Week 3

Basic Python 1

Notes from Assignment 2

e Whitespace is invisible and therefore tricky
e.g. top word = 46401 instances of *’

Can run another sed to remove this, or a one-command fix:
sed 's/ +/\n/g"

e Similar, seda '/~s/da' works but misses lines with spaces

e [0-9] isall digits (doesn’t work to do e.g. [0-100])

Notes from Assignment 2

Quoting!

e Be very careful with quoting! And (), [], ete.
Each ' requires another ' to close it,
each " requires another " to close it.

e Syntax highlighting helps a lot.

Notes from Assignment 2

Quoting!

e Double quotes interpret arguments (e.g. "s1") and escapes,
Single quotes leave them be.

https: stackoverflow.com/guestions/6697753/difference-between-single—and-d

ouble—guotes—-in-bash

e Whitespace (spaces, tabs, newlines) is
interpreted as a delimiter between arguments!
(See TLCL Ch. 7)

https://stackoverflow.com/questions/6697753/difference-between-single-and-double-quotes-in-bash
https://stackoverflow.com/questions/6697753/difference-between-single-and-double-quotes-in-bash

Notes from Assignment 2

Stream Management!

e DBe aware that almost all text filter commands can accept the
input file as an argument (e.g. sed 's/sad/happy/g' input.txt)

e C(areful with > (write) vs. >> (append)

e > and >> end the stream (alternatively can use tee)

Notes from Assignment 2

e DBetter to not generate auxiliary files, e.g.:

grep love shakes.txt > lovelines.txt

wc —1 lovelines.txt

e This works, but adds cruft and obscures things later - if we
come back in a day, how exactly did we get 1ovelines.txt?
Once it’s created we lose the “story,” if you will.

Thus piping!

grep love shakes.txt | wc -1

Notes from Assignment 2

e Don’t call programs like nano / less from a script:
it’ll stop execution of the script until you close that instance.
nano/less are not text filters like grep/sed/tr/sort/ete.

o They can *receive® input from stdin,
they just don’t pass it through to stdout

e This and all further assignments should be runnable!
(don’t write the answer, write the code that generates it)

Notes from Assignment 2

“Solutions” are posted on the course website

Variable Types

Numeric Sequence Text Truthy
integer list string boolean

472 ['y', 2, False] 'hello!' True, False
float tuple Nomne

42 .0 (6, ‘b’, 19.7) None

Statements

Assignment (-)

year

mssg

e:

2020 # integer

'hooray!' # string

2.71828 # float

10

Statements

Equality Testing (-, =, >, <, >=, <=
>>> year != 2016
True
>>> mssg == 'howdy!'
False

>>> e <= 3
True

11

Statements

Arithmetic «+, -, «, 7,
>>> year * 3
6060

>>> 'hip hip ' + mssg
'hip hip hooray!'

>>> e / 2
1.35914

12

Statements

Incrementing (arithmetic plus assignment)

>>> year += 18

>>> year
2038

>>> mssg *= 5
>>> mssg
'hooray'!'hooray!hooray'!'hooray!hooray!'

13

Functions

Important Built-ins 1

print (x) # print representation of x
help(x) # detailed help on x
type (x) # return type of x

dir(x) # list methods and attributes of x

14

Functions

Important Built-ins 2

sorted (x) # return sorted version of x

min(x), max(x) # mathematical operations
sum (x) # on sequences

int(x), float(x), bool(x) # 'casting', a.k.a.
list(x), tuple(x), str(x) # type conversion

15

Functions

Defining New Functions

def keyword
function name

|

def my function (argl
body # all my amazing
indented . # ~ode goes here
one level eessEn A2

arguments

/N

, argz,

arg3) :

16

Control Flow

Conditionals - if, elif, else -

>>> x = int (input ("Please enter an integer:
Please enter an integer: 42
>>> 1f x < 0O:
print ('Negative!')
elif x ==
print ('Zero!"'")
else:
print ('Positive!")
Positive!

"))

17

Control Flow

Loops - for ... In -

>>> # Measure some strings:
words = ['cat', 'window',
>>> for w in words:
print (w, len(w))
cat 3
window 6
defenestrate 12

'defenestrate']

18

Control Flow

Loops - for ... In -

>>> for 1 1n range (D) :

print (1)

S w N -k O

19

Control Flow

Loops - for ... In -

>>> for line in open('shakes.txt'):
... print (line)

1609
THE SONNETS

by William Shakespeare

20

Control Flow

Loops - while -

>>> # Fibonacci:
a, b =20, 1
>>> while a < 10:

print (a,
a, b = b,
print('")

0112 358

sum of two elements defines the next

end=" ")
a+b

21

Whitespace

The body of
funection definitions
and
control flow elements
must be indented
by one level

Recommended to be
--\t-- one tab
. or four spaces

ts(func, tests):

(

errors =
val, ret in tests:

(val) == tuple:

‘unc(*val) == ret
(val) == ret
AssertionError:

(
errors +=
errors ==

()

1t (val))

22

Whitespace

e Most text editors deal with whitespace semi-intelligently

e [.g., emacs sees that a file ends in .py,
and interprets the text as python code (syntax highlighting)
and tries to make the whitespace consistent

e Pressing the [Tab] key will jump to the logical indent.
But be careful e.g. closing control flow statements,
try pressing [Tab] multiple times. 23

String and List Indexing

>>> job title = 'LINGUIST'

Char (or List Item) | L T N G U T
Index 0 1 2 3 4 5
Reverse Index -8 :-7 :-6 :-5 -4 :-3

>>> job title[3:-1]
'GUIS' # inclusive of start,

>>> job title[:5]

Syntax:
sequence|start:end]

not inclusive of end

'LINGU'! # can leave off start or end

24

String Methods
strip, rstrip, Istrip

>>>
>>>
>>>
'my
>>>
>>>

'my

s = ' my sTrInGggg!\n'

s = s.strip()

S

sTrInGggg!'

s = s.strip('!"').strip('g")
S

sTrInG'

upper, lower

>>2>
>>>

me

s = s.lower ()
S
string'

find

>>> s.find('str')
3

replace
>>> s.replace('my', 'your"')
'vour string'

startswith, endswith
>>> s.startswith('balloon')
False

25

List Methods

append

>>> x = [1, 4,
>>> x.append (9)
>>> x

9,

(1, 4, 9, 16, 9]

index
>>> x.index (4)
1

16]

remove

>>> x.remove (9)
>>> X

[1, 4, 1o, 9]

pop

>>> x.pop ()
9

>>> x

(1, 4, 16]

26

Strings and Lists
Strings are like sequences of characters
Key difference: lists are mutable strings are immutable

my list[3] = 'yes'g my str[3] = 'n'x

String methods to convert to/from lists

split join
>>> s = 'my string' >>> ' ' jJoin(['your', 'string'])
>>> s.split () 'yvour string'

['my', 'string']

27

Assignment Walkthrough

Answers are short but can be tricky!

Think Decomposition
how can I break this into smaller, doable sub-problems?

Tests provided after each function!

28

Assignment Walkthrough

You must do
module load python/anaconda3.6
every time you login to Quest

Run the assignment with:
python assignment.py

The assignment must run when you are done!

29

