
Vector
Semantics &
Embeddings

Word2vec

Sparse versus dense vectors

tf-idf (or PMI) vectors are
◦ long (length |V|= 20,000 to 50,000)
◦ sparse (most elements are zero)

Alternative: learn vectors which are
◦ short (length 50-1000)
◦ dense (most elements are non-zero)

Sparse versus dense vectors

Why dense vectors?
◦ Short vectors may be easier to use as features in machine

learning (fewer weights to tune)
◦ Dense vectors may generalize better than explicit counts
◦ Dense vectors may do better at capturing synonymy:

◦ car and automobile are synonyms; but are distinct dimensions
◦ a word with car as a neighbor and a word with automobile as a

neighbor should be similar, but aren't
◦ In practice, they work better3

Common methods for getting short dense vectors

“Neural Language Model”-inspired models
◦ Word2vec (skipgram, CBOW), GloVe

Singular Value Decomposition (SVD)
◦ A special case of this is called LSA – Latent Semantic Analysis

Alternative to these "static embeddings":
• Contextual Embeddings (ELMo, BERT)
• Compute distinct embeddings for a word in its context
• Separate embeddings for each token of a word

Simple static embeddings you can download!

Word2vec (Mikolov et al)
https://code.google.com/archive/p/word2vec/

GloVe (Pennington, Socher, Manning)
http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/

Word2vec
Popular embedding method
Very fast to train
Code available on the web
Idea: predict rather than count
Word2vec provides various options. We'll do:
skip-gram with negative sampling (SGNS)

Word2vec
Instead of counting how often each word w occurs near "apricot"

◦ Train a classifier on a binary prediction task:
◦ Is w likely to show up near "apricot"?

We don’t actually care about this task
◦ But we'll take the learned classifier weights as the word embeddings

Big idea: self-supervision:
◦ A word c that occurs near apricot in the corpus cats as the gold "correct

answer" for supervised learning
◦ No need for human labels
◦ Bengio et al. (2003); Collobert et al. (2011)

Approach: predict if candidate word c is a "neighbor"

1. Treat the target word t and a neighboring context word c
as positive examples.

2. Randomly sample other words in the lexicon to get
negative examples

3. Use logistic regression to train a classifier to distinguish
those two cases

4. Use the learned weights as the embeddings

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

…lemon, a [tablespoon of apricot jam, a] pinch…
c1 c2 c3 c4[target]

Skip-Gram Classifier
(assuming a +/- 2 word window)

…lemon, a [tablespoon of apricot jam, a] pinch…
c1 c2 [target] c3 c4

Goal: train a classifier that is given a candidate (word, context) pair
(apricot, jam)
(apricot, aardvark)

…
And assigns each pair a probability:

P(+|w, c)
P(−|w, c) = 1 − P(+|w, c)

Similarity is computed from dot product

Remember: two vectors are similar if they have a high
dot product
◦ Cosine is just a normalized dot product

So:
◦ Similarity(w,c) ∝ w ∙ c

We’ll need to normalize to get a probability
◦ (cosine isn't a probability either)

11

Turning dot products into probabilities

Sim(w,c) ≈ w ∙ c
To turn this into a probability
We'll use the sigmoid from logistic regression:

How Skip-Gram Classifier computes P(+|w, c)

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

Skip-gram classifier: summary

A probabilistic classifier, given
• a test target word w
• its context window of L words c1:L

Estimates probability that w occurs in this window based
on similarity of w (embeddings) to c1:L (embeddings).

To compute this, we just need embeddings for all the
words.

These embeddings we'll need: a set for w, a set for c

Vector
Semantics &
Embeddings

Word2vec

Vector
Semantics &
Embeddings

Word2vec: Learning the
embeddings

Skip-Gram Training data

…lemon, a [tablespoon of apricot jam, a] pinch…
c1 c2 [target] c3 c4

18

Skip-Gram Training data

…lemon, a [tablespoon of apricot jam, a] pinch…
c1 c2 [target] c3 c4

19

For each positive
example we'll grab k
negative examples,
sampling by frequency

Skip-Gram Training data

…lemon, a [tablespoon of apricot jam, a] pinch…
c1 c2 [target] c3 c4

20

Word2vec: how to learn vectors

Given the set of positive and negative training instances,
and an initial set of embedding vectors
The goal of learning is to adjust those word vectors such
that we:

◦ Maximize the similarity of the target word, context word pairs
(w , cpos) drawn from the positive data

◦ Minimize the similarity of the (w , cneg) pairs drawn from the
negative data.

11/3/2021 21

Loss function for one w with cpos , cneg1 ...cnegk
Maximize the similarity of the target with the actual context words,
and minimize the similarity of the target with the k negative sampled
non-neighbor words.

Learning the classifier

How to learn?
◦ Stochastic gradient descent!

We’ll adjust the word weights to
◦ make the positive pairs more likely
◦ and the negative pairs less likely,
◦ over the entire training set.

Intuition of one step of gradient descent

Reminder: gradient descent

• At each step
• Direction: We move in the reverse direction from the

gradient of the loss function
• Magnitude: we move the value of this gradient

𝑑𝑑
𝑑𝑑𝑑𝑑

𝐿𝐿(𝑓𝑓 𝑥𝑥;𝑤𝑤 ,𝑦𝑦) weighted by a learning rate η
• Higher learning rate means move w faster

The derivatives of the loss function

Update equation in SGD

Start with randomly initialized C and W matrices, then incrementally do updates

Two sets of embeddings

SGNS learns two sets of embeddings
Target embeddings matrix W
Context embedding matrix C

It's common to just add them together,
representing word i as the vector wi + ci

Summary: How to learn word2vec (skip-gram)
embeddings

Start with V random d-dimensional vectors as initial
embeddings
Train a classifier based on embedding similarity

◦Take a corpus and take pairs of words that co-occur as positive
examples

◦Take pairs of words that don't co-occur as negative examples
◦Train the classifier to distinguish these by slowly adjusting all
the embeddings to improve the classifier performance

◦Throw away the classifier code and keep the embeddings.

Vector
Semantics &
Embeddings

Word2vec: Learning the
embeddings

Vector
Semantics &
Embeddings

Properties of Embeddings

The kinds of neighbors depend on window size

Small windows (C= +/- 2) : nearest words are syntactically
similar words in same taxonomy

◦Hogwarts nearest neighbors are other fictional schools
◦Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) : nearest words are related
words in same semantic field

◦Hogwarts nearest neighbors are Harry Potter world:
◦Dumbledore, half-blood, Malfoy

Analogical relations
The classic parallelogram model of analogical reasoning
(Rumelhart and Abrahamson 1973)

To solve: "apple is to tree as grape is to _____"
Add tree – apple to grape to get vine

Analogical relations via parallelogram

The parallelogram method can solve analogies with
both sparse and dense embeddings (Turney and
Littman 2005, Mikolov et al. 2013b)

king – man + woman is close to queen
Paris – France + Italy is close to Rome

For a problem a:a*::b:b*, the parallelogram method is:

Structure in GloVE Embedding space

Caveats with the parallelogram method

It only seems to work for frequent words, small
distances and certain relations (relating countries to
capitals, or parts of speech), but not others. (Linzen
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)

Understanding analogy is an open area of research
(Peterson et al. 2020)

Train embeddings on different decades of historical text to see meanings shift
~30 million books, 1850-1990, Google Books data

Embeddings as a window onto historical semantics

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal
Statistical Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Ask “Paris : France :: Tokyo : x”
◦ x = Japan

Ask “father : doctor :: mother : x”
◦ x = nurse

Ask “man : computer programmer :: woman : x”
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016.

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

Historical embedding as a tool to study cultural biases

• Compute a gender or ethnic bias for each adjective: e.g., how
much closer the adjective is to "woman" synonyms than
"man" synonyms, or names of particular ethnicities
• Embeddings for competence adjective (smart, wise,

brilliant, resourceful, thoughtful, logical) are biased toward
men, a bias slowly decreasing 1960-1990

• Embeddings for dehumanizing adjectives (barbaric,
monstrous, bizarre) were biased toward Asians in the
1930s, bias decreasing over the 20th century.

• These match the results of old surveys done in the 1930s

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences 115(16), E3635–E3644.

Vector
Semantics &
Embeddings

Properties of Embeddings

	Vector Semantics & Embeddings
	Sparse versus dense vectors
	Sparse versus dense vectors
	Common methods for getting short dense vectors
	Simple static embeddings you can download!
	Word2vec
	Word2vec
	Approach: predict if candidate word c is a "neighbor"
	Skip-Gram Training Data
	Skip-Gram Classifier
	Similarity is computed from dot product
	Turning dot products into probabilities
	How Skip-Gram Classifier computes P(+|w, c)
	Skip-gram classifier: summary
	These embeddings we'll need: a set for w, a set for c
	Vector Semantics & Embeddings
	Vector Semantics & Embeddings
	Skip-Gram Training data
	Skip-Gram Training data
	Skip-Gram Training data
	Word2vec: how to learn vectors
	Loss function for one w with cpos , cneg1 ...cnegk
	Learning the classifier
	Intuition of one step of gradient descent
	Reminder: gradient descent
	The derivatives of the loss function
	Update equation in SGD
	Two sets of embeddings
	Summary: How to learn word2vec (skip-gram) embeddings
	Vector Semantics & Embeddings
	Vector Semantics & Embeddings
	The kinds of neighbors depend on window size
	Analogical relations
	Analogical relations via parallelogram
	Slide Number 35
	Caveats with the parallelogram method
	Embeddings as a window onto historical semantics
	Embeddings reflect cultural bias!
	Historical embedding as a tool to study cultural biases
	Vector Semantics & Embeddings

