
quite well for parent stars of similar mass. To demonstrate
this point, Figure 4 compares the shock heating of this
method against the heating experienced by the individual
SPH particles in six different collisions of identical parent
stars, while Figure 5 presents similar data for four collisions
between unequal-mass parents. The agreement between pre-
diction and simulation is excellent for mass ratios M;/M,
from 1 to approximately 2, regardless of the periastron sepa-
ration r,,. Even for a mass ratio as high as 5, the prescription
continues to work well, at least for intermediate values of
the periastron separation r, (see case W in Fig. 5). For head-
on collisions with high mass ratios, the predicted shock
heating is an underestimate in the smaller star and in the
center of the larger star (see case U in Fig. 5). It is worth not-
ing that in collisions between two MS stars, a remnant must
be relatively far past the turnoff on a CMD if it is to be iden-
tified as a blue straggler. It is therefore unlikely that colli-
sions involving parent stars with a mass ratio more than 5
will produce a true blue straggler, simply because the rem-
nant mass could not be considerably more than the turnoff
mass.

The SPH data in Figures 4 and 5 clearly show that fluid
from the same initial enclosed mass fraction m/M can be
shock-heated by different amounts. This effect can be easily
understood because, for example, fluid on the impact side of
a star will be heated more than fluid with the same m/M on
the back side. The treatment of mixing in § 2.3 does allow us
to model this spread in shock heating, by redistributing fluid
to positions with slightly higher or lower final 4-values than
what is given by equation (2). The extent of the redistribu-
tion is set by the smoothing parameter « (see eq. [10]), taken
to be constant over each parent star. Higher values of « cor-
respond to a smaller range of mass fractions over which the
fluid is distributed. The parameter o« = 248, for example,
for the parents in case a, while for case g, a; = 229 for the
0.8 M, parent and «, = 143 for the 0.4 M, parent. This
approach does well at mimicking the overall effects of the
spread in shock heating. However, mixing of fluid is some-
what overestimated in the core and underestimated in the
outer layers, affecting predictions for the central concentra-
tion of helium (see § 3.1.3) and for the surface concentration
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of trace elements such as lithium (see § 3.1.2). Future treat-
ments could perhaps improve results by implementing a
position-dependent «.

Note that our shock-heating prescription does necessarily
imply the desirable qualitative features that are discussed in
§2.2 and evident in the SPH data of Figures 4 and 5: (1) fluid
with high initial pressure P;,;; (the fluid shielded by the outer
layers of the star) is generally shock-heated less; (2)
b,(0) < b1(0), so that a less massive star is shock-heated less
in head-on collisions; (3) b;(r,,) decreases with r,,, while b»(r,,)
increases with r,, so that for sufficiently large r, we have
by(ry) > by(r,), and the less massive star is shock-heated
more; and (4) by(r,) = by(r,) whenever M| = M>, so that
identical parent stars always experience the same level of
shock heating.

3.1.2. Mass Loss

Although mass loss is very small in a parabolic collision,
it is nevertheless important to understand well if one is inter-
ested in tracking trace elements that may only be found in
outermost layers of the parent stars. The method of § 2.1
yields remnant masses that are seldom more than ~0.01 M,
different from those yielded by a hydrodynamic simulation
(see the last two columns of Table 2); this is clearly a signifi-
cant improvement over neglecting mass loss completely,
which sometimes can overestimate the remnant mass by
more than ~0.1 M. Table 2 also lists the fraction f, of the
ejecta that originated in star 2 for each collision scenario,
both as calculated from our simple method and as calcu-
lated from an SPH simulation. Our simple method allows
the fraction of ejecta from each parent star to be determined
simply by requiring that the outermost fluid retained from
each parent has the same postshock entropy. Again, the
agreement between prediction and simulation is excellent,
especially for cases with mass ratios M/ M, < 2.

The mass-loss and merging procedures implemented in
this paper allow one to identify not only how much of the
ejecta originated in each parent star, but also the original
location of the fluid within each parent. The expression
gixAmiAmy/ Z g;iAm; gives the amount of mass in shell i
that is transported to shell k (see eq. [8]). Therefore, the frac-
tion of the mass from shell 7 that ultimately becomes ejecta
is given by

fejecta,i =

Z gi/cAmk/ZgjiAmiv (16)
J

k>kinax

where k., corresponds to the shell with the highest-entropy
fluid still gravitationally bound to the remnant. In equation
(16), the sum over shells k includes only those shells with
higher postshock entropies than this maximum, that is, only
those shells associated with ejecta. Figure 6 displays the
Jejecta curves for the parent stars in a variety of collision sce-
narios, both as determined by this method and as deter-
mined by an SPH calculation.

Lithium is a particularly interesting element to follow
during a collision. Lithium is burned during stellar evolu-
tion, except at low temperatures, and therefore can be used
as an indicator of mixing. If a star has a deep enough surface
convective layer, there will be essentially no lithium, because
the convection mixes any lithium from the outer layers into
the hot interior, where it is burned. A small amount of lith-
ium does exist in the outer few percent of, for example, a 0.8
M, turnoff star (see Fig. 2) and would consequently become

part of the ejecta during a collision, resulting in a remnant
with very little lithium.

3.1.3. Structure and Composition

Thermodynamic (Fig. 7) and chemical composition (Figs.
8,9, 10, and 11) profiles show that our remnant models are
quite accurate. In case g, our remnant displays the kink in
the A4 profile near m/M = 0.1 (see Fig. 7), inside of which
the fluid originates solely from the 0.8 M, star. Our models
also reproduce the chemical profiles of the SPH remnant
very well: the peak values in the chemical abundances are
often accurate to within 20%, and the shapes of these pro-
files, although sometimes peculiar, are followed closely.
Helium distribution is particularly important to model well
because it will help determine the MS lifetime of the rem-
nant. As mentioned in § 3.1.1, the core of the remnant is usu-
ally somewhat overmixed, flattening out the helium profile
in that region. Nevertheless, the central value of the frac-
tional helium abundance Y given by our models typically
underestimates the SPH result by only about 5%.

Although near the remnant’s surface our method some-
times yields a large fractional error in lithium abundance
(see Figs. 8 and 9), this is simply because the overall abun-
dance is so close to zero. For example, the predicted surface
fractional °Li abundance of 6.9 x 10~!° for our case a rem-
nant is an overestimate, but it is nearly 20 times smaller than
the surface fractional abundance in the 0.8 M, parent.
Except in the extreme case of grazing collisions (when mass
loss is exceedingly small), collisional blue stragglers should
be severely depleted in lithium, a prediction that can be
tested with appropriate observations (see Shetrone & Sand-
quist 2000 and Ryan et al. 2001).

3.1.4. Angular Momentum Distribution

Our previous hydrodynamic simulations involving poly-
tropic stars (Lombardi et al. 1996) implemented the classical
form of the artificial viscosity (AV), which introduces a sig-
nificant amount of spurious shear in our differentially rotat-
ing remnants. The effects of shear are discussed in § 4.2 of
Lombardi et al. (1996) and studied in detail in Lombardi et
al. (1999). Shear viscosity tends to weaken differential rota-
tion, transporting angular momentum outward. This angu-
lar momentum transport acts on the viscous timescale,
which is comparable to the total time of a typical simulation
in our collisions between polytropic stars. We therefore
avoid comparisons involving the angular momentum pro-
files of remnants from our polytropic SPH calculations.

Our collisions between realistically modeled stars imple-
mented the Balsara AV (Balsara 1995), with a viscous time-
scale that is significantly larger. In particular, Lombardi et
al. (1999) show that the viscous timescale scales approxi-
mately with N N/ for the classical AV (where Ny is the neigh-
bor number) and Ny for Balsara AV. Because we used
Ny = 64 in our polytropic simulations and Ny = 100 in our
realistic simulations, the viscous timescale is larger in our
collisions involving realistic parent stars by a factor of
approximately 100/64!/2 ~ 10. Consequently, in our SPH
calculations using the Balsara AV, only a relatively small
amount of specific angular momentum is spuriously trans-
ported out from the core.

Specific angular momentum profiles, averaged over surfa-
ces of constant density, are compared in Figure 12 for the
three realistically modeled cases with rotating remnants:
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F1G. 12.—SPH specific angular momentum profiles (dotted curves), com-
pared with the approximate profiles (dashed curves) generated from eq.
(15). Logarithms are base 10 and units are cgs.

cases ¢, f, and k. We find excellent agreement between our
simple models and their SPH counterparts. Our procedure
for determining the angular momentum distribution, as
described in § 2.4, yields values of k, k, and k5 of, respec-
tively, 0.161, 0.427, and 3.16 x 10!® cm? s~! for case e,
0.023, 0.570, and 5.93 x 10!3 cm? s~! for case f, and 0.146,
0.415, and 4.56 x 1010 cm? s~! for case k. Note that the
hump in the SPH j profile in the outer few percent of the
remnant results from the need to terminate the simulation
before all the gravitationally bound fluid has fallen back to
the merger remnant: this artifact is gradually diminishing
during the final stages of the SPH calculation.

3.2. Stellar Evolution of Remnant Models

A rigorous test of the validity of the simple models, which
we have performed using YREC, is to compare their subse-
quent stellar evolution against that of SPH-generated mod-
els. YREC evolves a star through a sequence of models of
increasing age, solving the stellar evolution equations for
interior profiles such as chemical composition, pressure,
temperature, density, and luminosity. All relevant nuclear
reactions (including p-p chains, the CNO cycle, triple-a
reactions, and light-element reactions) are treated. Recent
opacity tables are used (ensuring that the remnant’s position
in a CMD can be accurately determined), and mixing mech-
anisms are incorporated. For blue stragglers, the various
mixing processes can potentially carry fresh hydrogen fuel
into the stellar core and thereby extend the MS lifetime of
the remnant. Furthermore, any helium mixed into the outer
layers affects the opacity and hence the remnant’s position
in a CMD. The free parameters in YREC (e.g., the mixing
length) are set by calibrating a solar mass and solar metallic-
ity model to the Sun.

Using the method described in Sills et al. (1997), we used
two of our simple models (cases a and g) as starting models

simple models described in this paper; dotted lines: tracks for models gener-
ated directly from the output of SPH calculations. Symbols mark identifi-
able evolutionary phases in the evolution of the collision products: position
of the star immediately following the collision (diamonds), zero age MS
(circles), MS turnoff (squares), and the base of the giant branch (¢riangles).

in YREC and evolved the collision products from the end of
the collision to the giant branch. Figure 13 shows the evolu-
tionary tracks for these simple models (solid lines) and the
SPH-generated models (dotted lines). The tracks of the
SPH-generated models are discussed in Sills & Lombardi
(1997).

The agreement between the two sets of models is very
good. Although there are some differences on the “pre—
MS ” portion of the tracks, this stage only lasts for approxi-
mately a Kelvin-Helmholtz timescale, a very small fraction
of the total lifetime of the cluster. Indeed, for case a, the
SPH and simple models reach the MS after 0.4 and 0.8 Myr,
respectively, and the corresponding contraction times for
the case g models are only 4 and 2 Myr. Because the stars
contract to the MS so quickly, the exact pre—MS track may
not be directly important for generating synthetic CMDs.
Nevertheless, a reasonable model of a pre-MS star can be of
interest: the radius of a newly born remnant, and hence its
collisional cross section in a multistar interaction, is
strongly dependent on how the fluid has been shocked, and,
furthermore, the surface abundances are strongly depend-
ent on how it has been mixed.

Once the collision product reaches the MS, the two meth-
ods show very good agreement, and the subgiant and giant
branch evolution of these stars are virtually identical. The
MS lifetimes for the two different methods agree reasonably
well. For case g, the SPH results give a lifetime of 850 Myr,
while the simple models give 650 Myr. For case a, the SPH
results give a lifetime of 80 Myr, compared to 180 Myr from
the simple models. It should be noted that the case a rem-
nant has central helium abundance near 100%, accounting
for its short MS lifetime. For such remnants, even a slight
inaccuracy in the core’s helium profile has a large relative
effect on how long the star remains on the MS. While the
MS lifetime resulting from our method can be off by more
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than a factor of 2 for remnants with intact helium cores, the
lifetime of such remnants is nevertheless a very small frac-
tion of the lifetime of globular clusters, and therefore the
simple models can still be useful for incorporating stellar
collisions into dynamical models of globular cluster
evolution.

4. CONCLUDING REMARKS

An important question in the study of globular clusters is,
what are the necessary features of stellar collisions that must
be modeled in order to synthesize reliable theoretical
CMDs? While detailed studies of the tracks and evolution-
ary timescales of rapidly rotating collision remnants will be
necessary to answer this question fully, we do regard the fea-
tures modeled in this paper (mass loss, shock heating,
hydrodynamic mixing, and angular momentum distribu-
tion) as essential components to consider. Our treatment of
ejecta allows for an accurate estimate of the total mass of
the remnant, upon which the subsequent stellar evolution
and MS lifetime depend sensitively. Furthermore, shock
heating during a collision not only influences the structure
of the remnant, but also helps determine if convective
regions can develop during the future evolution: the entropy
gradients implied by SPH results and by the shock-heating
method of this paper tend to stabilize a contracting pre—MS
star against convection. Previous stellar evolution studies of
remnants have found that the tracks are sensitive to the
assumptions made about how the fluid is mixed during a
merger (Bailyn & Pinsonneault 1995; Sills & Bailyn 1999);
our simple fluid-mixing algorithms give a compromise
between previously used approximations that tend to
bracket the actual amount of mixing during a collision.
Finally, although the treatment of rotation in stellar evolu-
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tion is a challenging problem, it is clear that rotational sup-
port and induced mixing must be considered, because they
have profound consequences on stellar evolution (Sills, Pin-
sonneault, & Terndrup 2000; Sills et al. 2001); the form for
the angular momentum distribution presented in this paper
provides a simple means of generating very reasonable ini-
tial profiles for future studies of collisional remnants.

The algorithms we have developed are implemented in a
publicly available FORTRAN software package named
“Make Me A Star.” Researchers should be aware of the
limitations of this method in terms of the structure, rota-
tional properties, and evolutionary timescales of the models
created, as outlined in this paper. This software does pro-
duce accurate models for a variety of collision scenarios,
and we hope that it will be used in combination with realistic
dynamical simulations of star clusters that must take into
account stellar collisions.

We thank J. Faber for his contributions to the SPH code,
A. Thrall for testing our software package and for helpful
comments, and the anonymous referee for valuable com-
ments. J. C. L. acknowledges support from the Keck North-
east Astronomy Consortium, from a grant from the
Research Corporation, and from NSF grant AST 00-71165.
F. A. R. acknowledges support from NSF grants AST 96-
18116 and PHY 00-70918, NASA ATP grant NAG 5-8460,
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5For the foreseeable future, this package can be downloaded from
http://vassun.vassar.edu/~lombardi/mmas.
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