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Sparse versus dense vectors

tf-idf (or PMI) vectors are
◦ long (length |V|= 20,000 to 50,000)
◦ sparse (most elements are zero)

Alternative: learn vectors which are
◦ short (length 50-1000)
◦ dense (most elements are non-zero)



Sparse versus dense vectors

Why dense vectors?
◦ Short vectors may be easier to use as features in machine 

learning (fewer weights to tune)
◦ Dense vectors may generalize better than explicit counts
◦ Dense vectors may do better at capturing synonymy:

◦ car and automobile are synonyms; but are distinct dimensions
◦ a word with car as a neighbor and a word with automobile as a 

neighbor should be similar, but aren't
◦ In practice, they work better3



Common methods for getting short dense vectors

“Neural Language Model”-inspired models
◦ Word2vec (skipgram, CBOW), GloVe

Singular Value Decomposition (SVD)
◦ A special case of this is called LSA – Latent Semantic Analysis

Alternative to these "static embeddings":
• Contextual Embeddings (ELMo, BERT)
• Compute distinct embeddings for a word in its context
• Separate embeddings for each token of a word



Simple static embeddings you can download!

Word2vec (Mikolov et al)
https://code.google.com/archive/p/word2vec/

GloVe (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/


Word2vec
Popular embedding method
Very fast to train
Code available on the web
Idea: predict rather than count
Word2vec provides various options. We'll do:
skip-gram with negative sampling (SGNS)



Word2vec
Instead of counting how often each word w occurs near "apricot"

◦ Train a classifier on a binary prediction task:
◦ Is w likely to show up near "apricot"?

We don’t actually care about this task
◦ But we'll take the learned classifier weights as the word embeddings

Big idea:  self-supervision: 
◦ A word c that occurs near apricot in the corpus cats as the gold "correct 

answer" for supervised learning
◦ No need for human labels
◦ Bengio et al. (2003); Collobert et al. (2011) 



Approach: predict if candidate word c is a "neighbor"

1. Treat the target word t and a neighboring context word c
as positive examples.

2. Randomly sample other words in the lexicon to get 
negative examples

3. Use logistic regression to train a classifier to distinguish 
those two cases

4. Use the learned weights as the embeddings



Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

…lemon, a [tablespoon of  apricot  jam,   a]  pinch…
c1                   c2 c3      c4[target]



Skip-Gram Classifier
(assuming a +/- 2 word window)

…lemon, a [tablespoon of  apricot  jam,   a]  pinch…
c1                   c2 [target] c3      c4

Goal: train a classifier that is given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

…
And assigns each pair a probability:

P(+|w, c) 
P(−|w, c) = 1 − P(+|w, c) 



Similarity is computed from dot product

Remember: two vectors are similar if they have a high 
dot product
◦ Cosine is just a normalized dot product

So:
◦ Similarity(w,c)  ∝ w ∙ c

We’ll need to normalize to get a probability 
◦ (cosine isn't a probability either)
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Turning dot products into probabilities

Sim(w,c) ≈ w ∙ c
To turn this into a probability 
We'll use the sigmoid from logistic regression:



How Skip-Gram Classifier computes P(+|w, c) 

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:



Skip-gram classifier: summary

A probabilistic classifier, given 
• a test target word w 
• its context window of L words c1:L

Estimates probability that w occurs in this window based 
on similarity of w (embeddings) to c1:L (embeddings).

To compute this, we just need embeddings for all the 
words.



These embeddings we'll need: a set for w, a set for c
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Skip-Gram Training data

…lemon, a [tablespoon of  apricot  jam,   a]  pinch…
c1                   c2 [target] c3      c4
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Skip-Gram Training data

…lemon, a [tablespoon of  apricot  jam,   a]  pinch…
c1                   c2 [target] c3      c4
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For each positive 
example we'll grab k 
negative examples, 
sampling by frequency



Skip-Gram Training data

…lemon, a [tablespoon of  apricot  jam,   a]  pinch…
c1                   c2 [target] c3      c4
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Word2vec: how to learn vectors

Given the set of positive and negative training instances, 
and an initial set of embedding vectors 
The goal of learning is to adjust those word vectors such 
that we:

◦ Maximize the similarity of the target word, context word pairs 
(w , cpos) drawn from the positive data

◦ Minimize the similarity of the (w , cneg) pairs drawn from the 
negative data. 

11/3/2021 21



Loss function for one w with cpos , cneg1 ...cnegk
Maximize the similarity of the target with the actual context words, 
and minimize the similarity of the target with the k negative sampled 
non-neighbor words. 



Learning the classifier

How to learn?
◦ Stochastic gradient descent!

We’ll adjust the word weights to
◦ make the positive pairs more likely 
◦ and the negative pairs less likely, 
◦ over the entire training set.



Intuition of one step of gradient descent



Reminder: gradient descent

• At each step
• Direction: We move in the reverse direction from the 

gradient of the loss function
• Magnitude: we move the value of this gradient 

𝑑𝑑
𝑑𝑑𝑑𝑑

𝐿𝐿(𝑓𝑓 𝑥𝑥;𝑤𝑤 ,𝑦𝑦) weighted by a learning rate η 
• Higher learning rate means move w faster



The derivatives of the loss function



Update equation in SGD

Start with randomly initialized C and W matrices, then incrementally do updates



Two sets of embeddings

SGNS learns two sets of embeddings
Target embeddings matrix W
Context embedding matrix C 

It's common to just add them together, 
representing word i as the vector  wi + ci



Summary: How to learn word2vec (skip-gram) 
embeddings

Start with V random d-dimensional vectors as initial 
embeddings
Train a classifier based on embedding similarity

◦Take a corpus and take pairs of words that co-occur as positive 
examples

◦Take pairs of words that don't co-occur as negative examples
◦Train the classifier to distinguish these by slowly adjusting all 
the embeddings to improve the classifier performance

◦Throw away the classifier code and keep the embeddings.
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The kinds of neighbors depend on window size

Small windows (C= +/- 2) : nearest words are syntactically 
similar words in same taxonomy

◦Hogwarts nearest neighbors are other fictional schools
◦Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) :  nearest words are related 
words in same semantic field

◦Hogwarts nearest neighbors are Harry Potter world:
◦Dumbledore, half-blood,  Malfoy



Analogical relations
The classic parallelogram model of analogical reasoning 
(Rumelhart and Abrahamson 1973)

To solve: "apple is to tree as grape is to  _____"
Add tree – apple  to grape to get vine



Analogical relations via parallelogram

The parallelogram method can solve analogies with 
both sparse and dense embeddings (Turney and 
Littman 2005, Mikolov et al. 2013b)

king – man + woman is close to queen
Paris – France + Italy is close to Rome

For a problem a:a*::b:b*, the parallelogram method is:



Structure in GloVE Embedding space



Caveats with the parallelogram method

It only seems to work for frequent words, small 
distances and certain relations (relating countries to 
capitals, or parts of speech), but not others. (Linzen
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a) 

Understanding analogy is an open area of research 
(Peterson et al. 2020)



Train embeddings on different decades of historical text to see meanings shift
~30 million books, 1850-1990, Google Books data

Embeddings as a window onto historical semantics

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal 
Statistical Laws of Semantic Change. Proceedings of ACL.



Embeddings reflect cultural bias!

Ask “Paris : France :: Tokyo : x” 
◦ x = Japan

Ask “father : doctor :: mother : x” 
◦ x = nurse

Ask “man : computer programmer :: woman : x” 
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer 
programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016.

Algorithms that use embeddings as part of e.g., hiring searches for 
programmers, might lead to bias in hiring



Historical embedding as a tool to study cultural biases

• Compute a gender or ethnic bias for each adjective: e.g., how 
much closer the adjective is to "woman" synonyms than 
"man" synonyms, or names of particular ethnicities
• Embeddings for competence adjective (smart, wise, 

brilliant, resourceful, thoughtful, logical) are biased toward 
men, a bias slowly decreasing 1960-1990

• Embeddings for dehumanizing adjectives (barbaric, 
monstrous, bizarre)  were biased toward Asians in the 
1930s, bias decreasing over the 20th century.

• These match the results of old surveys done in the 1930s

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. 
Proceedings of the National Academy of Sciences 115(16), E3635–E3644.
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