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Neural Network Unit
This is not in your brain
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Neural unit

Take weighted sum of inputs, plus a bias

Instead of just using z, we'll apply a nonlinear activation 
function f:



Non-Linear Activation Functions
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Sigmoid

We're already seen the sigmoid for logistic regression:



Final function the unit is computing



Final unit again
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An example

Suppose a unit has:

w = [0.2,0.3,0.9]        b = 0.5 

What happens with input x:

x = [0.5,0.6,0.1] 



Non-Linear Activation Functions besides sigmoid
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tanh ReLU
Rectified Linear Unit

Most Common:
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The XOR problem

Can neural units compute simple functions of input?

Minsky and Papert (1969)



Perceptrons

A very simple neural unit 

• Binary output  (0 or 1)

• No non-linear activation function



Easy to build AND or OR with perceptrons



But!

It is not possible to capture XOR with perceptrons.



Why? Perceptrons are linear classifiers

Perceptron equation given x
1
 and x

2
, is the equation of a line

w1x1 + w2x2 + b = 0

(in standard linear format:     x2 = (−w1/w2)x1 + (−b/w2)    )

This line acts as a decision boundary 
• 0 if input is on one side of the line
• 1 if on the other side of the line 



Decision boundaries

XOR is not a linearly separable function!



Solution to the XOR problem

XOR can't be calculated by a single perceptron

XOR can be calculated by a layered network of units. 



The hidden representation h

(With learning:  hidden layers will learn to form useful representations)
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Feedforward Neural Networks

Can also be called multi-layer perceptrons (or 
MLPs)  for historical reasons



Binary Logistic Regression as a 1-layer Network
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Multinomial Logistic Regression as a 1-layer Network
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Sidenote on softmax: a generalization of sigmoid

For a vector z of dimensionality k, the softmax is:

Example:



Two-Layer Network with scalar output
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Two-Layer Network with scalar output
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Two-Layer Network with scalar output

U

W

x
n

x
1

+1

b

hidden units
(σ node)

Input layer
(vector)

Output layer
(σ node)

Could be ReLU
Or tanh

y is a scalar
 

 



Two-Layer Network with softmax output
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Multi-layer Notation
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Multi Layer Notation
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Replacing the bias unit

Let's switch to a notation without the bias unit

Just a notational change

1. Add a dummy node a
0
=1 to each layer

2. Its weight w
0
 will be the bias

3. So input layer a[0]
0
=1, 

◦ And a[1]
0
=1 , a[2]

0
=1,…



Replacing the bias unit

Instead of: We'll do this:

x= x1, x2, …, xn0 x= x0, x1, x2, …, xn0



Replacing the bias unit

Instead of: We'll do this:
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Use cases for feedforward networks

Let's consider 2 (simplified) sample tasks:
1. Text classification

2. Language modeling

State of the art systems use more powerful neural 
architectures, but simple models are useful to 
consider!
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Classification: Sentiment Analysis

We could do exactly what we did with logistic 
regression

Input layer are binary features as before

Output layer is 0 or 1 U

W

x
n

x
1

σ



Sentiment Features
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Feedforward nets for simple classification

Just adding a hidden layer to logistic regression

• allows the network to use non-linear interactions between 
features 

• which may (or may not) improve performance.
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Even better: representation learning

The real power of deep learning comes 
from the  ability to learn features from 
the data

Instead of using hand-built 
human-engineered features for 
classification

Use learned representations like 
embeddings!
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Neural Net Classification with embeddings as input 
features!



Issue: texts come in different sizes

This assumes a fixed size length (3)!  

Kind of unrealistic.   

Some simple solutions (more sophisticated solutions later)

1. Make the input the length of the longest review
• If shorter then pad with zero embeddings
• Truncate if you get longer reviews at test time

2. Create a single "sentence embedding" (the same 
dimensionality as a word) to represent all the words
• Take the mean of all the word embeddings
• Take the element-wise max of all the word embeddings

• For each dimension, pick the max value from all words 43



Reminder: Multiclass Outputs

What if you have more than two output classes?
◦ Add more output units (one for each class)
◦ And use a “softmax layer”
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Neural Language Models (LMs)

Language Modeling: Calculating the probability of the 
next word in a sequence given some history. 

• We've seen N-gram based LMs

• But neural network LMs far outperform n-gram 
language models

State-of-the-art neural LMs are based on more 
powerful neural network technology like Transformers

But simple feedforward LMs can do almost as well!
45



Simple feedforward Neural Language 
Models

Task: predict next word wt 
  given prior words wt-1, wt-2, wt-3, …

Problem: Now we’re dealing with sequences of 
arbitrary length.

Solution: Sliding windows (of fixed length)
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Neural Language Model 



Why Neural LMs work better than N-gram 
LMs

Training data:

We've seen:  I have to make sure that the cat gets fed. 

Never seen:   dog gets fed

Test data:

I forgot to make sure that the dog gets ___

N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog" 
embeddings to generalize and predict “fed” after dog
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Intuition: training a 2-layer Network
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Intuition: Training a 2-layer network
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Reminder: Loss Function for binary logistic regression

A measure for how far off the current answer is to 
the right answer

Cross entropy loss for logistic regression:
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Reminder: gradient descent for weight 
updates

 



Where did that derivative come from?

Using the chain rule!   f (x) = u(v(x)) 
Intuition (see the text for details)
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Derivative of the Loss

Derivative of the Activation

Derivative of the weighted sum

 



How can I find that gradient for every weight 
in the network?

These derivatives on the prior slide only give the 
updates for one weight layer: the last one! 

What about deeper networks?

• Lots of layers, different activation functions?

Solution in the next lecture:

• Even more use of the chain rule!! 

• Computation graphs and backward differentiation!
56
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Why Computation Graphs
For training, we need the derivative of the loss with 
respect to each weight in every layer of the network 

• But the loss is computed only at the very end of the 
network! 

Solution: error backpropagation (Rumelhart, Hinton, Williams, 1986) 

• Backprop is a special case of backward differentiation

• Which relies on computation graphs. 
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Computation Graphs

A computation graph represents the process of 
computing a mathematical expression
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Example: 
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Computations:



Example: 
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Computations:



Backwards differentiation in computation 
graphs

The importance of the computation graph 
comes from the backward pass

This is used to compute the derivatives that 
we’ll need for the weight update. 



Example
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We want:



The chain rule

Computing the derivative of a composite function:

f (x) = u(v(x))

f (x) = u(v(w(x))) 
 



Example
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Example
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Example
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Example
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Backward differentiation on a two layer 
network
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Backward differentiation on a two layer 
network
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Backward differentiation on a 2-layer 
network 



 
 

 

 

 

 

  



Summary

For training, we need the derivative of the loss with respect to 
weights in early layers of the network 

• But loss is computed only at the very end of the network! 

Solution: backward differentiation

Given a computation graph and the derivatives of all the 
functions in it we can automatically compute the derivative of 
the loss with respect to these early weights.
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