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An observational test for the
existence of a planetary
system orbiting PSR1257 +12

F. A. Rasio, P. D. Nicholson, S. L. Shapiro
& S. A. Teukolsky

Center for Radiophysics and Space Research, Cornell University, Ithaca,
New York 14853, USA

FOLLOWING the first report' of an object of planetary mass
orbiting a pulsar, Wolszczan and Frail”> have now reported the
even more surprising discovery of two planet-size companions in
orbit around the mearby millisecond pulsar PSR1257+12. The
orbital periods of the two planets are about 98 days and 67 days,
very close to a 3:2 ratio. Here we point out that, because of this
near commensurability, the mutual gravitational perturbations of
the two planets should produce not only small secular changes,
but also larger periodic changes in their orbital elements. In
particular, we find that changes in the eccentricities and orbital
periods should become measurable within a few years. Such a
measurement would help determine the three masses in the system
and the inclinations of the orbits. More importantly, a detection
of these changes, if they accord with the theoretical predictions
presented here, would provide irrefutable confirmation that the
periodic residuals observed by Wolszczan and Frail are indeed
caused by orbiting planets, rather than some other effect. For the
single planet-size object previously reported’ around the pulsar
PSR1829 — 10, there is no dynamical test analogous to the one
proposed here to confirm the planetary interpretation.

To each planet orbiting the pulsar there corresponds a mass
function® f; = (m; sin i)’/(M + m;)*. Here M is the mass of the
central neutron star, m; is the mass of the planet, with j=1 for
the inner planet and j = 2 for the outer planet, and i is the angle
between the orbital plane and the plane of the sky (we assume
that the orbital plane is the same for both planets; see below).
From the observed parameters of the system, we find f, =
5.45x 107 '°Mg and f£,=3.12%x10""*M . We can safely neglect
terms of order m;/M ~ 10~ * in the above express1on for the
mass function. We deduce that m, =3.4MgM;}*(sin i)' and
my=2. 8Mg M, (sin i) ', where M, 4 is the neutron star mass
in units of the canonical value of 1.4Mg, and Mg is the mass
of the Earth. The corresponding semimajor axes in AU are
a,=036M,"}* and a,=0.47M,"}>. The other orbital elements
are directly measurable, independent of M and sin i The values
currently observed? are e, =0.022 and e, =0.020 for the eccen-
tricities, and w, =252° and w, = 107° for the longitudes of peri-
centre (measured from the ascending node).

Using these orbital elements, and the times of pericentre
passage given by Wolszczan and Frail?, one can construct a
complete set of initial data for the system The dynamical
evolution of the system is then determined by solving Newton’s
equations for three point masses interacting gravitationally. We
have done a high-accuracy numerical integration of these
equations, using the Bulirsch-Stoer algorithm®. We make the
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problem dimensionless by setting G = a, = m; = 1. The numeri-
cal solution then depends on only one parameter, the ratio
M/ m,. The results corresponding to M/ m, = 1.4 x 10’ are illus-
trated in Fig. 1. These results are little changed if other, more
distant planets are present in the system. In particular, we have
verified that the presence of a third planet with m;=1Mg and
a,=1 AU (for which there is preliminary evidence®) has practi-
cally no influence on the results shown in Fig. 1. We find that,
on a timescale of ~10 yr, any orbital element w closely follows
an evolution of the type

w(t)=A+Bt+Csin(Di+E) (1)

The linear term is only apparent in the evolution of w;, for which
B =0.04°yr . The evolution of all orbital elements is dominated
by the periodic term. The largest fractional change is that of the
eccentricity of the outer planet, for which C=~4Xx 107%, corres-
ponding to Ae,/e,~2x10"% The period is 27/ D= 55 yr for
all elements. The constants A and E are determined by the
initial conditions.

We can gain a better physical understanding of these results
by examining Lagrange’s equations for the system (see ref. 6
for a general discussion and refs 7 and 8 for a clear summary
and useful Solar System examples). The disturbing function for
each planet, due to its gravitational perturbation by the other,
can be separated into two parts. The secular part is made of
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FIG. 1 Orbital evolution of the PSR1257 +12 system. The solid lines are
from a direct numerical integration of Newton's equations for three point
masses. The dashed lines are from perturbation theory (equations (2) and
(6)). The instantaneous (osculating) values of the longitude of pericentre,
and of the changes in eccentricity and orbital period of the outer planet,
are shown as a function of time. The orbital elements of the inner planet
follow a similar evolution, but with somewhat smaller amplitudes.
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TABLE 1 Secular evolution parameters

i=1 eigenmode /=2 eigenmode

g (degyr™) 439x1072 293x1073
27/g; (yr) 8,210 123,000
E,; -1.94x107? -6.52x10*
E,: +2.06 x1072 -6.50x1073
B: (deg) 887 132

terms that do not depend on the mean longitudes of either
planet. In addition, the existence of a near 3: 2 commensurability
in the mean motions of the two planets implies that those terms
in the disturbing function that depend on the particular
combination of mean longitudes 2A, —3A, will contribute large,
periodic changes. We treat each contribution in turn and obtain
simple analytical expressions for the coefficients of equation (1).

Following Brouwer and Clemence®, we write the solution of
Lagrange’s equations corresponding to the secular part of the
disturbing function as

h;=e sinw;= ), E;sin(gt+p;)
i=1,2

ki=e;cosw;= ) E;cos(gt+p)

i=1,2

(2)

There is no secular variation of the semimajor axes or orbital
periods. The frequencies g, and the amplitudes E; can be
calculated as the eigenvalues and eigenvector components of a
2 x 2 matrix with coefficients given explicitly in terms of the
orbital elements’. The norms of the eigenvectors and the phases
B; can be calculated from a set of initial conditions. The results
for the PSR1257+ 12 system, assuming M = 1.4Msandsini=1,
are given in Table 1. We have numbered the two eigenstates so
that g, > g,. We find that the current state of the system is close
to a pure g; eigenstate with E,,= —E,,. This corresponds to
e;~|E; | = constant, w, = g, + 8, + 7, and 0, =~ @, — 7. A similar
eigenmode structure is observed for the two outer satellites of
Uranus, Titania and Oberon, which are also in a near 3:2
resonance’®. By comparing equations (2) and (1) for w;, we see
that B = g,. This can be calculated explicitly as

1
g1= g m i ablj@)lqa+ v+ [(ga - v) +4gauplY (3)

In this expression, n; is the mean orbital motion, the
bg’}% are Laplace coefficients®, and we have defined the non-
dimensional ratios «=a,/a,, q=my/m,, v=n,/n, and
B =b5y(a)/ by a).

We now turn to the near-resonant terms in the disturbing
function. For the 3:2 case, there are two such terms, which
depend on the mean longitudes as cos¢; with ¢,=
2X; —3A,+ w;. The corresponding amplitudes are given explicitly
in terms of the orbital elements®. To lowest order in e, we find
that Lagrange’s equations reduce to

. n; my . my
w,-:F,-(a); ﬁcos b, e,:F,(a)n,ﬁsm ®b; (4)
and a similar expression for 4;, with k =2(1) if j =1(2), and

1 d
Fla)= —£<6a+a2 d7> b(l3/)2(a)

o

(5)
_1 dy o
Fy(a) —§(5+a a) bi(a)

To solve equations (4) analytically, we use the fact that |w,] «
|2n,—3n,| and we keep the orbital elements constant at their
present values when evaluating the right-hand sides. (These
approximations are justified for t«2w/|w;| and as long as
the perturbations are small.) We can then write ¢;=
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(2n,—3n,)t+ ¢!, where ¢ is the initial value of ¢;, and find

Fa) m n . .
- ﬁk 2n :3n ){sm [(2n,—3n,)t+ d)ﬁ-o)]—sm (;S‘,-O)}
1 2

e
' (6)

and similar expressions for e;(f) and the osculating orbital
period P,(t). These analytical solutions are shown in Fig. 1 for
the outer planet (dashed lines). By comparing them with
equation (1), we obtain simple expressions for the coefficients
C and D. In particular we have D =2n,—3n, for all orbital
elements.

The rapid fluctuations apparent in the numerical solution
(Fig. 1) are caused by all the nonresonant and nonsecular terms
in the disturbing function, which have been neglected in our
analytical treatment. The largest such fluctuations are those
corresponding to close encounters between the two planets,
which occur roughly every 3 X (24/n,) = 200 days. In particular,
these close encounters produce changes in the instantaneous
(osculating) orbital periods of amplitude AP/P=10"", occur-
ring over a timescale of ~1 month. The current error bars on
the orbital periods® (which are measured by fitting data over a
period of time > 1 month) are ~ 107", indicating that these effects
may be marginally detectable already.

The amplitudes of both secular and periodic changes in the
orbital elements are all proportional to the ratio m;/ M, which
scales as M 3(sin i)”". Therefore, a measurement of any of
these changes will provide a constraint on the combination
M'3sin i, but will not allow M and sini to be determined
independently. If the inclinations of the two orbits are slightly
different, a measurement of any orbital change for both planets
will provide independent estimates of M'’sini, and
M'"3sin i,. Our analysis remains valid as long as the relative
inclination 6i =i, —i, is small. This is because near-resonant
periodic terms involving the inclinations and node longitudes
do not arise to lowest order in 8i for the 3:2 case®. Secular
variations in these quantities do arise, but, in the limit of small
eccentricities and small relative inclination, they are completely
decoupled from those involving eccentricities and longitudes of
pericentre’. Should &i turn out to be large, a more general
analysis would be necessary.

A strict upper limit on the masses of the two planets can also
be obtained by considering the long-term dynamical stability of
the system. Stability requires that the minimum separation
between the two planets always remain larger than the radius
of their ‘Hill’s spheres’. This condition can be written approxi-
mately® as Aa/a; >2.1(m,/M)1/3. As m, = m,, this implies for
both planets M/m,>7x10°, or m;/Mg<6x10"M,,. By
numerically integrating the equations of motion of the system
over a timescale of ~10* yr for many different values of the ratio
M/m,, we find a stability condition M/m, >8x10% in good
agreement with the simple analytical estimate.

Quite apart from the determination of the masses and orbital
inclinations, our results provide a critical test for the basic
interpretation of the radio observations. The measured orbital
elements of the two planets must all be evolving exactly as
described above. A confirmation of this evolution would provide
irrefutable evidence that a planetary system outside our own
Solar System has indeed been found. ]
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