Basic Text Processing

Regular Expressions

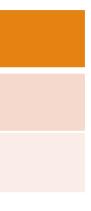
Regular expressions

A formal language for specifying text strings

How can we search for any of these?

- woodchuck
- woodchucks
- Woodchuck
- Woodchucks

Regular Expressions: Disjunctions


Letters inside square brackets []

Pattern	Matches
[wW]oodchuck	Woodchuck, woodchuck
[1234567890]	Any digit

Ranges [A-Z]

Pattern	Matches	
[A-Z]	An upper case letter	Drenched Blossoms
[a-z]	A lower case letter	my beans were impatier
[0-9]	A single digit	Chapter 1: Down the Ra

ent Rabbit Hole

Regular Expressions: Negation in Disjunction

Negations [^Ss]

• Carat means negation only when first in []

Pattern	Matches	
[^A-Z]	Not an upper case letter	O <mark>y</mark> fn pripetchik
[^Ss]	Neither 'S' nor 's'	<u>I</u> have no exquisi
[^e^]	Neither e nor ^	Look h <mark>e</mark> re
a^b	The pattern a carat b	Look up <u>a^b</u> now

te reason"

Regular Expressions: More Disjunction

Woodchuck is another name for groundhog! The pipe | for disjunction

Pattern	Matches	
groundhog woodchuck	woodchuck	
yours mine	yours	
abc	= [abc]	
[gG]roundhog [Ww]oodchuck	Woodchuck	A

Regular Expressions: ? *+.

Pattern	Matches	
colou?r	Optional previous char	<u>color</u> <u>colour</u>
oo*h!	0 or more of previous char	<u>oh! ooh! oooh! ooooh!</u>
o+h!	1 or more of previous char	<u>oh!</u> <u>ooh!</u> <u>oooh!</u> <u>ooooh!</u>
baa+		<u>baa</u> <u>baaa</u> <u>baaaaa</u>
beg.n		<u>begin begun begun beg3n</u>

Stephen C Kleene

Kleene *, Kleene +

Regular Expressions: Anchors ^ \$

Pattern	Matches
^[A-Z]	Palo Alto
^[^A-Za-z]	<u>1</u> <u>"</u> Hello"
\ .\$	The end.
. \$	The end? The end!

Example

- Find me all instances of the word "the" in a text. the
 - Misses capitalized examples
 - [tT]he
 - Incorrectly returns other or theology $[^a-zA-Z][tT]he[^a-zA-Z]$

The process we just went through was based on fixing two kinds of errors:

1. Matching strings that we should not have matched (there, then, other) **False positives (Type I errors)**

2. Not matching things that we should have matched (The) **False negatives (Type II errors)**

Errors cont.

In NLP we are always dealing with these kinds of errors.

Reducing the error rate for an application often involves two antagonistic efforts:

- Increasing accuracy or precision (minimizing false positives)
- Increasing coverage or recall (minimizing false negatives).

Summary

Regular expressions play a surprisingly large role

 Sophisticated sequences of regular expressions are often the first model for any text processing text

For hard tasks, we use machine learning classifiers

- But regular expressions are still used for pre-processing, or as features in the classifiers
- Can be very useful in capturing generalizations

e <mark>role</mark> are often

ssifiers cessing,

Basic Text Processing

Regular Expressions

Basic Text Processing

More Regular Expressions: Substitutions and ELIZA

Substitutions

Substitution in Python and UNIX commands:

s/regexp1/pattern/ e.g.: s/colour/color/

Capture Groups

- Say we want to put angles around all numbers: the 35 boxes \rightarrow the <35> boxes
- Use parens () to "capture" a pattern into a numbered register (1, 2, 3...)
- Use 1 to refer to the contents of the register s/([0-9]+)/<\1>/

Capture groups: multiple registers

/the (.*)er they (.*), the $\ler we \2/$ Matches

the faster they ran, the faster we ran But not

the faster they ran, the faster we ate

But suppose we don't want to capture?

Parentheses have a double function: grouping terms, and capturing

Non-capturing groups: add a ?: after paren:

- /(?:some|a few) (people|cats) like some \1/ matches
- some cats like some cats

but not

• some cats like some some

Lookahead assertions

(?= pattern) is true if pattern matches, but is zero-width; doesn't advance character pointer (?! pattern) true if a pattern does not match

How to match, at the beginning of a line, any single word that doesn't start with "Volcano":

/^(?!Volcano)[A-Za-z]+/

Simple Application: ELIZA

Early NLP system that imitated a Rogerian psychotherapist

Joseph Weizenbaum, 1966.

Uses pattern matching to match, e.g.,: • "I need X" and translates them into, e.g. • "What would it mean to you if you got X?

Simple Application: ELIZA

Men are all alike. IN WHAT WAY

They're always bugging us about something or other. **CAN YOU THINK OF A SPECIFIC EXAMPLE**

Well, my boyfriend made me come here. YOUR BOYFRIEND MADE YOU COME HERF

He says I'm depressed much of the time. I AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

- s/.* I'M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE 1/s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/ s/.* all .*/IN WHAT WAY?/
- s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

Basic Text Processing

More Regular Expressions: Substitutions and ELIZA