Background: Generative and Discriminative Classifiers

Important analytic tool in natural and social sciences

Baseline supervised machine learning tool for classification

Is also the foundation of neural networks

Generative and Discriminative Classifiers Naive Bayes is a generative classifier

by contrast:

Logistic regression is a **discriminative** classifier

Generative and Discriminative Classifiers

Suppose we're distinguishing cat from dog images

imagenet

imagenet

Generative Classifier:

- Build a model of what's in a cat image
 - Knows about whiskers, ears, eyes
 - Assigns a probability to any image:
 - how cat-y is this image?

Also build a model for dog images

Now given a new image: Run both models and see which one fits better

Discriminative Classifier

Just try to distinguish dogs from cats

Oh look, dogs have collars! Let's ignore everything else Finding the correct class c from a document d in Generative vs Discriminative Classifiers

Naive Bayes

$$\hat{c} = \underset{c \in C}{\operatorname{argmax}} \quad \overbrace{P(d|c)}^{\text{likelihood prior}} \quad \overbrace{P(c)}^{\text{prior}}$$

Logistic Regression

 $\hat{c} = \underset{c \in C}{\operatorname{argmax}} P(c|d)$

Components of a probabilistic machine learning classifier

Given *m* input/output pairs $(x^{(i)}, y^{(i)})$:

- 1. A **feature representation** of the input. For each input observation $x^{(i)}$, a vector of features $[x_1, x_2, ..., x_n]$. Feature *j* for input $x^{(i)}$ is x_i , more completely $x_j^{(i)}$, or sometimes $f_j(x)$.
- 2. A classification function that computes \hat{y} , the estimated class, via p(y|x), like the **sigmoid** or **softmax** functions.
- 3. An objective function for learning, like **cross-entropy loss**.
- 4. An algorithm for optimizing the objective function: **stochastic gradient descent**.

The two phases of logistic regression

Training: we learn weights *w* and *b* using **stochastic gradient descent** and **cross-entropy loss**.

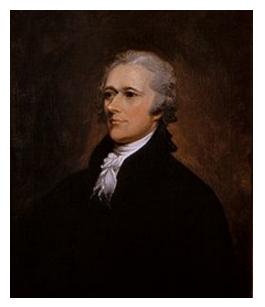
Test: Given a test example x we compute p(y|x) using learned weights w and b, and return whichever label (y = 1 or y = 0) is higher probability

Background: Generative and Discriminative Classifiers

Classification in Logistic Regression

Classification Reminder

Positive/negative sentiment Spam/not spam Authorship attribution (Hamilton or Madison?)



Alexander Hamilton

Text Classification: definition

Input:

- a document **x**
- a fixed set of classes $C = \{c_1, c_2, ..., c_J\}$

Output: a predicted class $\hat{y} \in C$

Binary Classification in Logistic Regression

Given a series of input/output pairs: • (x⁽ⁱ⁾, y⁽ⁱ⁾)

For each observation x⁽ⁱ⁾

- We represent x⁽ⁱ⁾ by a feature vector [x₁, x₂,..., x_n]
- We compute an output: a predicted class $\hat{y}^{(i)} \in \{0,1\}$

Features in logistic regression

- For feature x_i, weight w_i tells is how important is x_i
 - x_i = "review contains 'awesome'": w_i = +10
 - x_i ="review contains 'abysmal'": w_i = -10
 - $x_k =$ "review contains 'mediocre'": $w_k = -2$

Logistic Regression for one observation x

Input observation: vector $x = [x_1, x_2, ..., x_n]$ Weights: one per feature: $W = [w_1, w_2, ..., w_n]$ • Sometimes we call the weights $\theta = [\theta_1, \theta_2, ..., \theta_n]$ Output: a predicted class $\hat{y} \in \{0, 1\}$

(multinomial logistic regression: $\hat{y} \in \{0, 1, 2, 3, 4\}$)

How to do classification

For each feature x_i, weight w_i tells us importance of x_i
(Plus we'll have a bias b)

We'll sum up all the weighted features and the bias

$$z = \left(\sum_{i=1}^{n} w_i x_i\right) + b$$
$$z = w \cdot x + b$$

If this sum is high, we say y=1; if low, then y=0

But we want a probabilistic classifier

We need to formalize "sum is high".

We'd like a principled classifier that gives us a probability, just like Naive Bayes did

We want a model that can tell us:

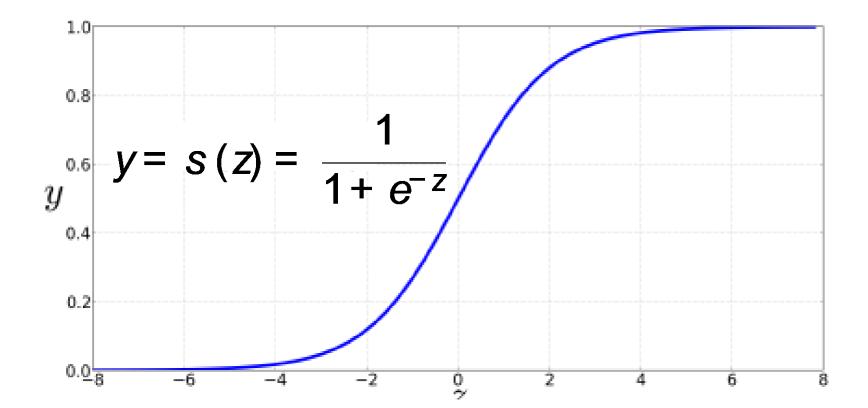
p(y=1|x; θ) p(y=0|x; θ) The problem: z isn't a probability, it's just a number!

$z = w \cdot x + b$

Solution: use a function of z that goes from 0 to 1

$$y = s(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$

The very useful sigmoid or logistic function



Idea of logistic regression

We'll compute w·x+b And then we'll pass it through the sigmoid function:

 $\sigma(w \cdot x + b)$

And we'll just treat it as a probability

Making probabilities with sigmoids

$$P(y=1) = \sigma(w \cdot x + b)$$

$$= \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$P(y=0) = 1 - \sigma(w \cdot x + b)$$

$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$

$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$

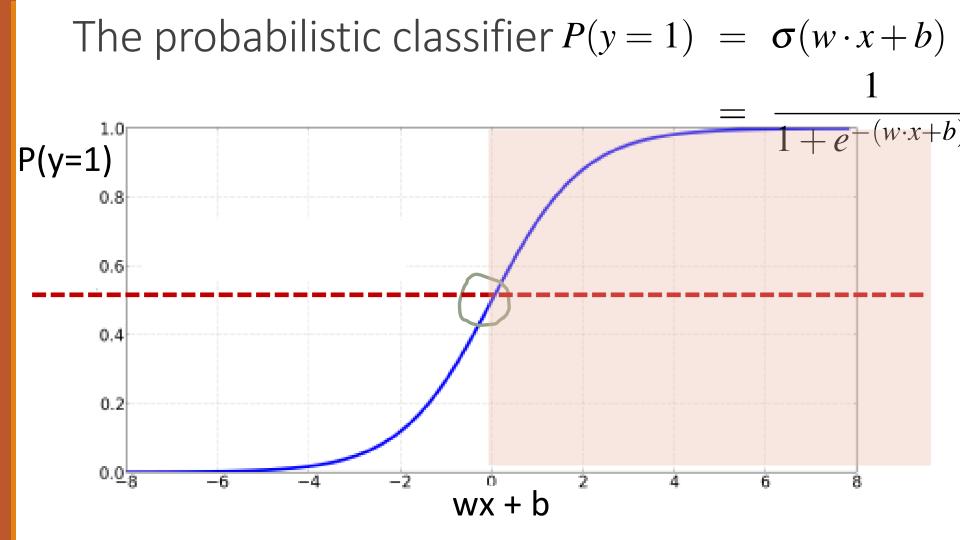
By the way:

$$P(y=0) = 1 - \sigma(w \cdot x + b) = \sigma(-(w \cdot x + b))$$
$$= 1 - \frac{1}{1 + \exp(-(w \cdot x + b))}$$
Because
$$= \frac{\exp(-(w \cdot x + b))}{1 + \exp(-(w \cdot x + b))}$$
$$1 - \sigma(x) = \sigma(-x)$$

Turning a probability into a classifier

$$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 \\ 0 & \text{otherwise} \end{cases}$$

0.5 here is called the **decision boundary**



Turning a probability into a classifier

$\hat{y} = \begin{cases} 1 & \text{if } P(y=1|x) > 0.5 & \text{if } \mathbf{w} \cdot \mathbf{x} + \mathbf{b} > \mathbf{0} \\ 0 & \text{otherwise} & \text{if } \mathbf{w} \cdot \mathbf{x} + \mathbf{b} \le \mathbf{0} \end{cases}$

Classification in Logistic Regression

Logistic Regression: a text example on sentiment classification

Sentiment example: does y=1 or y=0?

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do the same to you . It's hokey. There are virtually no surprises, and the writing is econd-rate. So why was it so <u>enjoyable</u>? For one thing, the cast is great. Another <u>nice</u> touch is the music D was overcome with the urge to get off the couch and start dancing. It sucked in in, and it'll do the same to for . $x_1=3$ $x_5=0$ $x_6=4.19$ $x_4=3$

Var	Definition	Value in Fig. 5.2
x_1	$count(positive lexicon) \in doc)$	3
x_2	$count(negative \ lexicon) \in doc)$	2
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1
x_4	$count(1st and 2nd pronouns \in doc)$	3
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0
x_6	log(word count of doc)	$\ln(66) = 4.19$

Classifying sentiment for input x

Var	Definition	Va]	5.2	
x_1	$count(positive lexicon) \in doc)$	3		
x_2	$count(negative lexicon) \in doc)$	2		
<i>x</i> ₃	$\begin{cases} 1 & \text{if "no"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	1		
<i>x</i> ₄	$count(1st and 2nd pronouns \in doc)$	3		
<i>x</i> ₅	$\begin{cases} 1 & \text{if "!"} \in \text{doc} \\ 0 & \text{otherwise} \end{cases}$	0		
x_6	log(word count of doc)	ln(66) =	4.19	
Suppose w = $[2.5, -5.0, -1.2, 0.5, 2.0, 0.7]$				
	b = 0.1			

Classifying sentiment for input x

 $p(+|x) = P(Y = 1|x) = s(w \cdot x + b)$

 $= s([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$

= 0.70

$$p(-|x) = P(Y = 0|x) = 1 - s(w \cdot x + b)$$

= 0.30

We can build features for logistic regression for any classification task: period disambiguation

End of sentence This ends in a period. The house at 465 Main Sci is new. Not end 1 if "*Case*(*w_i*) = Lower" 0 otherwise *x*₁ = 1 if "w_i 2 AcronymDict" $x_2 =$ 0 otherwise 1 if " w_i = St. & Case(w_{i-1}) = Cap" X3 otherwise

Classification in (**binary**) logistic regression: summary **Given**:

- a set of classes: (+ sentiment,- sentiment)
- a vector **x** of features [x1, x2, ..., xn]
 - x1= count("awesome")
 - x2 = log(number of words in review)
- A vector w of weights [w1, w2, ..., wn]
 - $\circ w_i$ for each feature f_i

$$P(y=1) = \sigma(w \cdot x + b)$$
$$= \frac{1}{1 + e^{-(w \cdot x + b)}}$$

Logistic Regression: a text example on sentiment classification

Learning: Cross-Entropy Loss

Wait, where did the W's come from?

Supervised classification:

- We know the correct label **y** (either 0 or 1) for each **x**.
- But what the system produces is an estimate, \hat{y}

We want to set w and b to minimize the **distance** between our estimate $\hat{y}^{(i)}$ and the true $y^{(i)}$.

- We need a distance estimator: a loss function or a cost function
- We need an optimization algorithm to update *w* and *b* to minimize the loss.

Learning components

A loss function: • cross-entropy loss

An optimization algorithm:stochastic gradient descent

The distance between \hat{y} and y

We want to know how far is the classifier output: $\hat{y} = \sigma(w \cdot x + b)$

from the true output:

We'll call this difference: $L(\hat{y}, y) = how much \hat{y}$ differs from the true y

Intuition of negative log likelihood loss = cross-entropy loss

A case of conditional maximum likelihood estimation

We choose the parameters *w*,*b* that maximize

- the log probability
- of the true *y* labels in the training data
- given the observations x

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Since there are only 2 discrete outcomes (0 or 1) we can express the probability p(y|x) from our classifier (the thing we want to maximize) as

$$p(y|x) = \hat{y}^{y} (1-\hat{y})^{1-y}$$

noting:

if y=1, this simplifies to \hat{y} if y=0, this simplifies to $1-\hat{y}$ Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize: $p(y|x) = \hat{y}^{y} (1-\hat{y})^{1-y}$

Now take the log of both sides (mathematically handy)

Maximize:
$$\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y} \right]$$
$$= y \log \hat{y} + (1-y) \log(1-\hat{y})$$

Whatever values maximize log p(y|x) will also maximize p(y|x)

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)

Maximize:
$$\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y} \right]$$

= $y \log \hat{y} + (1-y) \log(1-\hat{y})$

Now flip sign to turn this into a loss: something to minimize **Cross-entropy loss** (because is formula for cross-entropy(y, \hat{y})) Minimize: $L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y \log \hat{y} + (1-y) \log(1-\hat{y})]$ Or, plugging in definition of \hat{y} : $L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1-y) \log(1 - \sigma(w \cdot x + b))]$

We want loss to be:

- smaller if the model estimate is close to correct
- bigger if model is confused
- Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do the same to you .

True value is y=1. How well is our model doing?

$$p(+|x) = P(Y = 1|x) = s(w \cdot x + b)$$

= s([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)
= s(.833)
= 0.70 (5.6)

Pretty well! What's the loss? $L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$ $= -[\log \sigma(w \cdot x + b)]$ $= -\log(.70)$ = .36

Suppose true value instead was y=0.

$$p(-|x) = P(Y = 0|x) = 1 - s(w \cdot x + b)$$

= 0.30

What's the loss?

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

=
$$-[\log (1 - \sigma(w \cdot x + b))]$$

=
$$-\log (.30)$$

=
$$1.2$$

The loss when model was right (if true y=1)

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

=
$$-[\log \sigma(w \cdot x + b)]$$

=
$$-\log(.70)$$

.36

Is lower than the loss when model was wrong (if true y=0):

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

= -[log (1 - \sigma(w \cdot x + b))]
= -log (.30)
= 1.2

Sure enough, loss was bigger when model was wrong!

Logistic Regression

Cross-Entropy Loss

Logistic Regression

Stochastic Gradient Descent

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights $\theta = (w,b)$

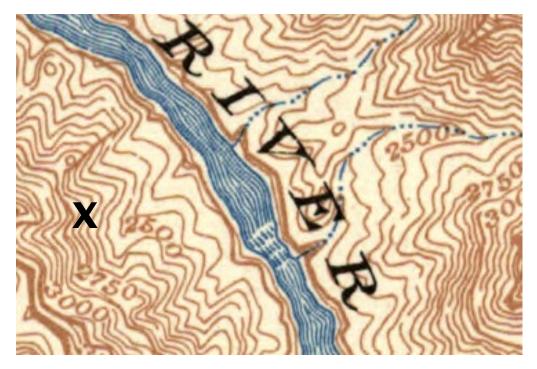
• And we'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious

We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \operatorname{argmin}_{\theta} \frac{1}{m} \sum_{i=1}^{m} L_{\text{CE}}(f(x^{(i)}; \theta), y^{(i)})$$

Intuition of gradient descent

How do I get to the bottom of this river canyon?



Look around me 360°

Find the direction of steepest slope down

Go that way

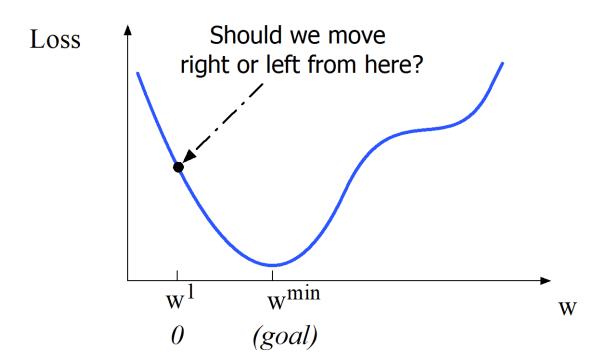
Our goal: minimize the loss

For logistic regression, loss function is **convex**

- A convex function has just one minimum
- Gradient descent starting from any point is guaranteed to find the minimum
 - (Loss for neural networks is non-convex)

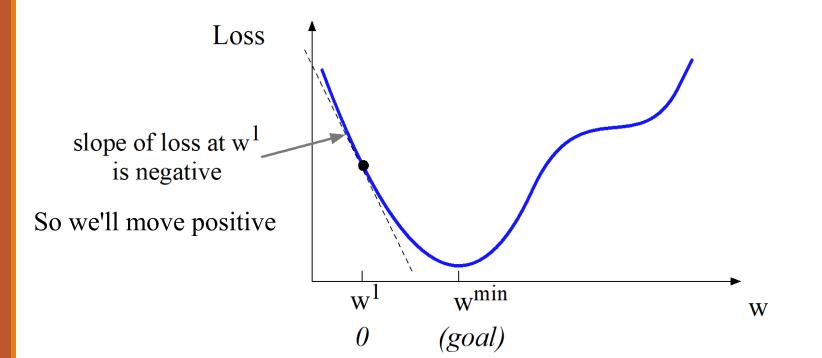
Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? A: Move w in the reverse direction from the slope of the function



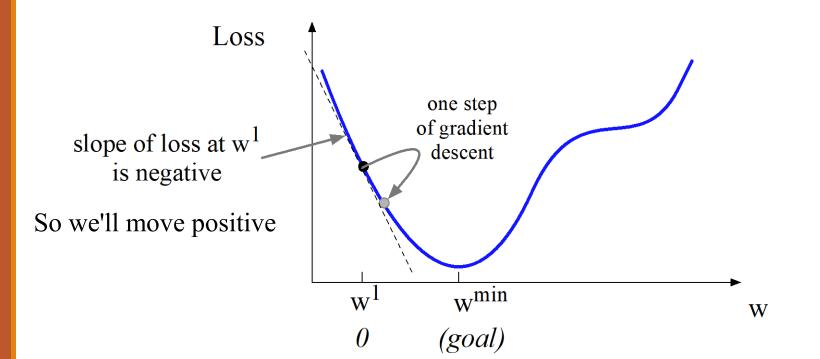
Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? A: Move w in the reverse direction from the slope of the function



Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? A: Move w in the reverse direction from the slope of the function



Gradients

The **gradient** of a function of many variables is a vector pointing in the direction of the greatest increase in a function.

Gradient Descent: Find the gradient of the loss function at the current point and move in the **opposite** direction.

How much do we move in that direction ?

- The value of the gradient (slope in our example) $\frac{d}{dw}L(f(x;w),y)$ weighted by a **learning rate** η
- Higher learning rate means move *w* faster

$$w^{t+1} = w^t - h \frac{d}{dw} L(f(x; w), y)$$

Now let's consider N dimensions

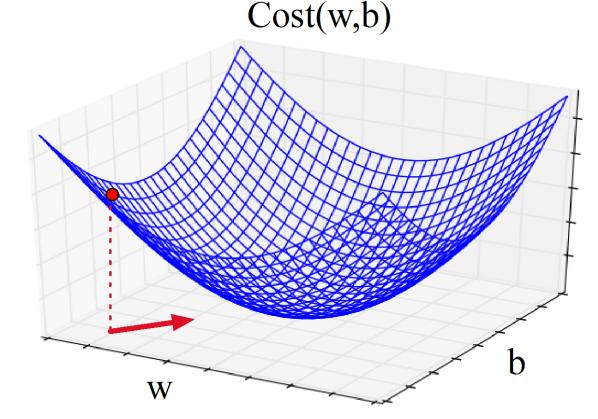
We want to know where in the N-dimensional space (of the N parameters that make up θ) we should move.

The gradient is just such a vector; it expresses the directional components of the sharpest slope along each of the *N* dimensions.

Imagine 2 dimensions, w and b

Visualizing the gradient vector at the red point

It has two dimensions shown in the x-y plane



Are much longer; lots and lots of weights

For each dimension w_i the gradient component *i* tells us the slope with respect to that variable.

- "How much would a small change in w_i influence the total loss function L?"
- We express the slope as a partial derivative ∂ of the loss ∂w_i

The gradient is then defined as a vector of these partials.

The gradient

We'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious: $\begin{bmatrix} -\partial & I(f(x; \theta), y) \end{bmatrix}$

$$\nabla_{\theta} L(f(x;\theta),y)) = \begin{bmatrix} \overline{\partial w_1} L(f(x;\theta),y) \\ \frac{\partial}{\partial w_2} L(f(x;\theta),y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x;\theta),y) \end{bmatrix}$$

The final equation for updating θ based on the gradient is thus

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$

What are these partial derivatives for logistic regression?

The loss function

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

The elegant derivative of this function (see textbook 5.8 for derivation)

$$\frac{\partial L_{\rm CE}(\hat{y}, y)}{\partial w_j} = [\boldsymbol{\sigma}(w \cdot x + b) - y] x_j$$

function STOCHASTIC GRADIENT DESCENT(L(), f(), x, y) returns θ # where: L is the loss function

- # f is a function parameterized by θ
- # x is the set of training inputs $x^{(1)}$, $x^{(2)}$, ..., $x^{(m)}$
- # y is the set of training outputs (labels) $y^{(1)}$, $y^{(2)}$,..., $y^{(m)}$

 $\boldsymbol{\theta} \! \leftarrow \! \boldsymbol{0}$

repeat til done

For each training tuple $(x^{(i)}, y^{(i)})$ (in random order)

- 1. Optional (for reporting): Compute $\hat{y}^{(i)} = f(x^{(i)}; \theta)$ Compute the loss $L(\hat{y}^{(i)}, y^{(i)})$ 2. $g \leftarrow \nabla_{\theta} L(f(x^{(i)}; \theta), y^{(i)})$ 3. $\theta \leftarrow \theta - \eta g$ rn θ
- # How are we doing on this tuple?
 # What is our estimated output ŷ?
 # How far off is ŷ⁽ⁱ⁾) from the true output y⁽ⁱ⁾?
 # How should we move θ to maximize loss?
 # Go the other way instead

return θ

Hyperparameters

The learning rate η is a **hyperparameter**

- too high: the learner will take big steps and overshoot
- too low: the learner will take too long

Hyperparameters:

- Briefly, a special kind of parameter for an ML model
- Instead of being learned by algorithm from supervision (like regular parameters), they are chosen by algorithm designer.

Logistic Regression

Stochastic Gradient Descent