
Week 3
Basic Python 1
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LING 300 - Topics in Linguistics:
Introduction to Programming and Text Processing for Linguists



● Whitespace is invisible and therefore tricky
e.g. top word = 46401 instances of ‘ ’
Can run another sed to remove this, or a one-command fix:

sed 's/ +/\n/g'

● Similar, sed '/^$/d' works but misses lines with spaces

● [0-9] is all digits (doesn’t work to do e.g. [0-100])

Notes from Assignment 2
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Quoting!

● Be very careful with quoting! And (), [], etc.
Each ' requires another ' to close it, 
each " requires another " to close it.

● Syntax highlighting helps a lot.

Notes from Assignment 2
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Quoting!

● Double quotes interpret arguments (e.g. "$1") and escapes,
Single quotes leave them be. 
https://stackoverflow.com/questions/6697753/difference-between-single-and-d
ouble-quotes-in-bash

● Whitespace (spaces, tabs, newlines) is 
interpreted as a delimiter between arguments! 
(See TLCL Ch. 7)

Notes from Assignment 2

4

https://stackoverflow.com/questions/6697753/difference-between-single-and-double-quotes-in-bash
https://stackoverflow.com/questions/6697753/difference-between-single-and-double-quotes-in-bash


Stream Management!

● Be aware that almost all text filter commands can accept the 
input file as an argument (e.g. sed 's/sad/happy/g' input.txt)

● Careful with > (write) vs. >> (append)

● > and >> end the stream (alternatively can use tee)

Notes from Assignment 2
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● Better to not generate auxiliary files, e.g.:
grep love shakes.txt > lovelines.txt

wc -l lovelines.txt

● This works, but adds cruft and obscures things later - if we 
come back in a day, how exactly did we get lovelines.txt? 
Once it’s created we lose the “story,” if you will. 
Thus piping!

grep love shakes.txt | wc -l

Notes from Assignment 2
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● Don’t call programs like nano / less from a script:
it’ll stop execution of the script until you close that instance.

nano/less are not text filters like grep/sed/tr/sort/etc.

○ They can *receive* input from stdin, 
they just don’t pass it through to stdout

● This and all further assignments should be runnable!
(don’t write the answer, write the code that generates it)

Notes from Assignment 2
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“Solutions” are posted on the course website

No claim to perfection, there is no perfect “right answer”!

Notes from Assignment 2
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Variable Types define different sorts of data

Numeric

integer

42

float

42.0

9

Sequence

list

['y', 2, False]

tuple 

(6, ‘b’, 19.7)

Text

string

'hello!' 

(next week)

Set set

Mapping dict{}

Truthy

boolean

True, False

None

       None



Statements are units of code that do something
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Assignment (=)

year = 2020 # integer

mssg = 'hooray!' # string

e = 2.71828 # float



Statements are units of code that do something
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Equality Testing  (==, !=, >, <, >=, <=)

>>> year != 2016
True

>>> mssg == 'howdy!'
False

>>> e <= 3
True



Statements are units of code that do something
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Arithmetic (+, -, *, /, **) 

>>> year * 3
6060

>>> 'hip hip ' + mssg
'hip hip hooray!'

>>> e / 2
1.35914



Incrementing (arithmetic plus assignment)

>>> year += 18
>>> year
2038

>>> mssg *= 5
>>> mssg
'hooray!hooray!hooray!hooray!hooray!'

Statements are units of code that do something
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Functions take input, do some computation, produce output
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Important Built-ins 1

print(x) # print representation of x

help(x) # detailed help on x

type(x) # return type of x

dir(x) # list methods and attributes of x
(methods are functions bound to objects)
(attributes are variables bound to objects)



Functions take input, do some computation, produce output
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Important Built-ins 2

sorted(x) # return sorted version of x

min(x), max(x) # mathematical operations
sum(x) # on sequences

int(x), float(x), bool(x) # 'casting', a.k.a.
list(x), tuple(x), str(x) # type conversion



Defining New Functions

def my_function(arg1, arg2, arg3):
    # all my amazing
    # code goes here
    return 42

 

def keyword
     function name     arguments

body  
indented     
one level    

Functions take input, do some computation, produce output
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Control Flow organizes the order code executes
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Conditionals - if, elif, else - enter section if condition is met
>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
...     print('Negative!')
... elif x == 0:
...     print('Zero!')
... else:
...     print('Positive!')
Positive!



Control Flow organizes the order code executes
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Loops - for … in - loop over items of a sequence
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
...     print(w, len(w))
...
cat 3
window 6
defenestrate 12



Control Flow organizes the order code executes
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Loops - for … in - loop over numbers by using range
>>> for i in range(5):
...     print(i)
…
0
1
2
3
4



Control Flow organizes the order code executes
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Loops - for … in - for reading lines in a file with open
>>> for line in open('shakes.txt'):
...      print(line)
1609

THE SONNETS

by William Shakespeare



Control Flow organizes the order code executes
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Loops - while - loop until condition is met
>>> # Fibonacci: sum of two elements defines the next
... a, b = 0, 1
>>> while a < 10:
...     print(a, end=' ')
...     a, b = b, a+b
... print('')
...
0 1 1 2 3 5 8



Whitespace is obligatory for demarcating code blocks
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The body of 
function definitions 

and 
control flow elements 

must be indented 
by one level

Recommended to be
--\t-- one tab 
. . . .  or four spaces



Whitespace is obligatory for demarcating code blocks
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● Most text editors deal with whitespace semi-intelligently

● E.g., emacs sees that a file ends in .py,
and interprets the text as python code (syntax highlighting)
and tries to make the whitespace consistent

● Pressing the [Tab] key will jump to the logical indent.
But be careful e.g. closing control flow statements, 
try pressing [Tab] multiple times.



String and List Indexing
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>>> job_title = 'LINGUIST'

Char (or List Item) L I N G U I S T

Index 0 1 2 3 4 5 6 7

Reverse Index -8 -7 -6 -5 -4 -3 -2 -1

>>> job_title[3:-1]
'GUIS'   # inclusive of start, not inclusive of end

>>> job_title[:5]
'LINGU'    # can leave off start or end

Syntax:
sequence[start:end]



String Methods are functions associated with string objects
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strip, rstrip, lstrip
>>> s = '  my sTrInGggg!\n'
>>> s = s.strip()
>>> s
'my sTrInGggg!'
>>> s = s.strip('!').strip('g')
>>> s
'my sTrInG'

upper, lower
>>> s = s.lower()
>>> s
'my string'

find
>>> s.find('str')
3

replace
>>> s.replace('my','your')
'your string'

startswith, endswith
>>> s.startswith('balloon')
False



List Methods are functions associated with list objects
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append
>>> x = [1, 4, 9, 16]
>>> x.append(9)
>>> x
[1, 4, 9, 16, 9]

index 
>>> x.index(4)
1

remove deletes the first occurrence
>>> x.remove(9)
>>> x
[1, 4, 16, 9]

pop removes and returns the last element
>>> x.pop()
9
>>> x
[1, 4, 16]



Strings and Lists
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Strings are like sequences of characters

Key difference:   lists are mutable        strings are immutable
can be changed    cannot be changed
my_list[3] = 'yes' my_str[3] = 'n'

String methods to convert to/from lists
split join
>>> s = 'my string' >>> ' '.join(['your','string'])
>>> s.split() 'your string'
['my', 'string']



Assignment Walkthrough

28

Answers are short but can be tricky!

Think Decomposition
     how can I break this into smaller, doable sub-problems?

Tests provided after each function! (non-exhaustive)



Assignment Walkthrough
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You must do
    module load python/anaconda3.6 
every time you login to Quest

Run the assignment with:
    python assignment.py

The assignment must run when you are done!


