Vector
Semantics \&
Embeddings

Word Meaning

What do words mean?

N-gram or text classification methods we've seen so far

- Words are just strings (or indices w_{i} in a vocabulary list)
- We can do some cleanliness and de-sparsifying, e.g. lemmatization
- ... but still, that's not very satisfactory!

Introductory logic classes:

- The meaning of "dog" is DOG; cat is CAT

$$
\forall x \operatorname{DOG}(x) \rightarrow \operatorname{MAMMAL}(x)
$$

Old linguistics joke by Barbara Partee in 1967:

- Q: What's the meaning of life?
- A: LIFE

That seems hardly better!

Desiderata

What should a theory of word meaning do for us?
Let's look at some desiderata
From lexical semantics, the linguistic study of word meaning

Lemmas and senses

lemma

 mouse (N)A sense or "concept" is the meaning component of a word Lemmas can be polysemous (have multiple senses)

Relations between senses: Synonymy

Synonyms have the same meaning in some or all contexts.

- filbert / hazelnut
- couch / sofa
- big / large
- automobile / car
- vomit / throw up
- water / $\mathrm{H}_{2} \mathrm{O}$

Relations between senses: Synonymy

Note!

There are probably no examples of perfect synonymy.

- Even if many aspects of meaning are identical
- Still may differ based on politeness, slang, register, genre, connotation, group identity signaling, etc.

Relation: Synonymy?

water/ $/ \mathrm{H}_{2} \mathrm{O}$
" $\mathrm{H}_{2} \mathrm{O}$ " in a surfing guide?
big/large my big sister != my large sister

The Linguistic Principle of Contrast

Difference in form \rightarrow difference in meaning
(See great paper by Clark 1987 in relevant readings)

Abbé Gabriel Girard 1718

Re: "exact" synonyms
"je ne crois pas qu'il y air demor fynonime dans aucune Langue."

[I do not believe that there is a synonymous word in any language]

LA' JUSTESSE

 DE LALANGUE FRANÇOISE,
ov
Les differentes significations
DESMOTS QUIPASSENT POUR SYNONIMES:

SarM.l'Abbé GIRARD C.D.M.D.D.B.

A. PARIS,

Chez Laurent d'Houry, Imprimeur-
L-braire, au bas de ta rue de la Harpe, vis. à vis la rue S . Scverini, au Saint Efprir.

M DCC. XVIII.
Avic Approbation in Erivilegs $d_{2 s}$ Roy.

Relation: Similarity

Words with similar meanings.
Not synonyms, but sharing some element(s) of meaning.
car, bicycle
cow, horse

Ask humans how similar 2 words are

word1	word2	similarity
vanish	disappear	9.8
behave	obey	7.3
belief	impression	5.95
muscle	bone	3.65
modest	flexible	0.98
hole	agreement	0.3

Relation: Word relatedness

Also called "word association"
Words can be related in any way, perhaps via a semantic frame or field

- coffee, tea: similar
- coffee, cup: related, not similar

Semantic field

Words that

- cover a particular semantic domain
- bear structured relations with each other.

hospitals

surgeon, scalpel, nurse, anaesthetic, hospital

restaurants

waiter, menu, plate, food, menu, chef
houses
door, roof, kitchen, family, bed

Relation: Antonymy

Senses that are opposites
... with respect to (usually) only one feature of meaning

Otherwise, they are very similar!

| dark/light short/long | fast/slow rise/fall | |
| :--- | :--- | :--- | :--- |
| hot/cold up/down | in/out | |

Relation: Antonymy

More formally: antonyms can

- define a non-scalar binary opposition
- open/closed, mortal/immortal
- define opposite ends of a scale
- long/short, fast/slow
- be reversives, denoting opposing processes:
- rise/fall, up/down
- denote relational opposition relative to point of view:
- parent/child, come/go
... and more! Can be challenging to handle computationally.

Relation: Antonymy

Fun and relevant sidenote -
 have you ever noticed auto-antonyms?

Words for which two diff senses are antonyms, e.g.:

- fast (moving quickly / fixed in place)
- sanction (prohibition / permission)
- clip (attach / cut off)
- peruse (consider in detail / look over cursorily)
- dust (remove dust / add dust, like on a cake)

Why would these occur?

Connotation (sentiment)

- Words have affective meanings
- Positive connotations (happy)
- Negative connotations (sad)
- Connotations can be subtle:
- Positive connotation: copy, replica, reproduction
- Negative connotation: fake, knockoff, forgery
- Evaluation (sentiment!)
- Positive evaluation (great, love)
- Negative evaluation (terrible, hate)

Connotation

Words seem to vary along 3 affective dimensions:

- valence: the pleasantness of the stimulus
- arousal: the intensity of emotion provoked by the stimulus
- dominance: the degree of control exerted by the stimulus

	Word	Score		Word	Score
Valence	love	1.000	toxic	0.008	
	happy	1.000	nightmare	0.005	
Arousal	elated	0.960		mellow	0.069
Dominance	frenzy	0.965	napping	0.046	
	powerful	0.991	weak	0.045	
	leadership	0.983	empty	0.081	

So far

Concepts or word senses

- Have a complex many-to-many association with words (homonymy, multiple senses)
Have multifaceted relations with each other
- Synonymy
- Antonymy
- Similarity
- Relatedness
- Connotation

Lexical semantics is fun and interesting and deep!

Keep on a lookout for fun examples in your life!

Here's one from my commute.

Vector
Semantics \&
Embeddings

Word Meaning

Vector Semantics

Vector
Semantics \&
Embeddings

Computational models of word meaning

Can we build a theory of how to represent word meaning, that accounts for at least some of these desiderata?
We'll introduce vector semantics
The standard model in language processing! Handles many of our goals!

Ludwig Wittgenstein

Philosophical Investigations \#43:
"For a large class of cases - though not for all-in which we employ the word 'meaning' it can be defined thus: the meaning of a word is its use in the language"

Let's define words by their usages

One way to define "usage":
words are defined by their environments (the words around them)

Zellig Harris (1954):
If A and B have almost identical environments we say that they are synonyms.

What does recent English borrowing ongchoi mean?

Suppose you see these sentences:

- Ong choi is delicious sautéed with garlic.
- Ong choi is superb over rice
- Ong choi leaves with salty sauces

And you've also seen these:

- ...spinach sautéed with garlic over rice
- Chard stems and leaves are delicious
- Collard greens and other salty leafy greens

Conclusion:

- Ongchoi is a leafy green like spinach, chard, or collard greens
- We could conclude this based on words like "leaves" and "delicious" and "sauteed"

Ongchoi：Ipomoea aquatica＂Water Spinach＂

空心菜
 kangkong rau muống

Idea 1: Defining meaning by linguistic distribution
Let's define the meaning of a word by its distribution in language use, meaning its neighboring words or grammatical environments.

Idea 2: Meaning as a point in space (Osgood et al. 1957)

 3 affective dimensions for a word- valence: pleasantness
- arousal: intensity of emotion
- dominance: the degree of control exerted

	Word	Score		Word	Score
Valence	love	1.000	toxic	0.008	
	happy	1.000	nightmare	0.005	
Arousal	elated	0.960		mellow	0.069
Dominance	frenzy	0.965	napping	0.046	
	powerful	0.991	weak	0.045	
	leadership	0.983	empty	0.081	

NRC VAD Lexicon
(Mohammad 2018)

Hence the connotation of a word is a vector in 3-space

Idea 1: Defining meaning by linguistic distribution
Idea 2: Meaning as a point in multidimensional space

Defining meaning as a point in space based on distribution

Each word = a vector (not just "good" or "w w_{45} ")
Similar words are "nearby in semantic space"
We build this space automatically by seeing which words are nearby in text

We define meaning of a word as a vector

Called an "embedding" because it's embedded into a space (see textbook)
The standard way to represent meaning in NLP
Every modern NLP algorithm uses embeddings as the representation of word meaning

Fine-grained model of meaning for similarity

Intuition: why vectors?

Consider sentiment analysis:

- With words, a feature is a word identity
- Feature 5: 'The previous word was "terrible"'
- requires exact same word to be in training and test
- With embeddings:
- Feature is a word vector
- 'The previous word was vector [35,22,17...]
- Now in the test set we might see a similar vector [34,21,14]
- We can generalize to similar but unseen words!!!

We'll discuss 2 kinds of embeddings

tf-idf

- Information Retrieval workhorse!
- A common baseline model
- Sparse vectors
- Words are represented by (a simple function of) the counts of nearby words

Word2vec

- Dense vectors
- Representation is created by training a classifier to predict whether a word is likely to appear nearby
- Later we'll discuss extensions called contextual embeddings

From now on：
 Computing with meaning representations instead of string representations

荃者所以在鱼，得鱼而忘荃 Nets are for fish；
Once you get the fish，you can forget the net．
言者所以在意，得意而忘言 Words are for meaning；
Once you get the meaning，you can forget the words
庄子（Zhuangzi），Chapter 26

Vector Semantics

Vector
Semantics \&
Embeddings

Words and Vectors

Vector
Semantics \&
Embeddings

Term-document matrix

Each document is represented by a vector of words
$\left.\begin{array}{ccccc}\hline & \text { As You Like It } & \text { Twelfth Night } & \text { Julius Caesar } & \text { Henry V } \\ \hline \begin{array}{c}\text { battle } \\ \text { good } \\ \text { fool } \\ \text { wit }\end{array} & {\left[\begin{array}{l}1 \\ 14 \\ 36 \\ 20\end{array}\right.} & {\left[\begin{array}{l}0 \\ 80 \\ 58 \\ \hline\end{array}\right.} & {\left[\begin{array}{l}7 \\ 62 \\ 15 \\ 1 \\ 2\end{array}\right.} & \\ \hline 89 \\ 4 \\ 3\end{array}\right]$

Visualizing document vectors

Vectors are the basis of information retrieval

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle good fool wit	$\left[\begin{array}{l}1 \\ 14 \\ 36 \\ 20\end{array}\right.$	0 80 5	$\left(\begin{array}{c}7 \\ 62 \\ 58 \\ \hline\end{array}\right.$	

Vectors are similar for the two comedies

But comedies are different than the other two
Comedies have more fools and wit and fewer battles.

Idea for word meaning: Words can be vectors too!!!

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

battle is "the kind of word that occurs in Julius Caesar and Henry V"
fool is "the kind of word that occurs in comedies, especially Twelfth Night"

More common: word-word matrix (or "term-context matrix")

Two words are similar in meaning if their context vectors are similar

$$
\begin{aligned}
& \text { is traditionally followed by cherry } \text { pie, a traditional dessert } \\
& \text { often mixed, such as } \text { strawberry } \\
& \text { rhubarb pie. Apple pie } \\
& \text { computer peripherals and personal digital } \text { assistants. These devices usually } \\
& \text { a computer. This includes information } \text { available on the internet }
\end{aligned}
$$

	aardvark	\ldots	computer	data	result	pie	sugar	\ldots
cherry	0	\ldots	2	8	9	442	25	\ldots
strawberry	0	\ldots	0	0	1	60	19	\ldots
digital	0	\ldots	1670	1683	85	5	4	\ldots
information	0	\ldots	3325	3982	378	5	13	\ldots

Words and Vectors

Vector
Semantics \&
Embeddings

Cosine for computing word similarity
Vector
Semantics \&
Embeddings

Computing word similarity: Dot product and cosine

The dot product between two vectors is a scalar:

$$
\operatorname{dot} \operatorname{product}(\mathbf{v}, \mathbf{w})=\mathbf{v} \cdot \mathbf{w}=\sum_{i=1}^{N} v_{i} w_{i}=v_{1} w_{1}+v_{2} w_{2}+\ldots+v_{N} w_{N}
$$

The dot product tends to be high when the two vectors have large values in the same dimensions Dot product can thus be a useful similarity metric between vectors

Problem with raw dot-product

Dot product favors long vectors
Dot product is higher if a vector is longer (has higher values in many dimension)
Vector length:

$$
|\mathbf{v}|=\sqrt{\sum_{i=1}^{N} v_{i}^{2}}
$$

Frequent words (of, the, you) have long vectors (since they occur many times with other words).
So dot product overly favors frequent words

Alternative: cosine for computing word similarity

$$
\operatorname{cosine}(\vec{v}, \vec{w})=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}=\frac{\sum_{i=1}^{N} v_{i} w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}}
$$

Based on the definition of the dot product between two vectors a and b

$$
\begin{aligned}
\mathbf{a} \cdot \mathbf{b} & =|\mathbf{a}||\mathbf{b}| \cos \theta \\
\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}||\mathbf{b}|} & =\cos \theta
\end{aligned}
$$

Cosine as a similarity metric

-1: vectors point in opposite directions
+1 : vectors point in same directions
0: vectors are orthogonal

But since raw frequency values are non-negative, the cosine for term-term matrix vectors ranges from 0-1

Cosine examples

$$
\operatorname{cosine}(\vec{v}, \vec{w})=\frac{\vec{v} \cdot \vec{w}}{|\vec{v}||\vec{w}|}=\frac{\sum_{i=1}^{N} v_{i} w_{i}}{\sqrt{\sum_{i=1}^{N} v_{i}^{2}} \sqrt{\sum_{i=1}^{N} w_{i}^{2}}}
$$

	pie	data	computer
cherry	442	8	2
digital	5	1683	1670
information	5	3982	3325

$\cos ($ cherry, information $)=$

$$
\frac{442 * 5+8 * 3982+2 * 3325}{\sqrt{442^{2}+8^{2}+2^{2}} \sqrt{5^{2}+3982^{2}+3325^{2}}}=.017
$$

$\cos ($ digital, information $)=$

$$
\frac{5 * 5+1683 * 3982+1670 * 3325}{\sqrt{5^{2}+1683^{2}+1670^{2}} \sqrt{5^{2}+3982^{2}+3325^{2}}}=.996
$$

Visualizing cosines (well, angles)

500 -
cherry

Dimension 2: 'computer'

Vector Semantics \& Embeddings

Cosine for computing word similarity

Vector

Semantics \&
Embeddings

TF-IDF and PPMI

But raw frequency is a bad representation

- The co-occurrence matrices we have seen represent each cell by word frequencies.
- Frequency is clearly useful; if sugar appears a lot near apricot, that's useful information.
- But overly frequent words like the, it, or they are not very informative about the context
- It's a paradox! How can we balance these two conflicting constraints?

Two common solutions for word weighting

tf-idf: tf-idf value for word t in document d :

$$
w_{t, d}=\mathrm{tf}_{t, d} \times \operatorname{idf}_{t}
$$

Words like "the" or "it" have very low idf
PMI: (Pointwise mutual information)

- PMI $\left(w_{1}, w_{2}\right)=\log \frac{p\left(w_{1}, w_{2}\right)}{p\left(w_{1}\right) p\left(w_{2}\right)}$

See if words like "good" appear more often with "great" than we would expect by chance

tf-idf - Term frequency (tf)

$$
\mathrm{tf}_{t, d}=\operatorname{count}(t, d)
$$

Instead of using raw count, we squash a bit:

$$
\mathrm{tf}_{t, d}=\log _{10}(\operatorname{count}(t, d)+1)
$$

tf-idf - Document frequency (df)

df_{t} is the number of documents t occurs in.
(note this is not collection frequency: total count across all documents)
"Romeo" is very distinctive for one Shakespeare play:

	Collection Frequency	Document Frequency
Romeo	113	1
action	113	31

tf-idf - Inverse document frequency (idf)

$\operatorname{idf}_{t}=\log _{10}\left(\frac{N}{\mathrm{df}_{t}}\right)$
N is the total number of documents in the collection

Word	df	idf
Romeo	1	1.57
salad	2	1.27
Falstaff	4	0.967
forest	12	0.489
battle	21	0.246
wit	34	0.037
fool	36	0.012
good	37	0
sweet	37	0

What is a document?

Could be a play or a Wikipedia article

But for the purposes of tf-idf, documents can be anything; we often call each paragraph a document!

Final tf-idf weighted value for a word

Raw counts: $w_{t, d}=\mathrm{tf}_{t, d} \times \mathrm{idf}_{t}$

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	1	0	7	13
good	114	80	62	89
fool	36	58	1	4
wit	20	15	2	3

tf-idf:

	As You Like It	Twelfth Night	Julius Caesar	Henry V
battle	0.074	0	0.22	0.28
good	0	0	0	0
fool	0.019	0.021	0.0036	0.0083
wit	0.049	0.044	0.018	0.022

Pointwise Mutual Information

Intuition from probability/information theory, quantifies: do events x and y co-occur more than we would expect if they were independent?

$$
\operatorname{PMI}(X, Y)=\log _{2} \frac{P(x, y)}{P(x) P(y)}
$$

PMI between two words: (Church and Hanks 1989)

Do two words co-occur with one another more than if they were independent?

$$
P M I\left(\text { word }_{1}, \text { word }_{2}\right)=\log _{2} \frac{P\left(\text { word }_{1}, \text { word }_{2}\right)}{P\left(\text { word }_{1}\right) P\left(\text { word }_{2}\right)}
$$

Positive Pointwise Mutual Information

- PMI ranges from $-\infty$ to $+\infty$
- But the negative values are problematic
- Things are co-occurring less than we expect by chance
- Unreliable without enormous corpora
- Imagine w1 and w2 whose probability is each 10^{-6}
- Hard to be sure $p(w 1, w 2)$ is significantly different than 10^{-12}
- Plus it's not clear people are good at "unrelatedness"
- So we just replace negative PMI values by 0
- Positive PMI (PPMI) between word1 and word2:

$$
\operatorname{PPMI}\left(\text { word }_{1}, \text { word }_{2}\right)=\max \left(\log _{2} \frac{P\left(\text { word }_{1}, \text { word }_{2}\right)}{P\left(\text { word }_{1}\right) P\left(\text { word }_{2}\right)}, 0\right)
$$

Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts)

 f_{ij} is \# of times w_{i} occurs in context $\mathrm{c}_{\mathrm{j}}$$$
\begin{aligned}
& p m i_{i j}=\log _{2} \frac{p_{i j}}{p_{i} p_{w_{j}}} \\
& \text { ppmi } i_{i j}=\left\{\begin{array}{cc}
p m i_{i j} & \text { if } p m i_{i j}>0 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$$
p_{i j}=\frac{f_{i j}}{\sum_{i=1}^{W} \sum_{j=1}^{C} f_{i j}}
$$

	computer	data	result	pie	sugar	count(w)
cherry	2	8	9	442	25	486
strawberry	0	0	1	60	19	80
digital	1670	1683	85	5	4	3447
information	3325	3982	378	5	13	7703
count(context)	4997	5673	473	512	61	11716

$\mathrm{p}(\mathrm{w}=$ information, $\mathrm{c}=$ data $)=3982 / 111716=.3399$
$p(w=$ information $)=7703 / 11716=.6575$

$$
p(c=d a t a)=5673 / 11716=.4842
$$

$$
p\left(w_{i}\right)=\frac{\sum_{j=1}^{C} f_{i j}}{N} \quad p\left(c_{j}\right)=\frac{\sum_{i=1}^{W} f_{i j}}{N}
$$

	$\mathbf{p}(\mathbf{w}$, context $)$					
	computer	data	result	pie	sugar	$\mathbf{p}(\mathbf{w})$
cherry	0.0002	0.0007	0.0008	0.0377	0.0021	0.0415
strawberry	0.0000	0.0000	0.0001	0.0051	0.0016	0.0068
digital	0.1425	0.1436	0.0073	0.0004	0.0003	0.2942
information	0.2838	0.3399	0.0323	0.0004	0.0011	0.6575
p(context)	0.4265	0.4842	0.0404	0.0437	0.0052	

$$
p m i_{i j}=\log _{2} \frac{p_{i j}}{p_{i^{*}} p_{*_{j}}}
$$

	$\mathbf{p}(\mathbf{w}$, context $)$					
	computer	data	result	pie	sugar	$\mathbf{p}(\mathbf{w})$
cherry	0.0002	0.0007	0.0008	0.0377	0.0021	0.0415
strawberry	0.0000	0.0000	0.0001	0.0051	0.0016	0.0068
digital	0.1425	0.1436	0.0073	0.0004	0.0003	0.2942
information	0.2838	0.3399	0.0323	0.0004	0.0011	0.6575
p(context)	0.4265	0.4842	0.0404	0.0437	0.0052	

pmi(information,data $)=\log _{2}\left(.3399 /\left(.6575^{*} .4842\right)\right)=.0944$
Resulting PPMI matrix (negatives replaced by 0)

	computer	data	result	pie	sugar
cherry	0	0	0	4.38	3.30
strawberry	0	0	0	4.10	5.51
digital	0.18	0.01	0	0	0
information	0.02	0.09	0.28	0	0

Weighting PMI

PMI is biased toward infrequent events

- Very rare words have very high PMI values

Two solutions:

- Give rare words slightly higher probabilities
- Use add-one smoothing (which has a similar effect)

Weighting PMI: Giving rare context words slightly higher probability

Raise the context probabilities to $\alpha=0.75$:

$$
\begin{aligned}
\operatorname{PPMI}_{\alpha}(w, c) & =\max \left(\log _{2} \frac{P(w, c)}{P(w) P_{\alpha}(c)}, 0\right) \\
P_{\alpha}(c) & =\frac{\operatorname{count}(c)^{\alpha}}{\sum_{c} \operatorname{count}(c)^{\alpha}}
\end{aligned}
$$

This helps because $P_{\alpha}(c)>P(c)$ for rare c
Consider two events, $P(a)=.99$ and $P(b)=.01$

$$
P_{\alpha}(a)=\frac{.99 .75}{.99 .75+.01^{.75}}=.97 P_{\alpha}(b)=\frac{.01^{.75}}{.01^{.75}+.01^{.75}}=.03
$$

