
Week 9
State of the Art
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LING 334 - Introduction to Computational Linguistics



Plan for Today

Neural nets crash course!
Conceptual understanding - 
up to and including BERT-style (“transformers”)

Contextualizing NNs in the field

Where to go from here
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One Neuron (≈ Logistic Regression)

Biologically inspired
(but way less complex)

3this and future figures from SLP Ch. 7 and 9 unless noted



Non-Linearities - Sigmoid

Transforms any
value to be
between 0 and 1,
pseudo-probability

x axis = sum of weights times inputs
y axis = output value of neuron 4



Non-Linearities - tanh and ReLU

                         tanh ReLU
   (like sigmoid, works better)      (most common)
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credit J+M, SLP slides



Simple Feed-forward Neural Net

Each arrow represents multiplication of value by a weight

Summed at each node,
non-linear transform

Like multiple logistic
regressions running
concurrently on the
same inputs 6



Simple NN - Another View 

Large input layer!

Many weights!
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Neural Network Language Model

Sliding window 
over words

Large output layer
of all words in V

Notice the hidden
layer is itself
a vector! 8



Training via Backpropagation
Loss = function saying,
how wrong are we?

Derivative of this function
at any point tells us which
way to go to be less wrong

Chain rule allows us to go
back arbitrarily far
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Recurrent Neural Networks
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Vector of hidden state 
from the previous timestep

Additional set of weights 
setting how previous step 
should be combined

Inputs at this timestep

Core idea: combine hidden state vector 
from previous timestep (e.g., word)
With input vector at current timestep



Recurrent Neural Networks - unrolled view

11

Weights are shared
across timesteps

E.g., the same 
U, V, W are 
applied at each
timestep



Recurrent Neural Networks - unrolled view
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Output layer (y) can be used:
e.g. predict POS tags

or discarded, if we just
care about building up
the hidden state

Can just use final  
output layer for prediction



Seq2seq Models

Encode a sequence word by word,
building the hidden state

Pass final hidden state to 
another RNN to “decode”

Common use case:
machine translation
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slide from Stanford CS224n

https://docs.google.com/file/d/1zABDUd2CVTLx_xb80xM8L5x8xCoTisDB/preview


Key insight: don’t use static embeddings
Instead, use hidden state from an RNN language model
Peters et al (2018)

Result is
“contextual”
embeddings

ELMo (Embeddings from a Language Model)

14figure from Jay Alammar



The Muppet Parade

BERT and others follow on this idea
with more complex architectures

Many layers, complex flow of information

Very common paradigm:
“Fine-tune” BERT-like model for a specific task
e.g., train it a little bit extra on some relevant data
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Pre-Training    Fine-Tuning Paradigm
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BERT for Classification

BERT in particular provides a [CLS] token,
contextual embedding token for classification

Frequently just start
the cycle over again…

Train a new classifier
where the features are
BERT [CLS] embeddings! 17



Parameter Explosion!

Parameters are any values we have to set - e.g. weights

Naive Bayes
two classes, vocab size of 30k = 60k params

BERT-Large, 300 million params

More recent models in the trillions

18



Parameter Explosion!

Therefore, these big NNs are very data hungry!

We need many examples (at least 10x params) to train

Training on the internet, basically (Common Crawl)
Multiple terabytes of text

Costs to train one model up to the millions USD
not to mention all the failed attempts...
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A Tricky Proposition

We got here empirically -
you see many cards have been stacked,
people kept trying stuff until they stayed standing

It all sounds reasonable, but it’s also weird that it works

New subfield: BERTology
trying to understand what linguistic things 
BERT et al know and can do, and why 20



What did we gain from doing this?

Better results on concrete tasks, real world applications

Neural Machine Translation for instance - transformative
previously very complex statistical systems,
now trained end-to-end

No feature engineering! (Lots of architecture tinkering.)

Many building blocks for complex models
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How has this affected the field?

The gap between modern, task-based NLP and 
“Computational Linguistics” has maybe never been wider

Divergence between properly linguistic/behavioral
and simply “increase performance on this task”

Still, earlier non-neural methods are not worthless!

Interesting time to be a computational linguist!
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Great Free Courses on This Neural Stuff

Stanford CS224n: 
https://www.youtube.com/playlist?list=PLoROMvodv4
rOhcuXMZkNm7j3fVwBBY42z

CMU CS 11-747:
https://www.youtube.com/playlist?list=PL8PYTP1V4
I8AkaHEJ7lOOrlex-pcxS-XV
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https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://www.youtube.com/playlist?list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV
https://www.youtube.com/playlist?list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV


Key software packages to look into

Applied statistical MT: scikit-learn

Neural Networks: pytorch

Pre-trained BERT-like Models: huggingface
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Thank you!!!
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