LING 334 - Introduction to Computational Linguistics

Week 5

Linguistic Structure, NLP "Tasks", and Annotation

The Basic Approaches of Linguistics

It's all over the place! Low consensus field.

This makes some sense - language has many parts and purposes.

Descriptivism

Maybe the one thing we can all agree on: the object of study is how and what language is, rather than what it "should be" (prescriptivism)

Descriptivism

Origins with Pāṇini, Sanskrit linguist ~400BC

Contrast with "experts," Strunk and White etc. (these are cultural norms and conventions)

Key (modern) ideas:

- Language change is normal and expected
- Everyone has a "dialect"
- There are very few cross-linguistic universals

Traditional Levels of Structure

	Phonetics	sounds
Small	Phonology	ordering of sounds
to big	Morphology	words and word parts
units:	Syntax	ordering of words
	Semantics	propositional meaning
	Pragmatics	non-propositional meaning

But there are many more...

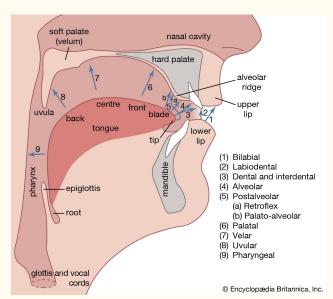
(very	Reference	pointing out things with words
roughly) Small	Prosody	suprasegmental sounds like pitch
to big	Discourse	sequences between large units
units:	Social Meaning	social implicature of variation

The Concept of a "Task" in NLP

Research in NLP is often framed as solving a particular "task", e.g. improving performance at some problem

Very frequent sort of task in traditional NLP:

Given free text or speech audio, automatically generate a representation of some part of its linguistic structure


Phonetics

The physical production and perception of speech sounds
Unit of analysis: speech sound

NLP Tasks:

Speech synthesis
Automated transcription

https://dood.al/pinktrombone/

International Phonetic Alphabet (IPA)

ıntə næ n·l fə netik 'ælfə bet

Consonants (pulmonic)

	Bilabial	Lat		Der	ntal	Alve	eolar		st- olar	Retr	oflex	Pal	atal	Ve	elar	Uv	ular	Phar	yngeal	G	ottal
Plosive	p b					t	d			t	d	c	J	k	g	q	G			?	
Nasal	m	1	ŋ				n				η		ŋ		ŋ		N				
Trill	В						r						90				R				
Tap or flap			V				ſ				t										
Fricative	φβ	f	V	θ	ð	S	Z	S	3	ş	Z	ç	j	X	V	χ	R	ħ	r	h	h
Lateral fricative						4	13		•												
Approximant			υ				I				J		j		щ						
Lateral approximant							1				l		λ		L						

Phonology

The systematic organization of speech sounds Unit of analysis: phoneme

Questions include:

- Which set of sounds does a language use?
- What rules constrain their orderings?

Example: /P/ aspiration

- 'pin' the 'p' sound has a puff of air [ph]
- 'spin' it doesn't

NLP Tasks: Similar to Phonetics

8

Morphology

The structure and constituent parts of words
Unit of analysis: morpheme
(smallest meaning-bearing unit)

Morphemes can be:

Free can stand alone, words like 'cat' and 'banana'

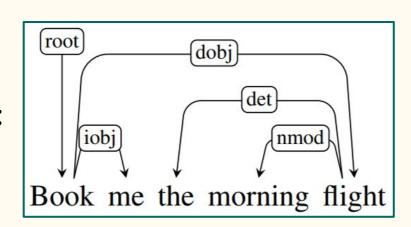
Bound can't stand alone, word-parts like 'un-' and '-est'

NLP Tasks:

- Morphological Segmentation (very important in synthetic langs!)
- Lemmatization and Inflection

credit Ryan Cotterell

Syntax


The systematicity of word orderings

"The sloth ate the cupcake." != "The cupcake ate the sloth."

* "Cupcake sloth ate the the."

NLP Tasks:

- Syntactic Parsing
- Downstream applications, e.g.:
 - Machine Translation
 - Semantic Similarity

Semantics

The propositional (e.g., literal) meanings of words and larger units (frequently sentences)

We're digging into semantics next week!

Pragmatics

The beyond-propositional meanings of words and larger units

Among the many possibilities:

Implicature "I'm sad." "He

"I'm sad." "Here's a popsicle."

Performatives

"I now pronounce you X and Y."

Deference

"Please follow me, your majesty."

Information Structure

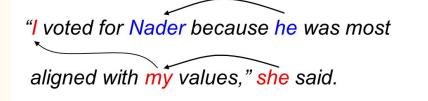
- A large book was sitting on the desk.
- b. On the desk a large book was sitting.
- c. On the desk was sitting a large book.
- It was a large book that was sitting on the desk.
- e. What was sitting on the desk was a large book.
- f. There was a large book sitting on the desk.
- g. Sitting on the desk was a large book.

NLP Tasks:

Many social/applied!

credit Gregory Ward

Reference

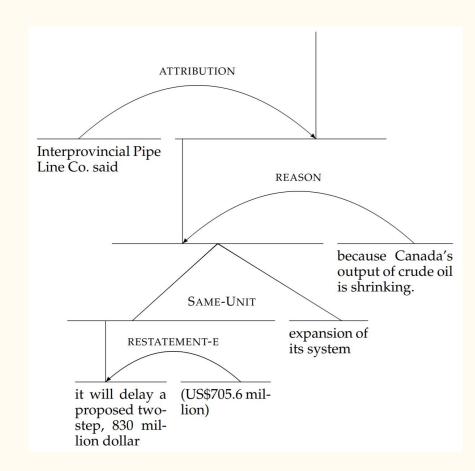

What entity in the world does a linguistic expression point out? Includes pronouns, honorifics, naming and nicknaming

Winograd Schema Challenge:

- "The goose wouldn't fit in the boat because it was too big."
- "The goose wouldn't fit in the boat because it was too small."

NLP Tasks:

- Coreference Resolution
- Named Entity Recognition



Discourse

The relations between clauses and propositions

NLP Tasks:

- Discourse Parsing
- Argumentation Mining

Social Meaning

Many sorts of complex socially enmeshed meaning-making:

Sentiment and stance

Regional variation

Identity performance

Memes and spread of ideas

Each can be an NLP Task!

Data in Linguistics

Introspection, and/or "native speaker intuitions"

Collected observations of language in use (e.g. corpora)

Laboratory data (experimentally collected or manipulated)

All of the above potentially augmented with annotations

Linguistic Annotations

To train a relevant model, we need training data So, we hand-label some!

Traditionally, most commonly done by experts

Today, frequently done with crowdsourcing as well

Which is more appropriate depends on the task!

See relevant readings re: wisdom of the crowd
Naive annotators can do a great job!

Annotation Schemes

An annotation scheme or ontology instantiates a theory of language.

Example - Part of Speech Tagging:

36 Penn Treebank Tags

Implicit Proposal: these are what's important

I/PRP love/VBP eating/VBG noodles/NNS

	Number	Tag	Description
	1.	CC	Coordinating conjunction
Penn	2.	CD	Cardinal number
1 61111	3.	DT	Determiner
Treebank	4.	EX	Existential there
	5.	FW	Foreign word
POS	6.	IN	Preposition or subordinating conjunction
	7.	JJ	Adjective
Tags	8.	JJR	Adjective, comparative
_	9.	JJS	Adjective, superlative
	10.	LS	List item marker
	11.	MD	Modal
	12.	NN	Noun, singular or mass
	13.	NNS	Noun, plural
	14.	NNP	Proper noun, singular
	15.	NNPS	Proper noun, plural
	16.	PDT	Predeterminer
	17.	POS	Possessive ending
	18.	PRP	Personal pronoun
	19.	PRP\$	Possessive pronoun
	20.	RB	Adverb
	21.	RBR	Adverb, comparative
	22.	RBS	Adverb, superlative
	23.	RP	Particle
	24.	SYM	Symbol
	25.	TO	to
	26.	UH	Interjection
	27.	VB	Verb, base form
tant	28.	VBD	Verb, past tense
lant	29.	VBG	Verb, gerund or present participle
	30.	VBN	Verb, past participle
	31.	VBP	Verb, non-3rd person singular present
	32.	VBZ	Verb, 3rd person singular present
NIC	33.	WDT	Wh-determiner
NS	34.	WP	Wh-pronoun
,	35.	WP\$	Possessive wh-pronoun
	36.	WRB	Wh-adverb

Annotation Schemes (cont.)

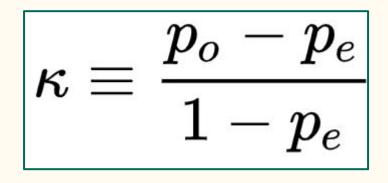
Frequently developed over multiple rounds of piloting

Common tradeoff between specificity and speed/expense/scale
Do I want 40 categories and 400 annotations,
or 5 categories and 4,000 annotations?
Zipf's Law - vanishing returns as we get many categories

Annotation Evaluation

Linguistic categories are purely abstract human creations!

There is no ground truth. (rut roh)


So we usually evaluate with Inter-Annotator Agreement

Have some proportion of the data annotated by multiple people

Obtain a measurement of consistency - how often do people make the same judgment?

Common - Cohen's Kappa

Compare the expected agreement to the actual:

p_o = probability ofobserved agreement

p_e = probability of expected agreement

Say we have a task with two labels, POS and NEG,

and two annotators, A and B - count up each category:

Annotator B

	POS	NEG
POS	45	15
NEG	25	15

Get totals:

Annotator B

	POS	NEG	total
POS	45	15	60
NEG	25	15	40
total	70	30	N = 100

They agreed 60% of the time

$$p_0 = (45 \text{ POS} + 15 \text{ NEG}) / 100 \text{ total} = 60\%$$

Annotator B

	POS	NEG	total
POS	45	15	60
NEG	25	15	40
total	70	30	N = 100

Probability of expected is trickier - calculate expected freq for each category: $E_{freq} = (row_total * col_total) / N$

Annotator B

	POS	NEG	total
POS	45 (42)	15	60
NEG	25	15 (12)	40
total	70	30	N = 100

Now we can get p_e:

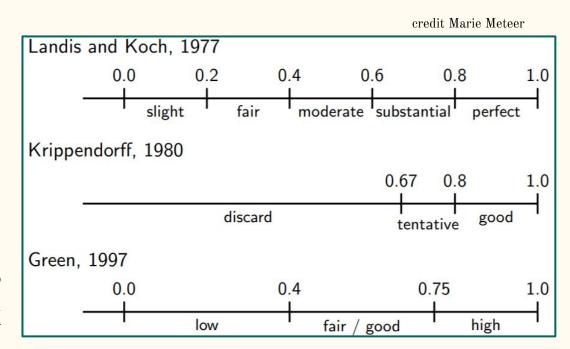
$$p_{e} = (42 \text{ POS exp} + 12 \text{ NEG exp}) / 100 = 0.54$$

Annotator B

	POS	NEG	total
POS	45 (42)	15	60
NEG	25	15 (12)	40
total	70	30	N = 100

And calculate Kappa:
$$\frac{p_o - p_e}{1 - p_e} = \frac{0.6 - 0.54}{1 - 0.54} = 0.13$$

Annotator B


	POS	NEG	total
POS	45 (42)	15	60
NEG	25	15 (12)	40
total	70	30	N = 100

Interpretation of Agreement Metrics

Usually scaled 0.0 - 1.0: What counts as good?

Differing opinions!

Ultimately, it's made up, so it depends on the task

