LING 334 - Introduction to Computational Linguistics

Week 9

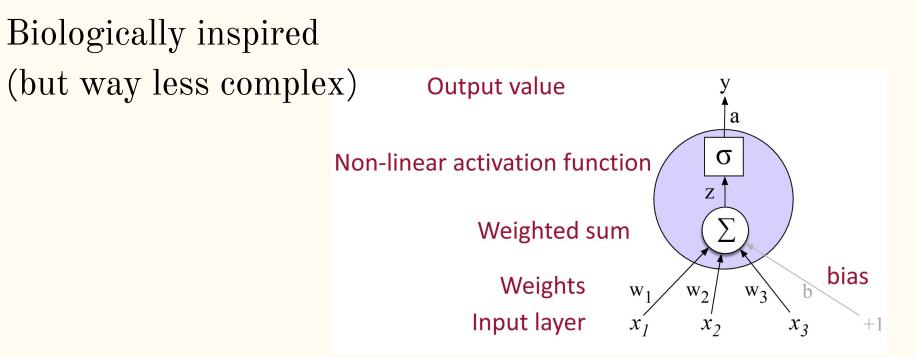
State of the Art

Plan for Today

Neural nets crash course! Conceptual understanding up to and including BERT-style ("transformers") Contextualizing NNs in the field

Where to go from here

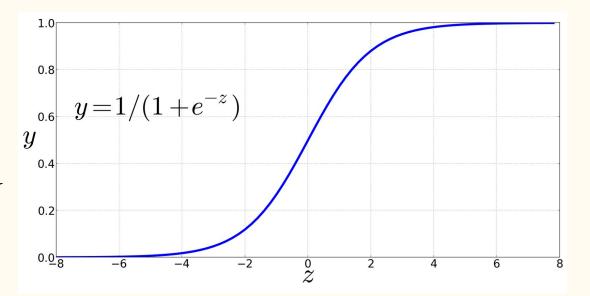
One Neuron (\approx Logistic Regression)



this and future figures from SLP Ch. 7 and 9 unless noted

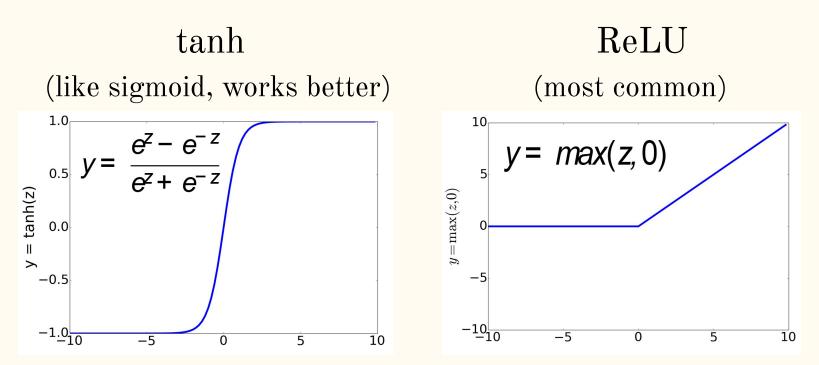
Non-Linearities - Sigmoid

Transforms any value to be between 0 and 1, pseudo-probability



x axis = sum of weights times inputs y axis = output value of neuron

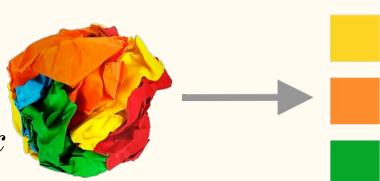
Non-Linearities - tanh and ReLU



credit J+M, SLP slides

Why Non-Linearities?

Naive Bayes is a linear classifier Decision boundary from $\sum w \cdot x$



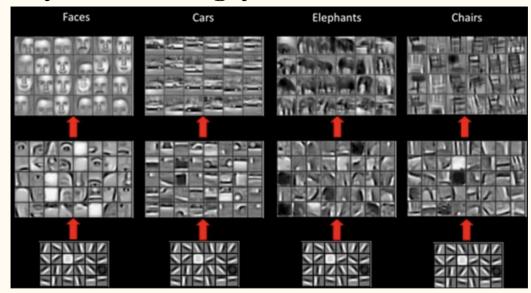
For NNs, key idea is representing the input in increasingly abstract non-linear transformations

"Hidden Layers"

Until the final decision can be made linearly

Example from Computer Vision

Each layer in a convolutional neural network is activated by increasingly abstract stimuli

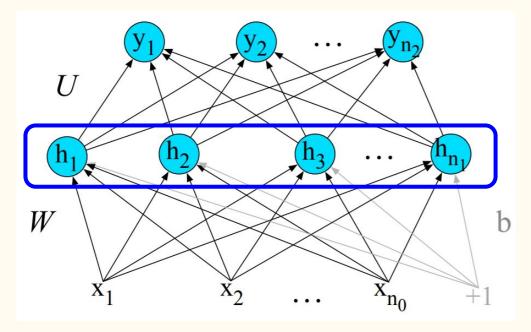


Simple Feed-forward Neural Net

Each arrow represents multiplication of value by a weight

Summed at each node, non-linear transform

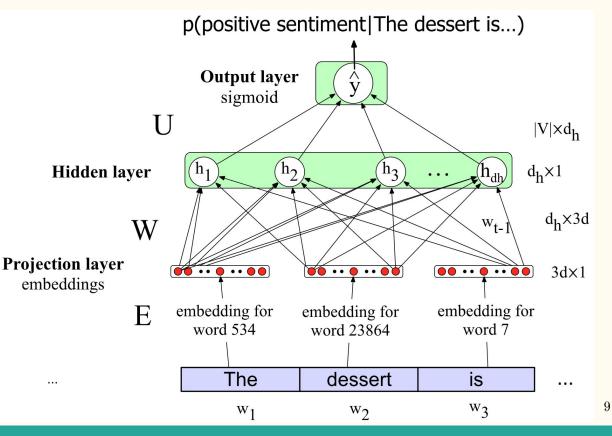
Like multiple logistic regressions running concurrently on the same inputs



Simple NN - Another View

Large input layer!

Many weights!

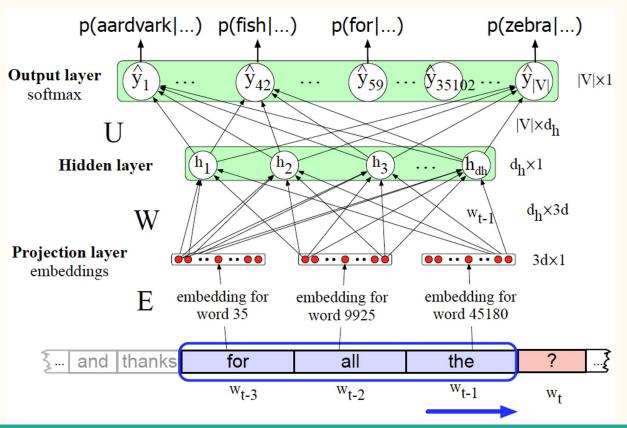


Neural Network Language Model

Sliding window over words

Large output layer of all words in V

Notice the hidden layer is itself a vector!



Training via Backpropagation w,=fish $L = -\log P(fish \mid for, all, the)$ Loss = function saying,p(aardvark]...) p(do]...) p(fish]...) p(zebra]...) how wrong are we? **Output layer** \hat{y}_1 \hat{y}_{42} ... \hat{y}_{35102} ... (ŷ₃₄)_ $|V| \times 1$ softmax |V|×dh U Derivative of this function h₁ h_2 $\left(h_{3}\right)$ $d_h \times 1$ **Hidden laver** (h_{dh}) $d_h \times 3d$ W at any point tells us which **Projection layer** $\bigcirc \bigcirc \cdots \bigcirc \cdots \bigcirc \bigcirc$ $3d \times 1$ embeddings $d \times |V|$ way to go to be less wrong E E is shared across words 9925 V 45180 V Input layer $|V| \times 1$ 00.00.000 00000000000 ··· 00 0.0 0.0 0 1 00 one-hot vectors "all" = index "the" = index "for" = index Chain rule allows us to go word 9925 word 45180 word 59 and thank for all the fish dyback arbitrarily far $\frac{dz}{dz}$ dzwt-3 w_{t-2} wt-1 Wt dxdx11 du

Recurrent Neural Networks

Core idea: combine hidden state vector from previous timestep (e.g., word) With input vector at current timestep

Additional set of weights setting how previous step should be combined U W Vector of hidden state from the previous timestep

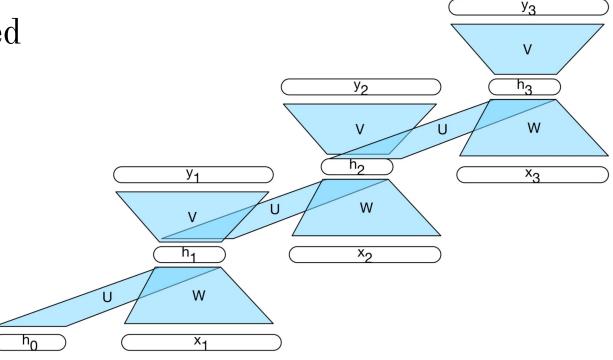
Inputs at this timestep 12

V

Recurrent Neural Networks - unrolled view

Weights are shared across timesteps E.g., the same

U, V, W are applied at each timestep

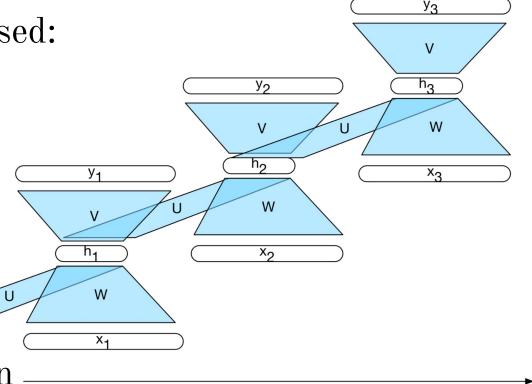


Recurrent Neural Networks - unrolled view

Output layer (y) can be used: e.g. predict POS tags

or discarded, if we just care about building up the hidden state

Can just use final _____ output layer for prediction

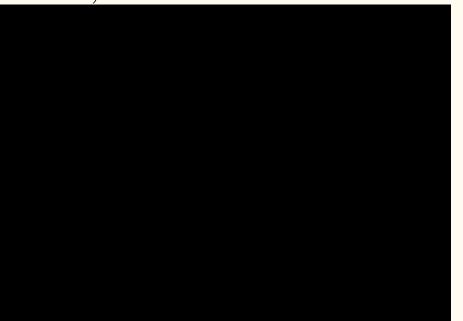


Seq2seq Models

Encode a sequence word by word, building the hidden state

Pass final hidden state to another RNN to "decode"

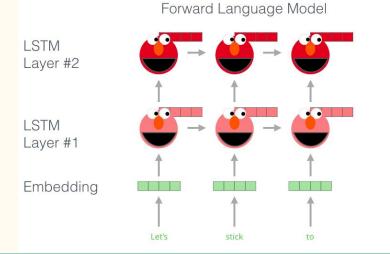
Common use case: machine translation



ELMo (Embeddings from a Language Model)

Key insight: don't use static embeddings; instead, use hidden state from an RNN language model (Peters et al. 2018)

Embedding of "stick" in "Let's stick to" - Step #1



Backward Language Model

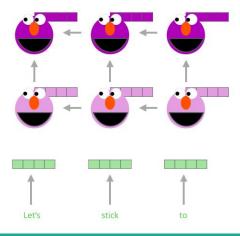


figure from Jay Alammar

ELMo (Embeddings from a Language Model)

Result is "contextual" embeddings

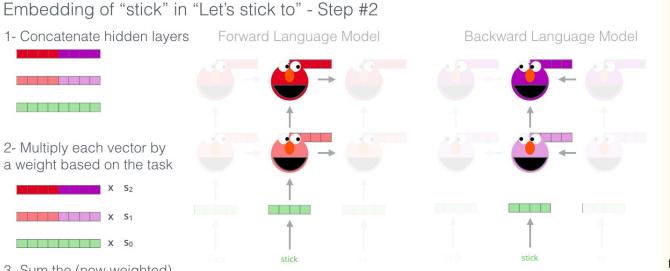


figure from Jay Alammar

3- Sum the (now weighted) vectors

ELMo embedding of "stick" for this task in this context

The Muppet Parade

BERT and others follow on this idea with more complex architectures

Many layers, complex flow of information

Very common paradigm:

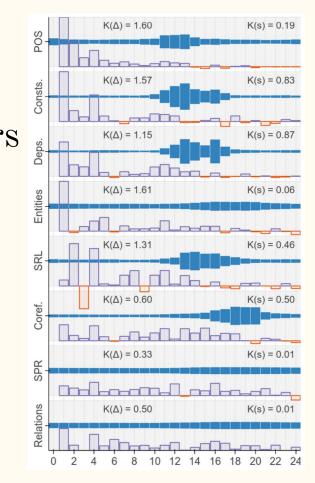
"Fine-tune" BERT-like model for a specific task e.g., train it a little bit extra on some relevant data

Pre-Training - Fine-Tuning Paradigm



The many layers of BERT BERT-Large has 24 transformer layers (each of which has many layers itself)

Empirical work has shown that BERT encodes increasingly abstract linguistic information in higher layers (Tenney et al. 2019)



BERT for Classification

BERT in particular provides a [CLS] token, contextual embedding token for classification **Output value** Frequently just start a the cycle over again... Non-linear activation function σ Ζ Train a new classifier Weighted sum where the features are Weights W_2 Wa Input layer BERT [CLS] embeddings!

bias

Parameter Explosion!

Parameters are any values we have to set - e.g. weights

Naive Bayes two classes, vocab size of 30k = 60k params

BERT-Large, 300 million params

More recent models in the trillions

Parameter Explosion!

- Therefore, these big NNs are very data hungry!
- We need many examples (at least 10x params) to train
- Training on the internet, basically (Common Crawl) Multiple terabytes of text
- Costs to train one model up to the millions USD not to mention all the failed attempts...

A Tricky Proposition

We got here empirically -

you see many cards have been stacked, people kept trying stuff until they stayed standing

It all sounds reasonable, but it's also weird that it works

New subfield: BERTology trying to understand what linguistic things BERT et al know and can do, and why

What did we gain from doing this?

Better results on concrete tasks, real world applications

Neural Machine Translation for instance - transformative previously very complex statistical systems, now trained end-to-end

No feature engineering! (Lots of architecture tinkering.)

Many building blocks for complex models

How has this affected the field?

The gap between modern, task-based NLP and "Computational Linguistics" has maybe never been wider

Divergence between properly linguistic/behavioral and simply "increase performance on this task"

Still, earlier non-neural methods are not worthless!

Interesting time to be a computational linguist!

Great Free Courses on This Neural Stuff

Stanford CS224n:

<u>https://www.youtube.com/playlist?list=PLoROMvodv4</u> <u>rOhcuXMZkNm7j3fVwBBY42z</u>

CMU CS 11-747:

<u>https://www.youtube.com/playlist?list=PL8PYTP1V4</u> <u>I8AkaHEJ7l0Orlex-pcxS-XV</u>

Coming Up

Wednesday this week: Class optional, final project discussion + OH Next week: Survey of software packages for doing CL/NLP