LING 300 - Topics in Linguistics: Introduction to Programming and Text Processing for Linguists

Week 9

Python for Text (and Beyond)

Roadmap for This Week

Monday

- Assignment 6 Notes
- Content:

Dependency Parsing

WordNet

Word Vectors

• Final Assignment

Wednesday

- Assignment 6 Notes
- Content:

Classification

- Final Self-Evaluation
- Where To Go From Here
- Breakout Rooms / OH (as time allows)

- -PRON- is a spaCy idiosyncrasy
 - Some weird version issues though...
- Stemming vs. Lemmatization
 - Stemmers are a much more coarse heuristic algorithm
 - Lemmatizers are machine learning models
 - = more computationally expensive, but not crazily so

- Sometimes you get a nice docstring, comments, etc sometimes you don't!
- Figuring out types of objects:
 - o type(obj), dir(obj), help(obj), print(obj)
- If you're running into trouble this is the first thing to try!
- With dicts, useful also to print (d.keys())
- E.g. sentences in 2.g., what's in a row in 5.a.

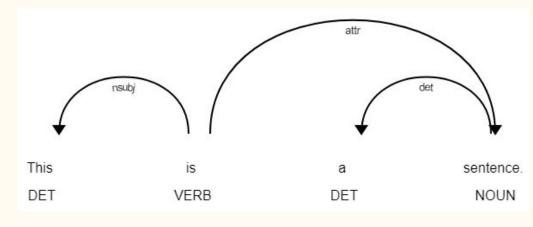
• Nested dictionaries: dicts are key-value, but value can be anything, including another dict

```
intensity = {}
for row in csv.DictReader(open(f), delimiter='\t'):
  word = row['word']
  emotion = row['emotion']
  score = row['emotion-intensity-score']
  if not word in intensity:
     intensity[word] = {}
  intensity[word][emotion] = score
```

- left_adjectives:
 This is another common sort of programming meme,
 requires a sort of "spatial orientation" / "navigation" skill
- enumerate to maintain an index,
 when current word matches, check index 1
- Working with dependency trees is a yet-trickier version of this meme!

Dependency Parsing gives a syntax representation

- Words are connected to other words with a tag representing their relationship
- Main verb is the sentence root
- Directed: $head \rightarrow dependent$
- Tag is role the played by the dependent



https://spacy.io/usage/visualizers

https://explosion.ai/demos/displacy

Dependency Parsing gives a syntax representation

- Most common formalism for syntax in Comp Ling / NLP
 - Interesting contrast with formal syntax!
- Partially because of computational feasibility
- Very exciting project: Universal Dependencies
 - https://universaldependencies.org/
 - (you can contribute!)

Dependency Parsing gives a syntax representation

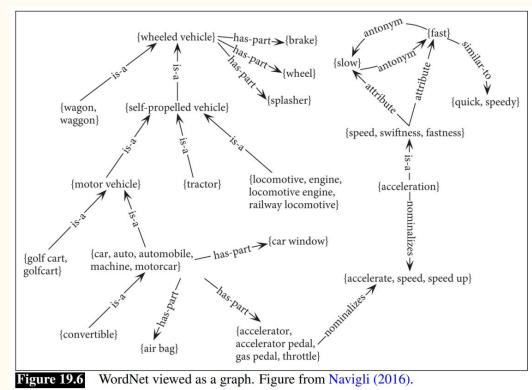
- spaCy does dependency parsing inherently (if you don't disable "parser")
- Access dependency tag with token.dep_ List of children with token.children
- More info:

https://spacy.io/usage/linguistic-features

WordNet is a lexical resource for semantic relations

- Represents semantic relationships in a large network
- Allows to calculate e.g. "path similarity"

• Play with directly:



http://wordnetweb.princeton.edu/perl/webwn

WordNet is a lexical resource for semantic relations

- NLTK has an interface for working with WordNet
- ... but it's not the most intuitive thing in the world
- More info here:

https://www.nltk.org/howto/wordnet.html

Sparsity is a property of natural language

- Language is creative, flexible, and ever-evolving; there are many ways to say the "same thing"
- Translations for instance! But even within a language.

Q: Where is he?

He went to the store

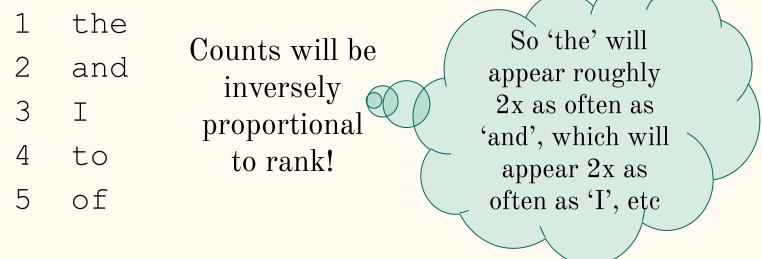
Oh, Johnny left to get groceries

Out to grab the essentials

Sparsity is a property of natural language

• Zipf's Law:

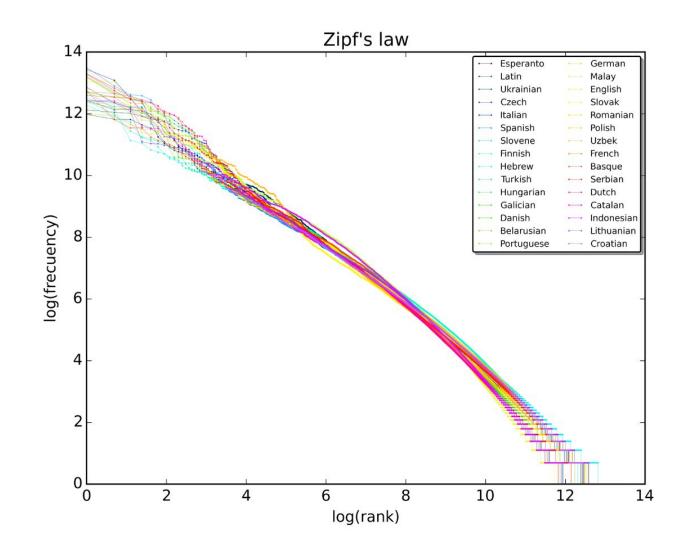
If you order words by frequency rank, e.g.



Zipf's Law

Across languages on Wikipedia

https://en.wikipedia.org/wiki /Zipf%27s_law



Sparsity is a property of natural language

Closed-Class Words

of, she, or, the, no, and

- a.k.a. 'function words'
- Includes pronouns, articles, conjunctions, particles
- Rarely gain new members
- Very dense!
- Perform grammatical and discourse functions

Open-Class Words

walrus, fleek, margarine, poindexter

- a.k.a. 'content words'
- Includes nouns, verbs, adjectives, etc.
- Frequently gain new members
- Very sparse!
- Perform semantic functions,
 i.e. carry most of the meaning

Sparsity is a problem for computing with language

```
'cat' != 'cat,' != 'CAT' != 'Cat' != 'cats'
```

We've seen some ways to deal with this:

- Stripping punctuation
- Downcasing
- Tokenization
- Stemming
- Lemmatization

... and more abstractly:

- POS tagging
- Lexicons (concreteness, emotion)
- Syntactic roles and relations

Sparsity is a problem for computing with language

But what if we want a different semantic operation than a pure exact match?

For instance, how can we know if words are more or less similar?

Answer: create a numerical representation that can be operated on mathematically - word vectors!

- Key mathematical notes:
 - A vector is simply a list of numbers
 - Those numbers form an abstract representation of a word
 - Each "dimension" refers to the number at a certain index
 - Dimensions can be meaningful or not depending on how the vectors are constructed

word	cuteness	furriness	animacy	growth_stage
cat	5	7	7	6

word	cuteness	furriness	animacy	growth_stage
cat	5	7	7	6
kitten	8	8	5	-4

word	cuteness	furriness	animacy	growth_stage
cat	5	7	7	6
kitten	8	8	5	-4
lizard	-3	-8	4	0

word	cuteness	furriness	animacy	growth_stage
cat	5	7	7	6
kitten	8	8	5	-4
lizard	-3	-8	4	0
houseplant	2	-4	2	2

word	cuteness	furriness	animacy	growth_stage
cat	5	7	7	6
kitten	8	8	5	-4
lizard	-3	-8	4	0
houseplant	2	-4	2	2
teddy_bear	6	6	-10	0

- But this would be unthinkably time-consuming and arbitrary
- Solution: the distributional hypothesis
 "You shall know a word by the company it keeps."
 -Firth 1957
- Intuitively:
 - "Cat" occurs near "furry", "claws", "cute", "feline" in everyday speech, so does "kitten", so they are similar.

- So, use word vectors generated from co-occurrence statistics
- Methods described in more detail in SLP Ch. 6
 - Raw co-occurrence counts, TF-IDF, PPMI

	aardvark	 computer	data	result	pie	sugar	
cherry	0	 2	8	9	442	25	
strawberry	0	 0	0	1	60	19	
digital	0	 1670	1683	85	5	4	
information	0	 3325	3982	378	5	13	

Figure 6.5 Co-occurrence vectors for four words in the Wikipedia corpus, showing six of the dimensions (hand-picked for pedagogical purposes). The vector for *digital* is outlined in red. Note that a real vector would have vastly more dimensions and thus be much sparser.

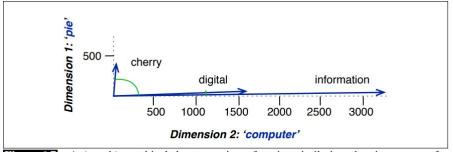


Figure 6.7 A (rough) graphical demonstration of cosine similarity, showing vectors for three words (*cherry*, *digital*, and *information*) in the two dimensional space defined by counts of the words *computer* and *pie* nearby. Note that the angle between *digital* and *information* is smaller than the angle between *cherry* and *information*.

Jurafsky and Martin Ch.6

- These are still relatively sparse; most words don't co-occur with most other words, matrix is full of many zeroes
- Solution: Machine learning approach (e.g. word2vec)
- Generates compressed vectors of dimension ~500
 - Pro: learn dense vectors implicitly from natural language!
 Con: dimensions become much less interpretable!

Word Vectors == Word embeddings

- "Embeddings" are the same as vectors
- Representation is
 "embedded"
 in a shared
 "vector space" with
 other representations

```
not good
                                                           bad
                                                 dislike
to
       by
                                                               worst
                   's
                                                incredibly bad
that
       now
                     are
                                                                 worse
                you
 than
         with
                  is
                                        incredibly good
                            very good
                                       fantastic
                    amazing
                                                 wonderful
                 terrific
                                    nice
                                   good
```

Figure 6.1 A two-dimensional (t-SNE) projection of embeddings for some words and phrases, showing that words with similar meanings are nearby in space. The original 60-dimensional embeddings were trained for sentiment analysis. Simplified from Li et al. (2015).

(i.e. they have comparable dimensions)

Jurafsky and Martin Ch.6

Final Assignment

- More and more on your own! Get creative!
- Key point!
 - If you want to use LDC or BYU data, let me know by Wednesday
- Please turn in on time! Next Thursday EOD, where you're at
 - For grading purposes, but I'm always available to talk more later if you keep working on it!
- Brief walkthrough