
Week 3
Basic Python 1

1

LING 300 - Topics in Linguistics:
Introduction to Programming and Text Processing for Linguists

● Whitespace is invisible and therefore tricky
e.g. top word = 46401 instances of ‘ ’
Can run another sed to remove this, or a one-command fix:

sed 's/ +/\n/g'

● Similar, sed '/^$/d' works but misses lines with spaces

● [0-9] is all digits (doesn’t work to do e.g. [0-100])

Notes from Assignment 2

2

Quoting!

● Be very careful with quoting! And (), [], etc.
Each ' requires another ' to close it,
each " requires another " to close it.

● Syntax highlighting helps a lot.

Notes from Assignment 2

3

Quoting!

● Double quotes interpret arguments (e.g. "$1") and escapes,
Single quotes leave them be.
https://stackoverflow.com/questions/6697753/difference-between-single-and-d
ouble-quotes-in-bash

● Whitespace (spaces, tabs, newlines) is
interpreted as a delimiter between arguments!
(See TLCL Ch. 7)

Notes from Assignment 2

4

https://stackoverflow.com/questions/6697753/difference-between-single-and-double-quotes-in-bash
https://stackoverflow.com/questions/6697753/difference-between-single-and-double-quotes-in-bash

Stream Management!

● Be aware that almost all text filter commands can accept the
input file as an argument (e.g. sed 's/sad/happy/g' input.txt)

● Careful with > (write) vs. >> (append)

● > and >> end the stream (alternatively can use tee)

Notes from Assignment 2

5

● Better to not generate auxiliary files, e.g.:
grep love shakes.txt > lovelines.txt

wc -l lovelines.txt

● This works, but adds cruft and obscures things later - if we
come back in a day, how exactly did we get lovelines.txt?
Once it’s created we lose the “story,” if you will.
Thus piping!

grep love shakes.txt | wc -l

Notes from Assignment 2

6

● Don’t call programs like nano / less from a script:
it’ll stop execution of the script until you close that instance.

nano/less are not text filters like grep/sed/tr/sort/etc.

○ They can *receive* input from stdin,
they just don’t pass it through to stdout

● This and all further assignments should be runnable!
(don’t write the answer, write the code that generates it)

Notes from Assignment 2

7

“Solutions” are posted on the course website

No claim to perfection, there is no perfect “right answer”!

Notes from Assignment 2

8

Variable Types define different sorts of data

Numeric

integer

42

float

42.0

9

Sequence

list

['y', 2, False]

tuple

(6, ‘b’, 19.7)

Text

string

'hello!'

(next week)

Set set

Mapping dict{}

Truthy

boolean

True, False

None

 None

Statements are units of code that do something

10

Assignment (=)

year = 2020 # integer

mssg = 'hooray!' # string

e = 2.71828 # float

Statements are units of code that do something

11

Equality Testing (==, !=, >, <, >=, <=)

>>> year != 2016
True

>>> mssg == 'howdy!'
False

>>> e <= 3
True

Statements are units of code that do something

12

Arithmetic (+, -, *, /, **)

>>> year * 3
6060

>>> 'hip hip ' + mssg
'hip hip hooray!'

>>> e / 2
1.35914

Incrementing (arithmetic plus assignment)

>>> year += 18
>>> year
2038

>>> mssg *= 5
>>> mssg
'hooray!hooray!hooray!hooray!hooray!'

Statements are units of code that do something

13

Functions take input, do some computation, produce output

14

Important Built-ins 1

print(x) # print representation of x

help(x) # detailed help on x

type(x) # return type of x

dir(x) # list methods and attributes of x
(methods are functions bound to objects)
(attributes are variables bound to objects)

Functions take input, do some computation, produce output

15

Important Built-ins 2

sorted(x) # return sorted version of x

min(x), max(x) # mathematical operations
sum(x) # on sequences

int(x), float(x), bool(x) # 'casting', a.k.a.
list(x), tuple(x), str(x) # type conversion

Defining New Functions

def my_function(arg1, arg2, arg3):
 # all my amazing
 # code goes here
 return 42

def keyword
 function name arguments

body
indented
one level

Functions take input, do some computation, produce output

16

Control Flow organizes the order code executes

17

Conditionals - if, elif, else - enter section if condition is met
>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... print('Negative!')
... elif x == 0:
... print('Zero!')
... else:
... print('Positive!')
Positive!

Control Flow organizes the order code executes

18

Loops - for … in - loop over items of a sequence
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
... print(w, len(w))
...
cat 3
window 6
defenestrate 12

Control Flow organizes the order code executes

19

Loops - for … in - loop over numbers by using range
>>> for i in range(5):
... print(i)
…
0
1
2
3
4

Control Flow organizes the order code executes

20

Loops - for … in - for reading lines in a file with open
>>> for line in open('shakes.txt'):
... print(line)
1609

THE SONNETS

by William Shakespeare

Control Flow organizes the order code executes

21

Loops - while - loop until condition is met
>>> # Fibonacci: sum of two elements defines the next
... a, b = 0, 1
>>> while a < 10:
... print(a, end=' ')
... a, b = b, a+b
... print('')
...
0 1 1 2 3 5 8

Whitespace is obligatory for demarcating code blocks

22

The body of
function definitions

and
control flow elements

must be indented
by one level

Recommended to be
--\t-- one tab
. . . . or four spaces

Whitespace is obligatory for demarcating code blocks

23

● Most text editors deal with whitespace semi-intelligently

● E.g., emacs sees that a file ends in .py,
and interprets the text as python code (syntax highlighting)
and tries to make the whitespace consistent

● Pressing the [Tab] key will jump to the logical indent.
But be careful e.g. closing control flow statements,
try pressing [Tab] multiple times.

String and List Indexing

24

>>> job_title = 'LINGUIST'

Char (or List Item) L I N G U I S T

Index 0 1 2 3 4 5 6 7

Reverse Index -8 -7 -6 -5 -4 -3 -2 -1

>>> job_title[3:-1]
'GUIS' # inclusive of start, not inclusive of end

>>> job_title[:5]
'LINGU' # can leave off start or end

Syntax:
sequence[start:end]

String Methods are functions associated with string objects

25

strip, rstrip, lstrip
>>> s = ' my sTrInGggg!\n'
>>> s = s.strip()
>>> s
'my sTrInGggg!'
>>> s = s.strip('!').strip('g')
>>> s
'my sTrInG'

upper, lower
>>> s = s.lower()
>>> s
'my string'

find
>>> s.find('str')
3

replace
>>> s.replace('my','your')
'your string'

startswith, endswith
>>> s.startswith('balloon')
False

List Methods are functions associated with list objects

26

append
>>> x = [1, 4, 9, 16]
>>> x.append(9)
>>> x
[1, 4, 9, 16, 9]

index
>>> x.index(4)
1

remove deletes the first occurrence
>>> x.remove(9)
>>> x
[1, 4, 16, 9]

pop removes and returns the last element
>>> x.pop()
9
>>> x
[1, 4, 16]

Strings and Lists

27

Strings are like sequences of characters

Key difference: lists are mutable strings are immutable
can be changed cannot be changed
my_list[3] = 'yes' my_str[3] = 'n'

String methods to convert to/from lists
split join
>>> s = 'my string' >>> ' '.join(['your','string'])
>>> s.split() 'your string'
['my', 'string']

Assignment Walkthrough

28

Answers are short but can be tricky!

Think Decomposition
 how can I break this into smaller, doable sub-problems?

Tests provided after each function! (non-exhaustive)

Assignment Walkthrough

29

You must do
 module load python/anaconda3.6
every time you login to Quest

Run the assignment with:
 python assignment.py

The assignment must run when you are done!

