
Week 6
Jupyter and Basic Python 3

1

LING 300 - Topics in Linguistics:
Introduction to Programming and Text Processing for Linguists

● Using flags (like remove_blank):

○ “flags” are arguments that give options rather than data

○ Try to have core functionality only be written once;
helpful if you ever need to change anything

● letter_counts - no need to tokenize, loop over words etc:

○ Can simply do for character in s

○ Remember strings are sequences

Notes on Assignment 4

2

● You can use random.random() in a conditional directly rather
than saving it in a variable that you only use once

if random.random() > 0.5:

● Avoid hardcoding: e.g., in the dice sums problem:
sum_counts = {0: 0, 1: 0, 2: 0, 3: 0, 4: 0...

Notes on Assignment 4

3

● string.split() splits in a greedy way,
e.g. maximum amount of whitespace

● What’s the difference?
s.split() vs. s.split(" ")

Notes on Assignment 4

4

● Variable naming:
try to have names reflect the contents/purpose

● Which is better?
for word in line.split()

or
 for words in line.split()

Notes on Assignment 4

5

Decomposition

6

Breaking down
an abstract problem
into smaller parts

we can handle

variables
 loops
 conditionals
 functions
 methods
 modules

 Who rhymes more often, Beyonce or
 Taylor Swift?

Question-Answer pair
worked example

7

● Style point: make objects what we will use them for

○ e.g., proportion_of_oneoff_types
Accumulate counts on an integer

vs.
Accumulate a list of oneoff types and get its length

Notes on Assignment 4

8

Writing Files
● With a file path as a str f, we’ve seen open(f)
● open takes a mode argument which explains how to open it

○ Actions:
'r' to read (default) like Unix <
'w' to write (to a new file) like Unix >
'a' to append (add to existing file) like Unix >>

○ Formats:
't' for text (default)
'b' for binary

9

action and format
can both be included
and are both optional

Writing Files
● Write using the .write() method on a file object.
● Say given a Counter of word counts in some text

file = open('output.txt', 'w') # creates/overwrites
for word in counts:

line = "{}, {}".format(word, counts[word])
file.write(line + '\n') # must be str

file.close() # makes sure everything is written

● Unlike print, .write() only takes one argument, a string

10

JSON (Javascript String Object Notation)
provides a way to save objects as text
● Say given our dictionary variable cmudict

import json
json.dump(cmudict, open('cmudict.json','wt'))

Later, or in another script:

cmudict = json.load(open('cmudict.json','rt'))

11

JSON (Javascript String Object Notation)
provides a way to save objects as text
● Can also just convert them to strings:

json.dumps(cmudict)

'{"3-D": ["TH R IY1 D IY2"], "3D": ["TH R IY1 D IY2"], "A":
["AH0", "EY1"], "A\'S": ["EY1 Z"], "A.": ["EY1"], "A.\'S": ["EY1
Z"], "A.S": ["EY1 Z"], "A42128": ["EY1 F AO1 R T UW1 W AH1 N T
UW1 EY1 T"], "AA": ["EY2 EY1"], "AAA": ["T R IH2 P AH0 L EY1"],
"AABERG": ["AA1 B ER0 G"], "AACHEN": ["AA1 K AH0 N"], "AACHENER":
["AA1 K AH0 N ER0"], "AAH": ["AA1"], ...

12

Pickle
provides a way to save objects in binary
● Say given our dictionary variable cmudict

import pickle
pickle.dump(cmudict, open('cmudict.pkl','wb'))

Later, or in another script:

cmudict = pickle.load(open('cmudict.pkl','rb'))

13

JSON vs. Pickle
● Saved as plaintext

(easy to open and look at)
● Can even be edited directly

outside python (carefully)
● Compatible with many other

programming langs
● Some objects are not JSON

serializable, e.g. set
14

● Not human readable
● Python-only
● Slower (generally)
● But works on

almost any object

Takeaway
Use JSON unless you can’t.

FYI, Jupyter notebooks
are in JSON format!

15

