
Week 9
State of the Art

1

LING 334 - Introduction to Computational Linguistics



Reminder - One Neuron (≈ Logistic Regression)

Biologically inspired
(but way less complex)

2this and future figures from SLP Ch. 7, 9, 10, and 11 unless noted



Non-Linearities - Sigmoid

Transforms any
value to be
between 0 and 1,
pseudo-probability

x axis = sum of weights times inputs
y axis = output value of neuron 3



Non-Linearities - tanh and ReLU

                         tanh ReLU
   (like sigmoid, works better)      (most common)
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credit J+M, SLP slides



Why Non-Linearities?

Naive Bayes is a linear classifier
Decision boundary from ∑ w ∙ x

For NNs, key idea is representing the input in 
increasingly abstract non-linear transformations

“Hidden Layers” 

Until the final decision can be made linearly
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Example from Computer Vision

Each layer in a convolutional neural network
is activated by increasingly abstract stimuli
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Simple Feed-forward Neural Net

Each arrow represents multiplication of value by a weight

Summed at each node,
non-linear transform

Like multiple logistic
regressions running
concurrently on the
same inputs 7



Simple NN - Another View 

Large input layer!

Many weights!
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Neural Network Language Model

Sliding window 
over words

Large output layer
of all words in V

Notice the hidden
layer is itself
a vector! 9



Training via Backpropagation
Loss = function saying,
how wrong are we?

Derivative of this function
at any point tells us which
way to go to be less wrong

Chain rule allows us to go
back arbitrarily far
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Recurrent Neural Networks
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Vector of hidden state 
from the previous timestep

Additional set of weights 
setting how previous step 
should be combined

Inputs at this timestep

Core idea: combine hidden state vector 
from previous timestep (e.g., word)
With input vector at current timestep



Recurrent Neural Networks - unrolled view
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Weights are shared
across timesteps

E.g., the same 
U, V, W are 
applied at each
timestep



Recurrent Neural Networks - unrolled view
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Output layer (y) can be used:
e.g. predict POS tags

or discarded, if we just
care about building up
the hidden state

Can just use final  
output layer for prediction



RNNs as a language model
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RNNs as a language model - generation
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Recurrent Neural Networks - a flexible mechanism
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Sequence-to-Sequence Models

Encode a sequence word by word,
building the hidden state

Pass final hidden state to 
another RNN to “decode”

Common use case:
machine translation

17
slide from Stanford CS224n

https://docs.google.com/file/d/1zABDUd2CVTLx_xb80xM8L5x8xCoTisDB/preview


Seq2seq Models - another view

Remember encoder and decoder are separate RNNs
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Final encoder 
hidden state == 
“context vector”



Bottleneck Problem

This final hidden state is a bottleneck - this one vector is 
being asked to encode *everything* about the input 

How can we let the 
model look back?

Answer:
Attention!
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“context vector”
(only the size of 

one hidden state)



Attention

Incorporate an additional “context vector” at each step:

● Weighted sum of the encoder hidden states
● Simplest: dot product

similarity of current
decoder hidden state
and each encoder state

● Many methods!
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Other Key Concepts: Stacked and Bidirectional
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Stacked RNN Bidirectional RNN

Hidden state from previous layer becomes input 
for next layer, like feedforward

Two separate RNNs processing the input in opposite 
directions to “see” both sides of any particular token



Aside: Notes on Training
Architecture often about setting up a structure that “could work”:

● Reasonable-seeming information flow
● Differentiable loss function that says how bad guesses are
● Training data to train it on

Calculus tells how to “wiggle the weights” to get it to work.

Often surprising it does! Classic article: 
The Unreasonable Effectiveness of Recurrent Neural Networks
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http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Aside: Notes on Tokenization

Contemporary NNs use subword tokenization

Like the Byte Pair Encoding algorithm introduced at the 
very beginning of the course, and variants
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Problem with word2vec!

Embedding for “sound” is always the same, even in:

● “Does that sound good?”
● “I heard a loud sound.”
● “I’m going boating out on the sound.”
● “That’s sound logic right there!”

Doesn’t seem quite right.

Contextual Embeddings
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Key insight: don’t use static embeddings; instead, use 
hidden state from an RNN language model (Peters et al. 2018)

ELMo (Embeddings from a Language Model)
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figure from Jay Alammar



Result is “contextual” embeddings

ELMo (Embeddings from a Language Model)
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figure from Jay Alammar



The Muppet Parade

BERT and others follow on this idea with more complex 
architectures - key idea is self-attention

Many layers! 
Details matter a lot!

Very common paradigm:
“Fine-tune” BERT-like model for a specific task
e.g., train it a little bit extra on some relevant data 27



Pre-Training    Fine-Tuning Paradigm
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The many layers of BERT 

BERT-Large has 24 transformer layers 
(each of which has a number of further 
internal layers itself)

Empirical work has shown that BERT
encodes increasingly abstract 
linguistic information in higher layers

(Tenney et al. 2019)
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BERT for Classification

BERT in particular provides a [CLS] token,
contextual embedding token for classification

Frequently just start
the cycle over again…

Train a new classifier
where the features are
BERT [CLS] embeddings! 30



Parameter Explosion!

Parameters are any values we have to set - e.g. weights

Naive Bayes
two classes, vocab size of 30k = 60k params

BERT-Large, 300 million params

More recent models in the trillions
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Parameter Explosion!

Therefore, these big NNs are very data hungry!

We need many examples (at least 10x params) to train

Training on the internet, basically (Common Crawl)
Multiple terabytes of text

Costs to train one model up to the millions USD
not to mention all the failed attempts...
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A Tricky Proposition

We got here empirically -
you see many cards have been stacked,
people kept trying stuff until they stayed standing

It all sounds reasonable, but it’s also weird that it works

New subfield: BERTology
trying to understand what linguistic things 
BERT et al know and can do, and why 33



What did we gain from doing this?

Better results on concrete tasks, real world applications

Neural Machine Translation for instance - transformative
previously very complex statistical systems,
now trained end-to-end

No feature engineering! (Lots of architecture tinkering.)

Many building blocks for complex models
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How has this affected the field?

The gap between modern, task-based NLP and 
“Computational Linguistics” has maybe never been wider

Divergence between properly linguistic/behavioral
and simply “increase performance on this task”

Still, earlier non-neural methods are not worthless!

Especially re: interpretability
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Great Free Courses on This Neural Stuff

Stanford CS224n: 
https://www.youtube.com/playlist?list=PLoROMvodv4
rOhcuXMZkNm7j3fVwBBY42z

CMU CS 11-747:
https://www.youtube.com/playlist?list=PL8PYTP1V4
I8AkaHEJ7lOOrlex-pcxS-XV

… and obviously others here at NU! 36

https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://www.youtube.com/playlist?list=PLoROMvodv4rOhcuXMZkNm7j3fVwBBY42z
https://www.youtube.com/playlist?list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV
https://www.youtube.com/playlist?list=PL8PYTP1V4I8AkaHEJ7lOOrlex-pcxS-XV


Model Ecosystem

Training these huge models is expensive,
inference (running them on stuff) is relatively cheap.

Community sharing is ideal and happening constantly

HuggingFace is an incredible resource of models and 
datasets, with a corresponding python library:

https://huggingface.co/models       (quick demo)
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https://huggingface.co/models


Coming Up

Thursday this week:
Final project brainstorming activities

Next Week Tuesday:
Topic Models (unsupervised learning)

Next Week Thursday:
Larger discussion on contemporary issues
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