
Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c© 2019. All

rights reserved. Draft of October 2, 2019.

CHAPTER

2 Regular Expressions, Text
Normalization, Edit Distance

User: I am unhappy.

ELIZA: DO YOU THINK COMING HERE WILL HELP YOU NOT TO BE UNHAPPY

User: I need some help, that much seems certain.

ELIZA: WHAT WOULD IT MEAN TO YOU IF YOU GOT SOME HELP

User: Perhaps I could learn to get along with my mother.

ELIZA: TELL ME MORE ABOUT YOUR FAMILY

User: My mother takes care of me.

ELIZA: WHO ELSE IN YOU FAMILY TAKES CARE OF YOU

User: My father.

ELIZA: YOUR FATHER

User: You are like my father in some ways.
Weizenbaum (1966)

The dialogue above is from ELIZA, an early natural language processing systemELIZA

that could carry on a limited conversation with a user by imitating the responses of
a Rogerian psychotherapist (Weizenbaum, 1966). ELIZA is a surprisingly simple
program that uses pattern matching to recognize phrases like “I need X” and translate
them into suitable outputs like “What would it mean to you if you got X?”. This
simple technique succeeds in this domain because ELIZA doesn’t actually need to
know anything to mimic a Rogerian psychotherapist. As Weizenbaum notes, this is
one of the few dialogue genres where listeners can act as if they know nothing of the
world. Eliza’s mimicry of human conversation was remarkably successful: many
people who interacted with ELIZA came to believe that it really understood them
and their problems, many continued to believe in ELIZA’s abilities even after the
program’s operation was explained to them (Weizenbaum, 1976), and even today
such chatbots are a fun diversion.chatbots

Of course modern conversational agents are much more than a diversion; they
can answer questions, book flights, or find restaurants, functions for which they rely
on a much more sophisticated understanding of the user’s intent, as we will see in
Chapter 26. Nonetheless, the simple pattern-based methods that powered ELIZA
and other chatbots play a crucial role in natural language processing.

We’ll begin with the most important tool for describing text patterns: the regular
expression. Regular expressions can be used to specify strings we might want to
extract from a document, from transforming “I need X” in Eliza above, to defining
strings like $199 or $24.99 for extracting tables of prices from a document.

We’ll then turn to a set of tasks collectively called text normalization, in whichtext
normalization

regular expressions play an important part. Normalizing text means converting it
to a more convenient, standard form. For example, most of what we are going to
do with language relies on first separating out or tokenizing words from running
text, the task of tokenization. English words are often separated from each othertokenization

by whitespace, but whitespace is not always sufficient. New York and rock ’n’ roll
are sometimes treated as large words despite the fact that they contain spaces, while
sometimes we’ll need to separate I’m into the two words I and am. For processing
tweets or texts we’ll need to tokenize emoticons like :) or hashtags like #nlproc.

2 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

Some languages, like Japanese, don’t have spaces between words, so word tokeniza-
tion becomes more difficult.

Another part of text normalization is lemmatization, the task of determininglemmatization

that two words have the same root, despite their surface differences. For example,
the words sang, sung, and sings are forms of the verb sing. The word sing is the
common lemma of these words, and a lemmatizer maps from all of these to sing.
Lemmatization is essential for processing morphologically complex languages like
Arabic. Stemming refers to a simpler version of lemmatization in which we mainlystemming

just strip suffixes from the end of the word. Text normalization also includes sen-
tence segmentation: breaking up a text into individual sentences, using cues likesentence

segmentation
periods or exclamation points.

Finally, we’ll need to compare words and other strings. We’ll introduce a metric
called edit distance that measures how similar two strings are based on the number
of edits (insertions, deletions, substitutions) it takes to change one string into the
other. Edit distance is an algorithm with applications throughout language process-
ing, from spelling correction to speech recognition to coreference resolution.

2.1 Regular Expressions

One of the unsung successes in standardization in computer science has been the
regular expression (RE), a language for specifying text search strings. This prac-regular

expression
tical language is used in every computer language, word processor, and text pro-
cessing tools like the Unix tools grep or Emacs. Formally, a regular expression is
an algebraic notation for characterizing a set of strings. They are particularly use-
ful for searching in texts, when we have a pattern to search for and a corpus ofcorpus

texts to search through. A regular expression search function will search through the
corpus, returning all texts that match the pattern. The corpus can be a single docu-
ment or a collection. For example, the Unix command-line tool grep takes a regular
expression and returns every line of the input document that matches the expression.

A search can be designed to return every match on a line, if there are more than
one, or just the first match. In the following examples we generally underline the
exact part of the pattern that matches the regular expression and show only the first
match. We’ll show regular expressions delimited by slashes but note that slashes are
not part of the regular expressions.

Regular expressions come in many variants. We’ll be describing extended regu-
lar expressions; different regular expression parsers may only recognize subsets of
these, or treat some expressions slightly differently. Using an online regular expres-
sion tester is a handy way to test out your expressions and explore these variations.

2.1.1 Basic Regular Expression Patterns
The simplest kind of regular expression is a sequence of simple characters. To search
for woodchuck, we type /woodchuck/. The expression /Buttercup/ matches any
string containing the substring Buttercup; grepwith that expression would return the
line I’m called little Buttercup. The search string can consist of a single character
(like /!/) or a sequence of characters (like /urgl/).

Regular expressions are case sensitive; lower case /s/ is distinct from upper
case /S/ (/s/ matches a lower case s but not an upper case S). This means that
the pattern /woodchucks/ will not match the string Woodchucks. We can solve this

2.1 • REGULAR EXPRESSIONS 3

RE Example Patterns Matched
/woodchucks/ “interesting links to woodchucks and lemurs”
/a/ “Mary Ann stopped by Mona’s”
/!/ “You’ve left the burglar behind again!” said Nori

Figure 2.1 Some simple regex searches.

problem with the use of the square braces [and]. The string of characters inside the
braces specifies a disjunction of characters to match. For example, Fig. 2.2 shows
that the pattern /[wW]/ matches patterns containing either w or W.

RE Match Example Patterns
/[wW]oodchuck/ Woodchuck or woodchuck “Woodchuck”
/[abc]/ ‘a’, ‘b’, or ‘c’ “In uomini, in soldati”
/[1234567890]/ any digit “plenty of 7 to 5”

Figure 2.2 The use of the brackets [] to specify a disjunction of characters.

The regular expression /[1234567890]/ specified any single digit. While such
classes of characters as digits or letters are important building blocks in expressions,
they can get awkward (e.g., it’s inconvenient to specify

/[ABCDEFGHIJKLMNOPQRSTUVWXYZ]/

to mean “any capital letter”). In cases where there is a well-defined sequence asso-
ciated with a set of characters, the brackets can be used with the dash (-) to specify
any one character in a range. The pattern /[2-5]/ specifies any one of the charac-range

ters 2, 3, 4, or 5. The pattern /[b-g]/ specifies one of the characters b, c, d, e, f, or
g. Some other examples are shown in Fig. 2.3.

RE Match Example Patterns Matched
/[A-Z]/ an upper case letter “we should call it ‘Drenched Blossoms’ ”
/[a-z]/ a lower case letter “my beans were impatient to be hoed!”
/[0-9]/ a single digit “Chapter 1: Down the Rabbit Hole”

Figure 2.3 The use of the brackets [] plus the dash - to specify a range.

The square braces can also be used to specify what a single character cannot be,
by use of the caret ˆ. If the caret ˆ is the first symbol after the open square brace [,
the resulting pattern is negated. For example, the pattern /[ˆa]/ matches any single
character (including special characters) except a. This is only true when the caret
is the first symbol after the open square brace. If it occurs anywhere else, it usually
stands for a caret; Fig. 2.4 shows some examples.

RE Match (single characters) Example Patterns Matched
/[ˆA-Z]/ not an upper case letter “Oyfn pripetchik”
/[ˆSs]/ neither ‘S’ nor ‘s’ “I have no exquisite reason for’t”
/[ˆ.]/ not a period “our resident Djinn”
/[eˆ]/ either ‘e’ or ‘ˆ’ “look up ˆ now”
/aˆb/ the pattern ‘aˆb’ “look up aˆ b now”

Figure 2.4 The caret ˆ for negation or just to mean ˆ. See below re: the backslash for escaping the period.

How can we talk about optional elements, like an optional s in woodchuck and
woodchucks? We can’t use the square brackets, because while they allow us to say
“s or S”, they don’t allow us to say “s or nothing”. For this we use the question mark
/?/, which means “the preceding character or nothing”, as shown in Fig. 2.5.

4 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

RE Match Example Patterns Matched
/woodchucks?/ woodchuck or woodchucks “woodchuck”
/colou?r/ color or colour “color”

Figure 2.5 The question mark ? marks optionality of the previous expression.

We can think of the question mark as meaning “zero or one instances of the
previous character”. That is, it’s a way of specifying how many of something that
we want, something that is very important in regular expressions. For example,
consider the language of certain sheep, which consists of strings that look like the
following:

baa!
baaa!
baaaa!
baaaaa!
. . .

This language consists of strings with a b, followed by at least two a’s, followed
by an exclamation point. The set of operators that allows us to say things like “some
number of as” are based on the asterisk or *, commonly called the Kleene * (gen-Kleene *

erally pronounced “cleany star”). The Kleene star means “zero or more occurrences
of the immediately previous character or regular expression”. So /a*/ means “any
string of zero or more as”. This will match a or aaaaaa, but it will also match Off
Minor since the string Off Minor has zero a’s. So the regular expression for matching
one or more a is /aa*/, meaning one a followed by zero or more as. More complex
patterns can also be repeated. So /[ab]*/ means “zero or more a’s or b’s” (not
“zero or more right square braces”). This will match strings like aaaa or ababab or
bbbb.

For specifying multiple digits (useful for finding prices) we can extend /[0-9]/,
the regular expression for a single digit. An integer (a string of digits) is thus
/[0-9][0-9]*/. (Why isn’t it just /[0-9]*/?)

Sometimes it’s annoying to have to write the regular expression for digits twice,
so there is a shorter way to specify “at least one” of some character. This is the
Kleene +, which means “one or more occurrences of the immediately precedingKleene +

character or regular expression”. Thus, the expression /[0-9]+/ is the normal way
to specify “a sequence of digits”. There are thus two ways to specify the sheep
language: /baaa*!/ or /baa+!/.

One very important special character is the period (/./), a wildcard expression
that matches any single character (except a carriage return), as shown in Fig. 2.6.

RE Match Example Matches
/beg.n/ any character between beg and n begin, beg’n, begun

Figure 2.6 The use of the period . to specify any character.

The wildcard is often used together with the Kleene star to mean “any string of
characters”. For example, suppose we want to find any line in which a particular
word, for example, aardvark, appears twice. We can specify this with the regular
expression /aardvark.*aardvark/.

Anchors are special characters that anchor regular expressions to particular placesAnchors

in a string. The most common anchors are the caret ˆ and the dollar sign $. The caret
ˆ matches the start of a line. The pattern /ˆThe/ matches the word The only at the

2.1 • REGULAR EXPRESSIONS 5

start of a line. Thus, the caret ˆ has three uses: to match the start of a line, to in-
dicate a negation inside of square brackets, and just to mean a caret. (What are the
contexts that allow grep or Python to know which function a given caret is supposed
to have?) The dollar sign $ matches the end of a line. So the pattern $ is a useful
pattern for matching a space at the end of a line, and /ˆThe dog\.$/ matches a
line that contains only the phrase The dog. (We have to use the backslash here since
we want the . to mean “period” and not the wildcard.)

There are also two other anchors: \b matches a word boundary, and \B matches
a non-boundary. Thus, /\bthe\b/ matches the word the but not the word other.
More technically, a “word” for the purposes of a regular expression is defined as any
sequence of digits, underscores, or letters; this is based on the definition of “words”
in programming languages. For example, /\b99\b/ will match the string 99 in
There are 99 bottles of beer on the wall (because 99 follows a space) but not 99 in
There are 299 bottles of beer on the wall (since 99 follows a number). But it will
match 99 in $99 (since 99 follows a dollar sign ($), which is not a digit, underscore,
or letter).

2.1.2 Disjunction, Grouping, and Precedence

Suppose we need to search for texts about pets; perhaps we are particularly interested
in cats and dogs. In such a case, we might want to search for either the string cat or
the string dog. Since we can’t use the square brackets to search for “cat or dog” (why
can’t we say /[catdog]/?), we need a new operator, the disjunction operator, alsodisjunction

called the pipe symbol |. The pattern /cat|dog/ matches either the string cat or
the string dog.

Sometimes we need to use this disjunction operator in the midst of a larger se-
quence. For example, suppose I want to search for information about pet fish for
my cousin David. How can I specify both guppy and guppies? We cannot simply
say /guppy|ies/, because that would match only the strings guppy and ies. This
is because sequences like guppy take precedence over the disjunction operator |.Precedence

To make the disjunction operator apply only to a specific pattern, we need to use the
parenthesis operators (and). Enclosing a pattern in parentheses makes it act like
a single character for the purposes of neighboring operators like the pipe | and the
Kleene*. So the pattern /gupp(y|ies)/ would specify that we meant the disjunc-
tion only to apply to the suffixes y and ies.

The parenthesis operator (is also useful when we are using counters like the
Kleene*. Unlike the | operator, the Kleene* operator applies by default only to
a single character, not to a whole sequence. Suppose we want to match repeated
instances of a string. Perhaps we have a line that has column labels of the form
Column 1 Column 2 Column 3. The expression /Column [0-9]+ */ will not
match any number of columns; instead, it will match a single column followed by
any number of spaces! The star here applies only to the space that precedes it,
not to the whole sequence. With the parentheses, we could write the expression
/(Column [0-9]+ *)*/ to match the word Column, followed by a number and
optional spaces, the whole pattern repeated zero or more times.

This idea that one operator may take precedence over another, requiring us to
sometimes use parentheses to specify what we mean, is formalized by the operator
precedence hierarchy for regular expressions. The following table gives the orderoperator

precedence
of RE operator precedence, from highest precedence to lowest precedence.

6 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

Parenthesis ()

Counters * + ? {}

Sequences and anchors the ˆmy end$

Disjunction |

Thus, because counters have a higher precedence than sequences,
/the*/ matches theeeee but not thethe. Because sequences have a higher prece-
dence than disjunction, /the|any/ matches the or any but not thany or theny.

Patterns can be ambiguous in another way. Consider the expression /[a-z]*/

when matching against the text once upon a time. Since /[a-z]*/ matches zero or
more letters, this expression could match nothing, or just the first letter o, on, onc,
or once. In these cases regular expressions always match the largest string they can;
we say that patterns are greedy, expanding to cover as much of a string as they can.greedy

There are, however, ways to enforce non-greedy matching, using another mean-non-greedy

ing of the ? qualifier. The operator *? is a Kleene star that matches as little text as*?

possible. The operator +? is a Kleene plus that matches as little text as possible.+?

2.1.3 A Simple Example
Suppose we wanted to write a RE to find cases of the English article the. A simple
(but incorrect) pattern might be:

/the/

One problem is that this pattern will miss the word when it begins a sentence and
hence is capitalized (i.e., The). This might lead us to the following pattern:

/[tT]he/

But we will still incorrectly return texts with the embedded in other words (e.g.,
other or theology). So we need to specify that we want instances with a word bound-
ary on both sides:

/\b[tT]he\b/

Suppose we wanted to do this without the use of /\b/. We might want this since
/\b/ won’t treat underscores and numbers as word boundaries; but we might want
to find the in some context where it might also have underlines or numbers nearby
(the or the25). We need to specify that we want instances in which there are no
alphabetic letters on either side of the the:

/[ˆa-zA-Z][tT]he[ˆa-zA-Z]/

But there is still one more problem with this pattern: it won’t find the word the
when it begins a line. This is because the regular expression [ˆa-zA-Z], which
we used to avoid embedded instances of the, implies that there must be some single
(although non-alphabetic) character before the the. We can avoid this by specify-
ing that before the the we require either the beginning-of-line or a non-alphabetic
character, and the same at the end of the line:

/(ˆ|[ˆa-zA-Z])[tT]he([ˆa-zA-Z]|$)/

The process we just went through was based on fixing two kinds of errors: false
positives, strings that we incorrectly matched like other or there, and false nega-false positives

tives, strings that we incorrectly missed, like The. Addressing these two kinds offalse negatives

2.1 • REGULAR EXPRESSIONS 7

errors comes up again and again in implementing speech and language processing
systems. Reducing the overall error rate for an application thus involves two antag-
onistic efforts:

• Increasing precision (minimizing false positives)
• Increasing recall (minimizing false negatives)

2.1.4 A More Complex Example
Let’s try out a more significant example of the power of REs. Suppose we want to
build an application to help a user buy a computer on the Web. The user might want
“any machine with at least 6 GHz and 500 GB of disk space for less than $1000”.
To do this kind of retrieval, we first need to be able to look for expressions like 6
GHz or 500 GB or Mac or $999.99. In the rest of this section we’ll work out some
simple regular expressions for this task.

First, let’s complete our regular expression for prices. Here’s a regular expres-
sion for a dollar sign followed by a string of digits:

/$[0-9]+/

Note that the $ character has a different function here than the end-of-line function
we discussed earlier. Most regular expression parsers are smart enough to realize
that $ here doesn’t mean end-of-line. (As a thought experiment, think about how
regex parsers might figure out the function of $ from the context.)

Now we just need to deal with fractions of dollars. We’ll add a decimal point
and two digits afterwards:

/$[0-9]+\.[0-9][0-9]/

This pattern only allows $199.99 but not $199. We need to make the cents
optional and to make sure we’re at a word boundary:

/(ˆ|\W)$[0-9]+(\.[0-9][0-9])?\b/

One last catch! This pattern allows prices like $199999.99 which would be far
too expensive! We need to limit the dollar

/(ˆ|\W)$[0-9]{0,3}(\.[0-9][0-9])?\b/

How about disk space? We’ll need to allow for optional fractions again (5.5 GB);
note the use of ? for making the final s optional, and the of / */ to mean “zero or
more spaces” since there might always be extra spaces lying around:

/\b[0-9]+(\.[0-9]+)? *(GB|[Gg]igabytes?)\b/

Modifying this regular expression so that it only matches more than 500 GB is
left as an exercise for the reader.

2.1.5 More Operators
Figure 2.7 shows some aliases for common ranges, which can be used mainly to
save typing. Besides the Kleene * and Kleene + we can also use explicit numbers as
counters, by enclosing them in curly brackets. The regular expression /{3}/ means
“exactly 3 occurrences of the previous character or expression”. So /a\.{24}z/

will match a followed by 24 dots followed by z (but not a followed by 23 or 25 dots
followed by a z).

8 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

RE Expansion Match First Matches
\d [0-9] any digit Party of 5
\D [ˆ0-9] any non-digit Blue moon
\w [a-zA-Z0-9_] any alphanumeric/underscore Daiyu
\W [ˆ\w] a non-alphanumeric !!!!
\s [\r\t\n\f] whitespace (space, tab)
\S [ˆ\s] Non-whitespace in Concord

Figure 2.7 Aliases for common sets of characters.

A range of numbers can also be specified. So /{n,m}/ specifies from n to m
occurrences of the previous char or expression, and /{n,}/ means at least n occur-
rences of the previous expression. REs for counting are summarized in Fig. 2.8.

RE Match
* zero or more occurrences of the previous char or expression
+ one or more occurrences of the previous char or expression
? exactly zero or one occurrence of the previous char or expression
{n} n occurrences of the previous char or expression
{n,m} from n to m occurrences of the previous char or expression
{n,} at least n occurrences of the previous char or expression
{,m} up to m occurrences of the previous char or expression

Figure 2.8 Regular expression operators for counting.

Finally, certain special characters are referred to by special notation based on the
backslash (\) (see Fig. 2.9). The most common of these are the newline characterNewline

\n and the tab character \t. To refer to characters that are special themselves (like
., *, [, and \), precede them with a backslash, (i.e., /\./, /*/, /\[/, and /\\/).

RE Match First Patterns Matched
* an asterisk “*” “K*A*P*L*A*N”
\. a period “.” “Dr. Livingston, I presume”
\? a question mark “Why don’t they come and lend a hand?”
\n a newline
\t a tab

Figure 2.9 Some characters that need to be backslashed.

2.1.6 Substitution, Capture Groups, and ELIZA
An important use of regular expressions is in substitutions. For example, the substi-substitution

tution operator s/regexp1/pattern/ used in Python and in Unix commands like
vim or sed allows a string characterized by a regular expression to be replaced by
another string:

s/colour/color/

It is often useful to be able to refer to a particular subpart of the string matching
the first pattern. For example, suppose we wanted to put angle brackets around all
integers in a text, for example, changing the 35 boxes to the <35> boxes. We’d
like a way to refer to the integer we’ve found so that we can easily add the brackets.
To do this, we put parentheses (and) around the first pattern and use the number
operator \1 in the second pattern to refer back. Here’s how it looks:

2.1 • REGULAR EXPRESSIONS 9

s/([0-9]+)/<\1>/

The parenthesis and number operators can also specify that a certain string or
expression must occur twice in the text. For example, suppose we are looking for
the pattern “the Xer they were, the Xer they will be”, where we want to constrain
the two X’s to be the same string. We do this by surrounding the first X with the
parenthesis operator, and replacing the second X with the number operator \1, as
follows:

/the (.*)er they were, the \1er they will be/

Here the \1 will be replaced by whatever string matched the first item in paren-
theses. So this will match the bigger they were, the bigger they will be but not the
bigger they were, the faster they will be.

This use of parentheses to store a pattern in memory is called a capture group.capture group

Every time a capture group is used (i.e., parentheses surround a pattern), the re-
sulting match is stored in a numbered register. If you match two different sets ofregister

parentheses, \2 means whatever matched the second capture group. Thus

/the (.*)er they (.*), the \1er we \2/

will match the faster they ran, the faster we ran but not the faster they ran, the faster
we ate. Similarly, the third capture group is stored in \3, the fourth is \4, and so on.

Parentheses thus have a double function in regular expressions; they are used to
group terms for specifying the order in which operators should apply, and they are
used to capture something in a register. Occasionally we might want to use parenthe-
ses for grouping, but don’t want to capture the resulting pattern in a register. In that
case we use a non-capturing group, which is specified by putting the commandsnon-capturing

group
?: after the open paren, in the form (?: pattern).

/(?:some|a few) (people|cats) like some \1/

will match some cats like some cats but not some cats like some a few.
Substitutions and capture groups are very useful in implementing simple chat-

bots like ELIZA (Weizenbaum, 1966). Recall that ELIZA simulates a Rogerian
psychologist by carrying on conversations like the following:

User1: Men are all alike.
ELIZA1: IN WHAT WAY
User2: They’re always bugging us about something or other.
ELIZA2: CAN YOU THINK OF A SPECIFIC EXAMPLE
User3: Well, my boyfriend made me come here.
ELIZA3: YOUR BOYFRIEND MADE YOU COME HERE
User4: He says I’m depressed much of the time.
ELIZA4: I AM SORRY TO HEAR YOU ARE DEPRESSED

ELIZA works by having a series or cascade of regular expression substitutions
each of which matches and changes some part of the input lines. Input lines are
first uppercased. The first substitutions then change all instances of MY to YOUR,
and I’M to YOU ARE, and so on. The next set of substitutions matches and replaces
other patterns in the input. Here are some examples:

s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/

s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

s/.* all .*/IN WHAT WAY/

s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE/

10 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

Since multiple substitutions can apply to a given input, substitutions are assigned
a rank and applied in order. Creating patterns is the topic of Exercise 2.3, and we
return to the details of the ELIZA architecture in Chapter 26.

2.1.7 Lookahead Assertions
Finally, there will be times when we need to predict the future: look ahead in the
text to see if some pattern matches, but not advance the match cursor, so that we can
then deal with the pattern if it occurs.

These lookahead assertions make use of the (? syntax that we saw in the previ-lookahead

ous section for non-capture groups. The operator (?= pattern) is true if pattern
occurs, but is zero-width, i.e. the match pointer doesn’t advance. The operatorzero-width

(?! pattern) only returns true if a pattern does not match, but again is zero-width
and doesn’t advance the cursor. Negative lookahead is commonly used when we
are parsing some complex pattern but want to rule out a special case. For example
suppose we want to match, at the beginning of a line, any single word that doesn’t
start with “Volcano”. We can use negative lookahead to do this:

/ˆ(?!Volcano)[A-Za-z]+/

2.2 Words

Before we talk about processing words, we need to decide what counts as a word.
Let’s start by looking at one particular corpus (plural corpora), a computer-readablecorpus

corpora collection of text or speech. For example the Brown corpus is a million-word col-
lection of samples from 500 written English texts from different genres (newspa-
per, fiction, non-fiction, academic, etc.), assembled at Brown University in 1963–64
(Kučera and Francis, 1967). How many words are in the following Brown sentence?

He stepped out into the hall, was delighted to encounter a water brother.

This sentence has 13 words if we don’t count punctuation marks as words, 15
if we count punctuation. Whether we treat period (“.”), comma (“,”), and so on as
words depends on the task. Punctuation is critical for finding boundaries of things
(commas, periods, colons) and for identifying some aspects of meaning (question
marks, exclamation marks, quotation marks). For some tasks, like part-of-speech
tagging or parsing or speech synthesis, we sometimes treat punctuation marks as if
they were separate words.

The Switchboard corpus of American English telephone conversations between
strangers was collected in the early 1990s; it contains 2430 conversations averaging
6 minutes each, totaling 240 hours of speech and about 3 million words (Godfrey
et al., 1992). Such corpora of spoken language don’t have punctuation but do intro-
duce other complications with regard to defining words. Let’s look at one utterance
from Switchboard; an utterance is the spoken correlate of a sentence:utterance

I do uh main- mainly business data processing

This utterance has two kinds of disfluencies. The broken-off word main- isdisfluency

called a fragment. Words like uh and um are called fillers or filled pauses. Shouldfragment

filled pause we consider these to be words? Again, it depends on the application. If we are
building a speech transcription system, we might want to eventually strip out the
disfluencies.

2.2 • WORDS 11

But we also sometimes keep disfluencies around. Disfluencies like uh or um
are actually helpful in speech recognition in predicting the upcoming word, because
they may signal that the speaker is restarting the clause or idea, and so for speech
recognition they are treated as regular words. Because people use different disflu-
encies they can also be a cue to speaker identification. In fact Clark and Fox Tree
(2002) showed that uh and um have different meanings. What do you think they are?

Are capitalized tokens like They and uncapitalized tokens like they the same
word? These are lumped together in some tasks (speech recognition), while for part-
of-speech or named-entity tagging, capitalization is a useful feature and is retained.

How about inflected forms like cats versus cat? These two words have the same
lemma cat but are different wordforms. A lemma is a set of lexical forms havinglemma

the same stem, the same major part-of-speech, and the same word sense. The word-
form is the full inflected or derived form of the word. For morphologically complexwordform

languages like Arabic, we often need to deal with lemmatization. For many tasks in
English, however, wordforms are sufficient.

How many words are there in English? To answer this question we need to
distinguish two ways of talking about words. Types are the number of distinct wordsword type

in a corpus; if the set of words in the vocabulary is V , the number of types is the
vocabulary size |V |. Tokens are the total number N of running words. If we ignoreword token

punctuation, the following Brown sentence has 16 tokens and 14 types:

They picnicked by the pool, then lay back on the grass and looked at the stars.

When we speak about the number of words in the language, we are generally
referring to word types.

Corpus Tokens = N Types = |V |
Shakespeare 884 thousand 31 thousand
Brown corpus 1 million 38 thousand
Switchboard telephone conversations 2.4 million 20 thousand
COCA 440 million 2 million
Google N-grams 1 trillion 13 million

Figure 2.10 Rough numbers of types and tokens for some English language corpora. The
largest, the Google N-grams corpus, contains 13 million types, but this count only includes
types appearing 40 or more times, so the true number would be much larger.

Fig. 2.10 shows the rough numbers of types and tokens computed from some
popular English corpora. The larger the corpora we look at, the more word types
we find, and in fact this relationship between the number of types |V | and number
of tokens N is called Herdan’s Law (Herdan, 1960) or Heaps’ Law (Heaps, 1978)Herdan’s Law

Heaps’ Law after its discoverers (in linguistics and information retrieval respectively). It is shown
in Eq. 2.1, where k and β are positive constants, and 0 < β < 1.

|V | = kNβ (2.1)

The value of β depends on the corpus size and the genre, but at least for the
large corpora in Fig. 2.10, β ranges from .67 to .75. Roughly then we can say that
the vocabulary size for a text goes up significantly faster than the square root of its
length in words.

Another measure of the number of words in the language is the number of lem-
mas instead of wordform types. Dictionaries can help in giving lemma counts; dic-
tionary entries or boldface forms are a very rough upper bound on the number of

12 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

lemmas (since some lemmas have multiple boldface forms). The 1989 edition of the
Oxford English Dictionary had 615,000 entries.

2.3 Corpora

Words don’t appear out of nowhere. Any particular piece of text that we study
is produced by one or more specific speakers or writers, in a specific dialect of a
specific language, at a specific time, in a specific place, for a specific function.

Perhaps the most important dimension of variation is the language. NLP algo-
rithms are most useful when they apply across many languages. The world has 7097
languages at the time of this writing, according to the online Ethnologue catalog
(Simons and Fennig, 2018). Most NLP tools tend to be developed for the official
languages of large industrialized nations (Chinese, English, Spanish, Arabic, etc.),
but we don’t want to limit tools to just these few languages. Furthermore, most lan-
guages also have multiple varieties, such as dialects spoken in different regions or
by different social groups. Thus, for example, if we’re processing text in African
American Vernacular English (AAVE), a dialect spoken by millions of people in theAAVE

United States, it’s important to make use of NLP tools that function with that dialect.
Twitter posts written in AAVE make use of constructions like iont (I don’t in Stan-
dard American English (SAE)), or talmbout corresponding to SAE talking about,SAE

both examples that influence word segmentation (Blodgett et al. 2016, Jones 2015).
It’s also quite common for speakers or writers to use multiple languages in a

single communicative act, a phenomenon called code switching. Code switch-code switching

ing is enormously common across the world; here are examples showing Spanish
and (transliterated) Hindi code switching with English (Solorio et al. 2014, Jurgens
et al. 2017):

(2.2) Por primera vez veo a @username actually being hateful! it was beautiful:)
[For the first time I get to see @username actually being hateful! it was
beautiful:)]

(2.3) dost tha or ra- hega ... dont wory ... but dherya rakhe
[“he was and will remain a friend ... don’t worry ... but have faith”]

Another dimension of variation is the genre. The text that our algorithms must
process might come from newswire, fiction or non-fiction books, scientific articles,
Wikipedia, or religious texts. It might come from spoken genres like telephone
conversations, business meetings, police body-worn cameras, medical interviews,
or transcripts of television shows or movies. It might come from work situations
like doctors’ notes, legal text, or parliamentary or congressional proceedings.

Text also reflects the demographic characteristics of the writer (or speaker): their
age, gender, race, socioeconomic class can all influence the linguistic properties of
the text we are processing.

And finally, time matters too. Language changes over time, and for some lan-
guages we have good corpora of texts from different historical periods.

Because language is so situated, when developing computational models for lan-
guage processing, it’s important to consider who produced the language, in what
context, for what purpose, and make sure that the models are fit to the data.

2.4 • TEXT NORMALIZATION 13

2.4 Text Normalization

Before almost any natural language processing of a text, the text has to be normal-
ized. At least three tasks are commonly applied as part of any normalization process:

1. Tokenizing (segmenting) words
2. Normalizing word formats
3. Segmenting sentences

In the next sections we walk through each of these tasks.

2.4.1 Unix Tools for Crude Tokenization and Normalization
Let’s begin with an easy, if somewhat naive version of word tokenization and nor-
malization (and frequency computation) that can be accomplished for English solely
in a single UNIX command-line, inspired by Church (1994). We’ll make use of some
Unix commands: tr, used to systematically change particular characters in the in-
put; sort, which sorts input lines in alphabetical order; and uniq, which collapses
and counts adjacent identical lines.

For example let’s begin with the ‘complete words’ of Shakespeare in one textfile,
sh.txt. We can use tr to tokenize the words by changing every sequence of non-
alphabetic characters to a newline (’A-Za-z’ means alphabetic, the -c option com-
plements to non-alphabet, and the -s option squeezes all sequences into a single
character):

tr -sc ’A-Za-z’ ’\n’ < sh.txt

The output of this command will be:

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...

Now that there is one word per line, we can sort the lines, and pass them to uniq

-c which will collapse and count them:

tr -sc ’A-Za-z’ ’\n’ < sh.txt | sort | uniq -c

with the following output:

1945 A

72 AARON

19 ABBESS

25 Aaron

6 Abate

1 Abates

5 Abbess

6 Abbey

14 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

3 Abbot

...

Alternatively, we can collapse all the upper case to lower case:

tr -sc ’A-Za-z’ ’\n’ < sh.txt | tr A-Z a-z | sort | uniq -c

whose output is

14725 a

97 aaron

1 abaissiez

10 abandon

2 abandoned

2 abase

1 abash

14 abate

3 abated

3 abatement

...

Now we can sort again to find the frequent words. The -n option to sort means
to sort numerically rather than alphabetically, and the -r option means to sort in
reverse order (highest-to-lowest):

tr -sc ’A-Za-z’ ’\n’ < sh.txt | tr A-Z a-z | sort | uniq -c | sort -n -r

The results show that the most frequent words in Shakespeare, as in any other
corpus, are the short function words like articles, pronouns, prepositions:

27378 the

26084 and

22538 i

19771 to

17481 of

14725 a

13826 you

12489 my

11318 that

11112 in

...

Unix tools of this sort can be very handy in building quick word count statistics
for any corpus.

2.4.2 Word Tokenization
The simple UNIX tools above were fine for getting rough word statistics but more
sophisticated algorithms are generally necessary for tokenization, the task of seg-tokenization

menting running text into words.
While the Unix command sequence just removed all the numbers and punctu-

ation, for most NLP applications we’ll need to keep these in our tokenization. We
often want to break off punctuation as a separate token; commas are a useful piece of
information for parsers, periods help indicate sentence boundaries. But we’ll often
want to keep the punctuation that occurs word internally, in examples like m.p.h,,
Ph.D., AT&T, cap’n. Special characters and numbers will need to be kept in prices

2.4 • TEXT NORMALIZATION 15

($45.55) and dates (01/02/06); we don’t want to segment that price into separate to-
kens of “45” and “55”. And there are URLs (http://www.stanford.edu), Twitter
hashtags (#nlproc), or email addresses (someone@cs.colorado.edu).

Number expressions introduce other complications as well; while commas nor-
mally appear at word boundaries, commas are used inside numbers in English, every
three digits: 555,500.50. Languages, and hence tokenization requirements, differ
on this; many continental European languages like Spanish, French, and German, by
contrast, use a comma to mark the decimal point, and spaces (or sometimes periods)
where English puts commas, for example, 555 500,50.

A tokenizer can also be used to expand clitic contractions that are marked byclitic

apostrophes, for example, converting what’re to the two tokens what are, and
we’re to we are. A clitic is a part of a word that can’t stand on its own, and can only
occur when it is attached to another word. Some such contractions occur in other
alphabetic languages, including articles and pronouns in French (j’ai, l’homme).

Depending on the application, tokenization algorithms may also tokenize mul-
tiword expressions like New York or rock ’n’ roll as a single token, which re-
quires a multiword expression dictionary of some sort. Tokenization is thus inti-
mately tied up with named entity detection, the task of detecting names, dates, and
organizations (Chapter 18).

One commonly used tokenization standard is known as the Penn Treebank to-
kenization standard, used for the parsed corpora (treebanks) released by the Lin-Penn Treebank

tokenization
guistic Data Consortium (LDC), the source of many useful datasets. This standard
separates out clitics (doesn’t becomes does plus n’t), keeps hyphenated words to-
gether, and separates out all punctuation (to save space we’re showing visible spaces
‘ ’ between tokens, although newlines is a more common output):

Input: "The San Francisco-based restaurant," they said,

"doesn’t charge $10".

Output: " The San Francisco-based restaurant , " they said ,

" does n’t charge $ 10 " .

In practice, since tokenization needs to be run before any other language pro-
cessing, it needs to be very fast. The standard method for tokenization is therefore
to use deterministic algorithms based on regular expressions compiled into very ef-
ficient finite state automata. For example, Fig. 2.11 shows an example of a basic
regular expression that can be used to tokenize with the nltk.regexp tokenize

function of the Python-based Natural Language Toolkit (NLTK) (Bird et al. 2009;
http://www.nltk.org).

Carefully designed deterministic algorithms can deal with the ambiguities that
arise, such as the fact that the apostrophe needs to be tokenized differently when used
as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she
said, or in clitics like they’re.

Word tokenization is more complex in languages like written Chinese, Japanese,
and Thai, which do not use spaces to mark potential word-boundaries.

In Chinese, for example, words are composed of characters (called hanzi inhanzi

Chinese). Each character generally represents a single unit of meaning (called a
morpheme) and is pronounceable as a single syllable. Words are about 2.4 charac-
ters long on average. But deciding what counts as a word in Chinese is complex.
For example, consider the following sentence:

(2.4) 姚明进入总决赛
“Yao Ming reaches the finals”

http://www.nltk.org

16 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

>>> text = ’That U.S.A. poster-print costs $12.40...’

>>> pattern = r’’’(?x) # set flag to allow verbose regexps

... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.

... | \w+(-\w+)* # words with optional internal hyphens

... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%

... | \.\.\. # ellipsis

... | [][.,;"’?():-_‘] # these are separate tokens; includes], [

... ’’’

>>> nltk.regexp_tokenize(text, pattern)

[’That’, ’U.S.A.’, ’poster-print’, ’costs’, ’$12.40’, ’...’]

Figure 2.11 A python trace of regular expression tokenization in the NLTK (Bird et al.,
2009) Python-based natural language processing toolkit, commented for readability; the (?x)
verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird
et al. (2009).

As Chen et al. (2017) point out, this could be treated as 3 words (‘Chinese Treebank’
segmentation):

(2.5) 姚明
YaoMing

进入
reaches

总决赛
finals

or as 5 words (‘Peking University’ segmentation):

(2.6) 姚
Yao
明
Ming

进入
reaches

总
overall

决赛
finals

Finally, it is possible in Chinese simply to ignore words altogether and use characters
as the basic elements, treating the sentence as a series of 7 characters:

(2.7) 姚
Yao
明
Ming

进
enter

入
enter

总
overall

决
decision

赛
game

In fact, for most Chinese NLP tasks it turns out to work better to take characters
rather than words as input, since characters are at a reasonable semantic level for
most applications, and since most word standards result in a huge vocabulary with
large numbers of very rare words (Li et al., 2019).

However, for Japanese and Thai the character is too small a unit, and so algo-
rithms for word segmentation are required. These can also be useful for Chineseword

segmentation
in the rare situations where word rather than character boundaries are required. The
standard segmentation algorithms for these languages use neural sequence mod-
els trained via supervised machine learning on hand-segmented training sets; we’ll
introduce sequence models in Chapter 8.

2.4.3 Byte-Pair Encoding for Tokenization
There is a third option to tokenizing text input. Instead of defining tokens as words
(defined by spaces in orthographies that have spaces, or more complex algorithms),
or as characters (as in Chinese), we can use our data to automatically tell us what size
tokens should be. Perhaps sometimes we might want tokens that are space-delimited
words (like spinach) other times it’s useful to have tokens that are larger than words
(like New York Times), and sometimes smaller than words (like the morphemes -est
or -er. A morpheme is the smallest meaning-bearing unit of a language; for example
the word unlikeliest has the morphemes un-, likely, and -est; we’ll return to this on
page 20.

One reason it’s helpful to have subword tokens is to deal with unknown words.subword

20 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

2018). BPE and wordpiece both assume that we already have some initial tokeniza-
tion of words (such as by spaces, or from some initial dictionary) and so we never
tried to induce word parts across spaces. By contrast, the SentencePiece model
works from raw text; even whitespace is handled as a normal symbol. Thus it doesn’t
need an initial tokenization or word-list, and can be used in languages like Chinese
or Japanese that don’t have spaces.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization

ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma
be; the words dinner and dinners both have the lemma dinner. Lemmatizing each of
these forms to the same lemma will let us find all mentions of words in Russian like
Moscow. The lemmatized form of a sentence like He is reading detective stories
would thus be He be read detective story.

How is lemmatization done? The most sophisticated methods for lemmatization
involve complete morphological parsing of the word. Morphology is the study of
the way words are built up from smaller meaning-bearing units called morphemes.morpheme

Two broad classes of morphemes can be distinguished: stems—the central mor-stem

pheme of the word, supplying the main meaning— and affixes—adding “additional”affix

meanings of various kinds. So, for example, the word fox consists of one morpheme
(the morpheme fox) and the word cats consists of two: the morpheme cat and the
morpheme -s. A morphological parser takes a word like cats and parses it into the
two morphemes cat and s, or a Spanish word like amaren (‘if in the future they
would love’) into the morphemes amar ‘to love’, 3PL, and future subjunctive.

The Porter Stemmer

Lemmatization algorithms can be complex. For this reason we sometimes make use
of a simpler but cruder method, which mainly consists of chopping off word-final
affixes. This naive version of morphological analysis is called stemming. One ofstemming

the most widely used stemming algorithms is the Porter (1980). The Porter stemmerPorter stemmer

2.4 • TEXT NORMALIZATION 21

applied to the following paragraph:

This was not the map we found in Billy Bones’s chest, but

an accurate copy, complete in all things-names and heights

and soundings-with the single exception of the red crosses

and the written notes.

produces the following stemmed output:

Thi wa not the map we found in Billi Bone s chest but an

accur copi complet in all thing name and height and sound

with the singl except of the red cross and the written note

The algorithm is based on series of rewrite rules run in series, as a cascade, incascade

which the output of each pass is fed as input to the next pass; here is a sampling of
the rules:

ATIONAL → ATE (e.g., relational→ relate)
ING → ε if stem contains vowel (e.g., motoring→ motor)

SSES → SS (e.g., grasses→ grass)

Detailed rule lists for the Porter stemmer, as well as code (in Java, Python, etc.)
can be found on Martin Porter’s homepage; see also the original paper (Porter, 1980).

Simple stemmers can be useful in cases where we need to collapse across differ-
ent variants of the same lemma. Nonetheless, they do tend to commit errors of both
over- and under-generalizing, as shown in the table below (Krovetz, 1993):

Errors of Commission Errors of Omission
organization organ European Europe
doing doe analysis analyzes
numerical numerous noise noisy
policy police sparse sparsity

2.4.5 Sentence Segmentation
Sentence segmentation is another important step in text processing. The most use-Sentence

segmentation
ful cues for segmenting a text into sentences are punctuation, like periods, question
marks, and exclamation points. Question marks and exclamation points are rela-
tively unambiguous markers of sentence boundaries. Periods, on the other hand, are
more ambiguous. The period character “.” is ambiguous between a sentence bound-
ary marker and a marker of abbreviations like Mr. or Inc. The previous sentence that
you just read showed an even more complex case of this ambiguity, in which the final
period of Inc. marked both an abbreviation and the sentence boundary marker. For
this reason, sentence tokenization and word tokenization may be addressed jointly.

In general, sentence tokenization methods work by first deciding (based on rules
or machine learning) whether a period is part of the word or is a sentence-boundary
marker. An abbreviation dictionary can help determine whether the period is part
of a commonly used abbreviation; the dictionaries can be hand-built or machine-
learned (Kiss and Strunk, 2006), as can the final sentence splitter. In the Stan-
ford CoreNLP toolkit (Manning et al., 2014), for example sentence splitting is
rule-based, a deterministic consequence of tokenization; a sentence ends when a
sentence-ending punctuation (., !, or ?) is not already grouped with other charac-
ters into a token (such as for an abbreviation or number), optionally followed by
additional final quotes or brackets.

Speech and Language Processing. Daniel Jurafsky & James H. Martin. Copyright c© 2019. All

rights reserved. Draft of October 2, 2019.

CHAPTER

8 Part-of-Speech Tagging

Dionysius Thrax of Alexandria (c. 100 B.C.), or perhaps someone else (it was a long
time ago), wrote a grammatical sketch of Greek (a “technē”) that summarized the
linguistic knowledge of his day. This work is the source of an astonishing proportion
of modern linguistic vocabulary, including words like syntax, diphthong, clitic, and
analogy. Also included are a description of eight parts of speech: noun, verb,parts of speech

pronoun, preposition, adverb, conjunction, participle, and article. Although earlier
scholars (including Aristotle as well as the Stoics) had their own lists of parts of
speech, it was Thrax’s set of eight that became the basis for practically all subsequent
part-of-speech descriptions of most European languages for the next 2000 years.

Schoolhouse Rock was a series of popular animated educational television clips
from the 1970s. Its Grammar Rock sequence included songs about exactly 8 parts
of speech, including the late great Bob Dorough’s Conjunction Junction:

Conjunction Junction, what’s your function?
Hooking up words and phrases and clauses...

Although the list of 8 was slightly modified from Thrax’s original, the astonishing
durability of the parts of speech through two millennia is an indicator of both the
importance and the transparency of their role in human language.1

Parts of speech (also known as POS, word classes, or syntactic categories) arePOS

useful because they reveal a lot about a word and its neighbors. Knowing whether
a word is a noun or a verb tells us about likely neighboring words (nouns are pre-
ceded by determiners and adjectives, verbs by nouns) and syntactic structure (nouns
are generally part of noun phrases), making part-of-speech tagging a key aspect of
parsing (Chapter 13). Parts of speech are useful features for labeling named entities
like people or organizations in information extraction (Chapter 18), or for corefer-
ence resolution (Chapter 22). A word’s part of speech can even play a role in speech
recognition or synthesis, e.g., the word content is pronounced CONtent when it is a
noun and conTENT when it is an adjective.

This chapter introduces parts of speech, and then introduces two algorithms for
part-of-speech tagging, the task of assigning parts of speech to words. One is
generative— Hidden Markov Model (HMM)—and one is discriminative—the Max-
imum Entropy Markov Model (MEMM). Chapter 9 then introduces a third algorithm
based on the recurrent neural network (RNN). All three have roughly equal perfor-
mance but, as we’ll see, have different tradeoffs.

8.1 (Mostly) English Word Classes

Until now we have been using part-of-speech terms like noun and verb rather freely.
In this section we give a more complete definition of these and other classes. While
word classes do have semantic tendencies—adjectives, for example, often describe

1 Nonetheless, eight isn’t very many and, as we’ll see, recent tagsets have more.

2 CHAPTER 8 • PART-OF-SPEECH TAGGING

properties and nouns people— parts of speech are traditionally defined instead based
on syntactic and morphological function, grouping words that have similar neighbor-
ing words (their distributional properties) or take similar affixes (their morpholog-
ical properties).

Parts of speech can be divided into two broad supercategories: closed class typesclosed class

and open class types. Closed classes are those with relatively fixed membership,open class

such as prepositions—new prepositions are rarely coined. By contrast, nouns and
verbs are open classes—new nouns and verbs like iPhone or to fax are continually
being created or borrowed. Any given speaker or corpus may have different open
class words, but all speakers of a language, and sufficiently large corpora, likely
share the set of closed class words. Closed class words are generally function wordsfunction word

like of, it, and, or you, which tend to be very short, occur frequently, and often have
structuring uses in grammar.

Four major open classes occur in the languages of the world: nouns, verbs,
adjectives, and adverbs. English has all four, although not every language does.
The syntactic class noun includes the words for most people, places, or things, butnoun

others as well. Nouns include concrete terms like ship and chair, abstractions like
bandwidth and relationship, and verb-like terms like pacing as in His pacing to and
fro became quite annoying. What defines a noun in English, then, are things like its
ability to occur with determiners (a goat, its bandwidth, Plato’s Republic), to take
possessives (IBM’s annual revenue), and for most but not all nouns to occur in the
plural form (goats, abaci).

Open class nouns fall into two classes. Proper nouns, like Regina, Colorado,proper noun

and IBM, are names of specific persons or entities. In English, they generally aren’t
preceded by articles (e.g., the book is upstairs, but Regina is upstairs). In written
English, proper nouns are usually capitalized. The other class, common nouns, arecommon noun

divided in many languages, including English, into count nouns and mass nouns.count noun
mass noun Count nouns allow grammatical enumeration, occurring in both the singular and plu-

ral (goat/goats, relationship/relationships) and they can be counted (one goat, two
goats). Mass nouns are used when something is conceptualized as a homogeneous
group. So words like snow, salt, and communism are not counted (i.e., *two snows
or *two communisms). Mass nouns can also appear without articles where singular
count nouns cannot (Snow is white but not *Goat is white).

Verbs refer to actions and processes, including main verbs like draw, provide,verb

and go. English verbs have inflections (non-third-person-sg (eat), third-person-sg
(eats), progressive (eating), past participle (eaten)). While many researchers believe
that all human languages have the categories of noun and verb, others have argued
that some languages, such as Riau Indonesian and Tongan, don’t even make this
distinction (Broschart 1997; Evans 2000; Gil 2000) .

The third open class English form is adjectives, a class that includes many termsadjective

for properties or qualities. Most languages have adjectives for the concepts of color
(white, black), age (old, young), and value (good, bad), but there are languages
without adjectives. In Korean, for example, the words corresponding to English
adjectives act as a subclass of verbs, so what is in English an adjective “beautiful”
acts in Korean like a verb meaning “to be beautiful”.

The final open class form, adverbs, is rather a hodge-podge in both form andadverb

meaning. In the following all the italicized words are adverbs:

Actually, I ran home extremely quickly yesterday

What coherence the class has semantically may be solely that each of these
words can be viewed as modifying something (often verbs, hence the name “ad-

8.1 • (MOSTLY) ENGLISH WORD CLASSES 3

verb”, but also other adverbs and entire verb phrases). Directional adverbs or loca-
tive adverbs (home, here, downhill) specify the direction or location of some action;locative

degree adverbs (extremely, very, somewhat) specify the extent of some action, pro-degree

cess, or property; manner adverbs (slowly, slinkily, delicately) describe the mannermanner

of some action or process; and temporal adverbs describe the time that some ac-temporal

tion or event took place (yesterday, Monday). Because of the heterogeneous nature
of this class, some adverbs (e.g., temporal adverbs like Monday) are tagged in some
tagging schemes as nouns.

The closed classes differ more from language to language than do the open
classes. Some of the important closed classes in English include:

prepositions: on, under, over, near, by, at, from, to, with
particles: up, down, on, off, in, out, at, by
determiners: a, an, the
conjunctions: and, but, or, as, if, when
pronouns: she, who, I, others
auxiliary verbs: can, may, should, are
numerals: one, two, three, first, second, third

Prepositions occur before noun phrases. Semantically they often indicate spatialpreposition

or temporal relations, whether literal (on it, before then, by the house) or metaphor-
ical (on time, with gusto, beside herself), but often indicate other relations as well,
like marking the agent in Hamlet was written by Shakespeare. A particle resemblesparticle

a preposition or an adverb and is used in combination with a verb. Particles often
have extended meanings that aren’t quite the same as the prepositions they resemble,
as in the particle over in she turned the paper over.

A verb and a particle that act as a single syntactic and/or semantic unit are
called a phrasal verb. The meaning of phrasal verbs is often problematically non-phrasal verb

compositional—not predictable from the distinct meanings of the verb and the par-
ticle. Thus, turn down means something like ‘reject’, rule out ‘eliminate’, find out
‘discover’, and go on ‘continue’.

A closed class that occurs with nouns, often marking the beginning of a noun
phrase, is the determiner. One small subtype of determiners is the article: Englishdeterminer

article has three articles: a, an, and the. Other determiners include this and that (this chap-
ter, that page). A and an mark a noun phrase as indefinite, while the can mark it
as definite; definiteness is a discourse property (Chapter 23). Articles are quite fre-
quent in English; indeed, the is the most frequently occurring word in most corpora
of written English, and a and an are generally right behind.

Conjunctions join two phrases, clauses, or sentences. Coordinating conjunc-conjunctions

tions like and, or, and but join two elements of equal status. Subordinating conjunc-
tions are used when one of the elements has some embedded status. For example,
that in “I thought that you might like some milk” is a subordinating conjunction
that links the main clause I thought with the subordinate clause you might like some
milk. This clause is called subordinate because this entire clause is the “content” of
the main verb thought. Subordinating conjunctions like that which link a verb to its
argument in this way are also called complementizers.complementizer

Pronouns are forms that often act as a kind of shorthand for referring to somepronoun

noun phrase or entity or event. Personal pronouns refer to persons or entities (you,personal

she, I, it, me, etc.). Possessive pronouns are forms of personal pronouns that in-possessive

dicate either actual possession or more often just an abstract relation between the
person and some object (my, your, his, her, its, one’s, our, their). Wh-pronounswh

(what, who, whom, whoever) are used in certain question forms, or may also act as

4 CHAPTER 8 • PART-OF-SPEECH TAGGING

complementizers (Frida, who married Diego. . .).
A closed class subtype of English verbs are the auxiliary verbs. Cross-linguist-auxiliary

ically, auxiliaries mark semantic features of a main verb: whether an action takes
place in the present, past, or future (tense), whether it is completed (aspect), whether
it is negated (polarity), and whether an action is necessary, possible, suggested, or
desired (mood). English auxiliaries include the copula verb be, the two verbs do andcopula

have, along with their inflected forms, as well as a class of modal verbs. Be is calledmodal

a copula because it connects subjects with certain kinds of predicate nominals and
adjectives (He is a duck). The verb have can mark the perfect tenses (I have gone, I
had gone), and be is used as part of the passive (We were robbed) or progressive (We
are leaving) constructions. Modals are used to mark the mood associated with the
event depicted by the main verb: can indicates ability or possibility, may permission
or possibility, must necessity. There is also a modal use of have (e.g., I have to go).

English also has many words of more or less unique function, including inter-
jections (oh, hey, alas, uh, um), negatives (no, not), politeness markers (please,interjection

negative thank you), greetings (hello, goodbye), and the existential there (there are two on
the table) among others. These classes may be distinguished or lumped together as
interjections or adverbs depending on the purpose of the labeling.

8.2 The Penn Treebank Part-of-Speech Tagset

An important tagset for English is the 45-tag Penn Treebank tagset (Marcus et al.,
1993), shown in Fig. 8.1, which has been used to label many corpora. In such
labelings, parts of speech are generally represented by placing the tag after each
word, delimited by a slash:

Tag Description Example Tag Description Example Tag Description Example
CC coordinating

conjunction
and, but, or PDT predeterminer all, both VBP verb non-3sg

present
eat

CD cardinal number one, two POS possessive ending ’s VBZ verb 3sg pres eats
DT determiner a, the PRP personal pronoun I, you, he WDT wh-determ. which, that
EX existential ‘there’ there PRP$ possess. pronoun your, one’s WP wh-pronoun what, who
FW foreign word mea culpa RB adverb quickly WP$ wh-possess. whose
IN preposition/

subordin-conj
of, in, by RBR comparative

adverb
faster WRB wh-adverb how, where

JJ adjective yellow RBS superlatv. adverb fastest $ dollar sign $
JJR comparative adj bigger RP particle up, off # pound sign #
JJS superlative adj wildest SYM symbol +,%, & “ left quote ‘ or “
LS list item marker 1, 2, One TO “to” to ” right quote ’ or ”
MD modal can, should UH interjection ah, oops (left paren [, (, {, <
NN sing or mass noun llama VB verb base form eat) right paren],), }, >
NNS noun, plural llamas VBD verb past tense ate , comma ,
NNP proper noun, sing. IBM VBG verb gerund eating . sent-end punc . ! ?
NNPS proper noun, plu. Carolinas VBN verb past part. eaten : sent-mid punc : ; ... – -

Figure 8.1 Penn Treebank part-of-speech tags (including punctuation).

(8.1) The/DT grand/JJ jury/NN commented/VBD on/IN a/DT number/NN of/IN
other/JJ topics/NNS ./.

(8.2) There/EX are/VBP 70/CD children/NNS there/RB

8.2 • THE PENN TREEBANK PART-OF-SPEECH TAGSET 5

(8.3) Preliminary/JJ findings/NNS were/VBD reported/VBN in/IN today/NN
’s/POS New/NNP England/NNP Journal/NNP of/IN Medicine/NNP ./.

Example (8.1) shows the determiners the and a, the adjectives grand and other,
the common nouns jury, number, and topics, and the past tense verb commented.
Example (8.2) shows the use of the EX tag to mark the existential there construction
in English, and, for comparison, another use of there which is tagged as an adverb
(RB). Example (8.3) shows the segmentation of the possessive morpheme ’s, and a
passive construction, ‘were reported’, in which reported is tagged as a past participle
(VBN). Note that since New England Journal of Medicine is a proper noun, the
Treebank tagging chooses to mark each noun in it separately as NNP, including
journal and medicine, which might otherwise be labeled as common nouns (NN).

Corpora labeled with parts of speech are crucial training (and testing) sets for
statistical tagging algorithms. Three main tagged corpora are consistently used for
training and testing part-of-speech taggers for English. The Brown corpus is a mil-Brown

lion words of samples from 500 written texts from different genres published in the
United States in 1961. The WSJ corpus contains a million words published in theWSJ

Wall Street Journal in 1989. The Switchboard corpus consists of 2 million wordsSwitchboard

of telephone conversations collected in 1990-1991. The corpora were created by
running an automatic part-of-speech tagger on the texts and then human annotators
hand-corrected each tag.

There are some minor differences in the tagsets used by the corpora. For example
in the WSJ and Brown corpora, the single Penn tag TO is used for both the infinitive
to (I like to race) and the preposition to (go to the store), while in Switchboard the
tag TO is reserved for the infinitive use of to and the preposition is tagged IN:

Well/UH ,/, I/PRP ,/, I/PRP want/VBP to/TO go/VB to/IN a/DT restaurant/NN

Finally, there are some idiosyncracies inherent in any tagset. For example, be-
cause the Penn 45 tags were collapsed from a larger 87-tag tagset, the original
Brown tagset, some potentially useful distinctions were lost. The Penn tagset was
designed for a treebank in which sentences were parsed, and so it leaves off syntactic
information recoverable from the parse tree. Thus for example the Penn tag IN is
used for both subordinating conjunctions like if, when, unless, after:

after/IN spending/VBG a/DT day/NN at/IN the/DT beach/NN

and prepositions like in, on, after:

after/IN sunrise/NN

Words are generally tokenized before tagging. The Penn Treebank and the
British National Corpus split contractions and the ’s-genitive from their stems:2

would/MD n’t/RB
children/NNS ’s/POS

The Treebank tagset assumes that tokenization of multipart words like New
York is done at whitespace, thus tagging. a New York City firm as a/DT New/NNP
York/NNP City/NNP firm/NN.

Another commonly used tagset, the Universal POS tag set of the Universal De-
pendencies project (Nivre et al., 2016), is used when building systems that can tag
many languages. See Section 8.7.

2 Indeed, the Treebank tag POS is used only for ’s, which must be segmented in tokenization.

