## Vector Semantics & Embeddings

### Word Meaning

# What do words mean?

N-gram or text classification methods we've seen so far

- Words are just strings (or indices w<sub>i</sub> in a vocabulary list)
- We can do some cleanliness and de-sparsifying, e.g. lemmatization
- ... but still, that's not very satisfactory!

Introductory logic classes:

• The meaning of "dog" is DOG; cat is CAT  $\forall x DOG(x) \rightarrow MAMMAL(x)$ 

Old linguistics joke by Barbara Partee in 1967:

- Q: What's the meaning of life?
- A: LIFE

That seems hardly better!

## Desiderata

What should a theory of word meaning do for us? Let's look at some desiderata From lexical semantics, the linguistic study of word meaning



A sense or "concept" is the meaning component of a word Lemmas can be polysemous (have multiple senses)

# Relations between senses: Synonymy

Synonyms have the same meaning in some or all contexts.

- filbert / hazelnut
- couch / sofa
- big / large
- automobile / car
- vomit / throw up
- water / H<sub>2</sub>0

## Relations between senses: Synonymy

#### Note!

There are probably no examples of perfect synonymy.

- Even if many aspects of meaning are identical
- Still may differ based on politeness, slang, register, genre, connotation, group identity signaling, etc.

# Relation: **Synonymy**?

water/H<sub>2</sub>0 "H<sub>2</sub>0" in a surfing guide?

big/large
my big sister != my large sister

# The Linguistic Principle of Contrast

# Difference in form $\rightarrow$ difference in meaning

(See great paper by Clark 1987 in relevant readings)

# Abbé Gabriel Girard 1718

Re: "exact" synonyms

je në crois pas qu'il y ait demot fynonime dans aucune Langue

[I do not believe that there is a synonymous word in any language]



# Relation: Similarity

Words with similar meanings. Not synonyms, but sharing some element(s) of meaning.

car, bicycle
cow, horse

# Ask humans how similar 2 words are

| word1  | word2      | similarity |
|--------|------------|------------|
| vanish | disappear  | 9.8        |
| behave | obey       | 7.3        |
| belief | impression | 5.95       |
| muscle | bone       | 3.65       |
| modest | flexible   | 0.98       |
| hole   | agreement  | 0.3        |

## Relation: Word relatedness

Also called "word association"

Words can be related in any way, perhaps via a semantic frame or field

coffee, tea: similar
coffee, cup: related, not similar

# Semantic field

Words that

- cover a particular semantic domain
- bear structured relations with each other.

#### hospitals

surgeon, scalpel, nurse, anaesthetic, hospital

#### restaurants

waiter, menu, plate, food, menu, chef

#### houses

door, roof, kitchen, family, bed

## **Relation: Antonymy**

# Senses that are opposites ... with respect to (usually) **only one** feature of meaning

#### Otherwise, they are very similar!

dark/light short/long fast/slow rise/fall hot/cold up/down in/out

# **Relation: Antonymy**

## More formally: antonyms can

- define a non-scalar binary opposition
  - open/closed, mortal/immortal
- define opposite ends of a scale
  - long/short, fast/slow
- be *reversives*, denoting opposing processes:
  - rise/fall, up/down
- denote *relational* opposition relative to point of view:
  - parent/child, come/go

... and more! Can be challenging to handle computationally.

# **Relation: Antonymy**

Fun and relevant sidenote - have you ever noticed *auto-antonyms*?

Words for which two diff senses are antonyms, e.g.:

- fast (moving quickly / fixed in place)
- sanction (prohibition / permission)
- clip (attach / cut off)
- peruse (consider in detail / look over cursorily)
- dust (remove dust / add dust, like on a cake)

Why would these occur?

# Connotation (sentiment)

- Words have affective meanings
  - Positive connotations (*happy*)
  - Negative connotations (*sad*)
- Connotations can be subtle:
  - Positive connotation: *copy, replica, reproduction*
  - Negative connotation: *fake, knockoff, forgery*
- Evaluation (sentiment!)
  - Positive evaluation (*great, love*)
  - Negative evaluation (*terrible, hate*)

## Connotation

Osgood et al. (1957)

Words seem to vary along 3 affective dimensions:

- valence: the pleasantness of the stimulus
- **arousal**: the intensity of emotion provoked by the stimulus
- **dominance**: the degree of control exerted by the stimulus

|           | Word       | Score | Word      | Score |
|-----------|------------|-------|-----------|-------|
| Valence   | love       | 1.000 | toxic     | 0.008 |
|           | happy      | 1.000 | nightmare | 0.005 |
| Arousal   | elated     | 0.960 | mellow    | 0.069 |
|           | frenzy     | 0.965 | napping   | 0.046 |
| Dominance | powerful   | 0.991 | weak      | 0.045 |
|           | leadership | 0.983 | empty     | 0.081 |

#### Values from NRC VAD Lexicon (Mohammad 2018)

# So far

#### **Concepts** or word senses

 Have a complex many-to-many association with words (homonymy, multiple senses)

### Have multifaceted relations with each other

- Synonymy
- Antonymy
- Similarity
- Relatedness
- Connotation

### Lexical semantics is fun and interesting and deep!

Keep on a lookout for fun examples in your life!

### Here's one from my commute.



## Vector Semantics & Embeddings

### Word Meaning

## Vector Semantics & Embeddings

#### **Vector Semantics**

## Computational models of word meaning

Can we build a theory of how to represent word meaning, that accounts for at least some of these desiderata?

We'll introduce vector semantics

The standard model in language processing! Handles many of our goals!

## Ludwig Wittgenstein

Philosophical Investigations #43:

"For a large class of cases—though not for all—in which we employ the word 'meaning' it can be defined thus: the meaning of a word is its use in the language"

# Let's define words by their usages

One way to define "usage":

words are defined by their environments (the words around them)

Zellig Harris (1954):

If A and B have almost identical environments we say that they are synonyms.

## What does recent English borrowing ongchoi mean?

Suppose you see these sentences:

- •Ong choi is delicious sautéed with garlic.
- •Ong choi is superb **over rice**
- •Ong choi **leaves** with salty sauces

And you've also seen these:

- ...spinach sautéed with garlic over rice
- Chard stems and leaves are delicious
- Collard greens and other **salty** leafy greens

Conclusion:

- Ongchoi is a leafy green like spinach, chard, or collard greens
  - We could conclude this based on words like "leaves" and "delicious" and "sauteed"

## Ongchoi: Ipomoea aquatica "Water Spinach"

空心菜 kangkong rau muống

. . .



Yamaguchi, Wikimedia Commons, public domain

#### Idea 1: Defining meaning by linguistic distribution

Let's define the meaning of a word by its distribution in language use, meaning its neighboring words or grammatical environments.

Idea 2: Meaning as a point in space (Osgood et al. 1957)

## 3 affective dimensions for a word

- valence: pleasantness
- arousal: intensity of emotion
- **dominance**: the degree of control exerted

|           | Word       | Score | Word      | Score |
|-----------|------------|-------|-----------|-------|
| Valence   | love       | 1.000 | toxic     | 0.008 |
|           | happy      | 1.000 | nightmare | 0.005 |
| Arousal   | elated     | 0.960 | mellow    | 0.069 |
|           | frenzy     | 0.965 | napping   | 0.046 |
| Dominance | powerful   | 0.991 | weak      | 0.045 |
|           | leadership | 0.983 | empty     | 0.081 |

NRC VAD Lexicon (Mohammad 2018)

#### Hence the connotation of a word is a vector in 3-space

Idea 1: Defining meaning by linguistic distribution

Idea 2: Meaning as a point in multidimensional space

Defining meaning as a point in space based on distribution

Each word = a vector (not just "good" or "w<sub>45</sub>")

Similar words are "nearby in semantic space"

We build this space automatically by seeing which words are **nearby in text** 



## We define meaning of a word as a vector

Called an "embedding" because it's embedded into a space (see textbook)

The standard way to represent meaning in NLP

# **Every modern NLP algorithm uses embeddings as the representation of word meaning**

Fine-grained model of meaning for similarity

# Intuition: why vectors?

Consider sentiment analysis:

- With words, a feature is a word identity
  - Feature 5: 'The previous word was "terrible"
  - requires **exact same word** to be in training and test

#### • With **embeddings**:

- Feature is a word vector
- 'The previous word was vector [35,22,17...]
- Now in the test set we might see a similar vector [34,21,14]
- We can generalize to **similar but unseen** words!!!

# We'll discuss 2 kinds of embeddings

#### tf-idf

- Information Retrieval workhorse!
- A common baseline model
- Sparse vectors
- Words are represented by (a simple function of) the counts of nearby words

#### Word2vec

- Dense vectors
- Representation is created by training a classifier to predict whether a word is likely to appear nearby
- Later we'll discuss extensions called **contextual embeddings**

## From now on: Computing with meaning representations instead of string representations

荃者所以在鱼,得鱼而忘荃Nets are for fish;<br/>Once you get the fish, you can forget the net.言者所以在意,得意而忘言Words are for meaning;<br/>Once you get the meaning, you can forget the words<br/>庄子(Zhuangzi), Chapter 26

## Vector Semantics & Embeddings

#### **Vector Semantics**

## Vector Semantics & Embeddings

#### Words and Vectors

## Term-document matrix

Each document is represented by a vector of words

|        | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------|----------------|---------------|---------------|---------|
| battle |                | 0             | 7             | 13      |
| good   | 14             | 80            | 62            | 89      |
| fool   | 36             | 58            | 1             | 4       |
| wit    | 20             | 15            | 2             | 3       |

## Visualizing document vectors



## Vectors are the basis of information retrieval



Vectors are similar for the two comedies

But comedies are different than the other two Comedies have more *fools* and *wit* and fewer *battles*.

# Idea for word meaning: Words can be vectors too!!!

|        | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------|----------------|---------------|---------------|---------|
| battle | 1              | 0             | 7             | 13      |
| good   | (114           | 80            | 62            | 89      |
| fool   | 36             | 58            | 1             | 4       |
| wit    | 20             | 15            | 2             | 3       |

battle is "the kind of word that occurs in Julius Caesar and Henry V"

fool is "the kind of word that occurs in comedies, especially Twelfth Night"

# More common: word-word matrix (or "term-context matrix")

Two words are similar in meaning if their context vectors are similar

is traditionally followed by cherry often mixed, such as
computer peripherals and personal a computer. This includes
cherry pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually available on the internet

|             | aardvark | ••• | computer | data | result | pie | sugar | •••   |
|-------------|----------|-----|----------|------|--------|-----|-------|-------|
| cherry      | 0        | ••• | 2        | 8    | 9      | 442 | 25    | •••   |
| strawberry  | 0        | ••• | 0        | 0    | 1      | 60  | 19    | • • • |
| digital     | 0        | ••• | 1670     | 1683 | 85     | 5   | 4     | •••   |
| information | 0        | ••• | 3325     | 3982 | 378    | 5   | 13    | •••   |



## Vector Semantics & Embeddings

#### Words and Vectors

## Vector Semantics & Embeddings

## Cosine for computing word similarity

## Computing word similarity: Dot product and cosine

The dot product between two vectors is a scalar:

dot product
$$(\mathbf{v}, \mathbf{w}) = \mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + \dots + v_N w_N$$

The dot product tends to be high when the two vectors have large values in the same dimensions Dot product can thus be a useful similarity metric between vectors

# Problem with raw dot-product

Dot product favors long vectors

Dot product is higher if a vector is longer (has higher values in many dimension)

Vector length:

$$|\mathbf{v}| = \sqrt{\sum_{i=1}^{N} v_i^2}$$

Frequent words (of, the, you) have long vectors (since they occur many times with other words).

So dot product overly favors frequent words

## Alternative: cosine for computing word similarity



Based on the definition of the dot product between two vectors a and b

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos \theta$$
$$\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| |\mathbf{b}|} = \cos \theta$$

## Cosine as a similarity metric

-1: vectors point in opposite directions
+1: vectors point in same directions
0: vectors are orthogonal



But since raw frequency values are non-negative, the cosine for term-term matrix vectors ranges from 0–1

## Cosine examples



 $\cos(\text{cherry}, \text{information}) =$ 

|             | pie | data | computer |
|-------------|-----|------|----------|
| cherry      | 442 | 8    | 2        |
| digital     | 5   | 1683 | 1670     |
| information | 5   | 3982 | 3325     |

 $\frac{442*5+8*3982+2*3325}{\sqrt{442^2+8^2+2^2}\sqrt{5^2+3982^2+3325^2}} = .017$ 

 $\cos(\text{digital}, \text{information}) =$ 

$$\frac{5*5+1683*3982+1670*3325}{\sqrt{5^2+1683^2+1670^2}\sqrt{5^2+3982^2+3325^2}} = .996$$

# Visualizing cosines (well, angles)



## Vector Semantics & Embeddings

# Cosine for computing word similarity

## Vector Semantics & Embeddings

#### **TF-IDF and PPMI**

## But raw frequency is a bad representation

- The co-occurrence matrices we have seen represent each cell by word frequencies.
- Frequency is clearly useful; if *sugar* appears a lot near *apricot*, that's useful information.
- But overly frequent words like *the, it,* or *they* are not very informative about the context
- It's a paradox! How can we balance these two conflicting constraints?

# Two common solutions for word weighting

**tf-idf:** tf-idf value for word t in document d:

 $w_{t,d} = \mathrm{tf}_{t,d} \times \mathrm{idf}_t$ 

Words like "the" or "it" have very low idf

**PMI:** (Pointwise mutual information) •  $PMI(w_1, w_2) = log \frac{p(w_1, w_2)}{p(w_1)p(w_2)}$ 

> See if words like "good" appear more often with "great" than we would expect by chance

## tf-idf - Term frequency (tf)

$$tf_{t,d} = count(t,d)$$

#### Instead of using raw count, we squash a bit:

$$tf_{t,d} = \log_{10}(count(t,d)+1)$$

# tf-idf - Document frequency (df)

 $df_t$  is the number of documents t occurs in. (note this is not collection frequency: total count across all documents)

"*Romeo*" is very distinctive for one Shakespeare play:

|        | <b>Collection Frequency</b> | <b>Document Frequency</b> |
|--------|-----------------------------|---------------------------|
| Romeo  | 113                         | 1                         |
| action | 113                         | 31                        |

# tf-idf - Inverse document frequency (idf)

$$\operatorname{idf}_t = \log_{10}\left(\frac{N}{\operatorname{df}_t}\right)$$

N is the total number of documents in the collection

| Word     | df | idf   |
|----------|----|-------|
| Romeo    | 1  | 1.57  |
| salad    | 2  | 1.27  |
| Falstaff | 4  | 0.967 |
| forest   | 12 | 0.489 |
| battle   | 21 | 0.246 |
| wit      | 34 | 0.037 |
| fool     | 36 | 0.012 |
| good     | 37 | 0     |
| sweet    | 37 | 0     |

## What is a document?

Could be a play or a Wikipedia article

But for the purposes of tf-idf, documents can be **anything**; we often call each paragraph a document!

# Final tf-idf weighted value for a word

Raw counts: 
$$W_{t,d} = \text{tf}_{t,d} \times \text{idf}_t$$

|        | As You Like It | Twelfth Night | Julius Caesar | Henry V |
|--------|----------------|---------------|---------------|---------|
| battle | 1              | 0             | 7             | 13      |
| good   | 114            | 80            | 62            | 89      |
| fool   | 36             | 58            | 1             | 4       |
| wit    | 20             | 15            | 2             | 3       |

tf-idf:

|        | As You Like It | <b>Twelfth Night</b> | Julius Caesar | Henry V |
|--------|----------------|----------------------|---------------|---------|
| battle | 0.074          | 0                    | 0.22          | 0.28    |
| good   | 0              | 0                    | 0             | 0       |
| fool   | 0.019          | 0.021                | 0.0036        | 0.0083  |
| wit    | 0.049          | 0.044                | 0.018         | 0.022   |

## **Pointwise Mutual Information**

Intuition from probability/information theory, quantifies: do events x and y co-occur more than we would expect if they were independent?

$$PMI(X,Y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

## PMI between two words: (Church and Hanks 1989)

Do two words co-occur with one another more than if they were independent?

$$PMI(word_1, word_2) = log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}$$

## Positive Pointwise Mutual Information

- PMI ranges from  $-\infty$  to  $+\infty$
- But the negative values are problematic
  - Things are co-occurring less than we expect by chance
  - Unreliable without enormous corpora
    - Imagine w1 and w2 whose probability is each 10<sup>-6</sup>
    - Hard to be sure p(w1,w2) is significantly different than 10<sup>-12</sup>
  - Plus it's not clear people are good at "unrelatedness"
- So we just replace negative PMI values by 0
- Positive PMI (**PPMI**) between word1 and word2:

 $PPMI(word_1, word_2) = \max\left(\log_2 \frac{P(word_1, word_2)}{P(word_1)P(word_2)}, 0\right)$ 

# Computing PPMI on a term-context matrix

Matrix F with W rows (words) and C columns (contexts)  $f_{ii}$  is # of times  $w_i$  occurs in context  $c_i$ 

|                          | <u>C</u>                         | W                                     |                | computer | data | result | pie | sugar | count(w) |
|--------------------------|----------------------------------|---------------------------------------|----------------|----------|------|--------|-----|-------|----------|
| C                        | $\sum f_{ii}$                    | $\sum f_{ii}$                         | cherry         | 2        | 8    | 9      | 442 | 25    | 486      |
| $f_{ii}$                 |                                  | <i>i</i> 1                            | strawberry     | 0        | 0    | 1      | 60  | 19    | 80       |
| $p_{ij} = \frac{1}{W C}$ | $p_{i*} = \frac{j=1}{W_{i*}}$    | $p_{*_{i}} = \frac{l=1}{WC}$          | digital        | 1670     | 1683 | 85     | 5   | 4     | 3447     |
| $\sum \sum f_{ij}$       | $\sum_{i} \sum_{j=1}^{W} f_{ij}$ | $\sum_{ij}^{n} \sum_{j=1}^{n} f_{ij}$ | information    | 3325     | 3982 | 378    | 5   | 13    | 7703     |
| i=1 $j=1$                | i=1 $j=1$                        | <i>i</i> =1 <i>j</i> =1               | count(context) | 4997     | 5673 | 473    | 512 | 61    | 11716    |
|                          | 5                                |                                       |                |          |      |        |     |       |          |

$$pmi_{ij} = \log_2 \frac{p_{ij}}{p_{i*}p_{*j}} \qquad ppmi_{ij} = \begin{cases} pmi_{ij} & \text{if } pmi_{ij} > 0\\ 0 & \text{otherwise} \end{cases}$$

|                | computer | data | result | pie | sugar | count(w) |
|----------------|----------|------|--------|-----|-------|----------|
| cherry         | 2        | 8    | 9      | 442 | 25    | 486      |
| strawberry     | 0        | 0    | 1      | 60  | 19    | 80       |
| digital        | 1670     | 1683 | 85     | 5   | 4     | 3447     |
| information    | 3325     | 3982 | 378    | 5   | 13    | 7703     |
|                |          |      |        |     |       |          |
| count(context) | 4997     | 5673 | 473    | 512 | 61    | 11716    |



 $p_{ij} = \frac{f_{ij}}{\sum_{ij} \sum_{ij} f_{ii}}$ 

*i*=1 *j*=1

| $\underline{C}$                | W                              |
|--------------------------------|--------------------------------|
| $\sum f_{ii}$                  | $\sum f$                       |
|                                | $\int J i j$                   |
| $p(w_{\cdot}) = \frac{j=1}{2}$ | $n(c_{\cdot}) = \frac{i=1}{2}$ |
| N N                            | $P(\mathcal{C}_j) = N$         |

|             | p(w,context) |        |        |        |        |             |  |
|-------------|--------------|--------|--------|--------|--------|-------------|--|
|             | computer     | data   | result | pie    | sugar  | <b>p(w)</b> |  |
| cherry      | 0.0002       | 0.0007 | 0.0008 | 0.0377 | 0.0021 | 0.0415      |  |
| strawberry  | 0.0000       | 0.0000 | 0.0001 | 0.0051 | 0.0016 | 0.0068      |  |
| digital     | 0.1425       | 0.1436 | 0.0073 | 0.0004 | 0.0003 | 0.2942      |  |
| information | 0.2838       | 0.3399 | 0.0323 | 0.0004 | 0.0011 | 0.6575      |  |
|             |              |        |        |        |        |             |  |
| p(context)  | 0.4265       | 0.4842 | 0.0404 | 0.0437 | 0.0052 |             |  |

|                           |                 | p(w,context) |          |        |        |        | <b>p(w)</b> |             |
|---------------------------|-----------------|--------------|----------|--------|--------|--------|-------------|-------------|
|                           |                 |              | computer | data   | result | pie    | sugar       | <b>p(w)</b> |
|                           | n               | cherry       | 0.0002   | 0.0007 | 0.0008 | 0.0377 | 0.0021      | 0.0415      |
| nmi - log                 | $P_{ij}$        | strawberry   | 0.0000   | 0.0000 | 0.0001 | 0.0051 | 0.0016      | 0.0068      |
| $pm_{ij} - \log_2 \gamma$ | 10 10           | digital      | 0.1425   | 0.1436 | 0.0073 | 0.0004 | 0.0003      | 0.2942      |
|                           | $p_{i^*}p_{*j}$ | information  | 0.2838   | 0.3399 | 0.0323 | 0.0004 | 0.0011      | 0.6575      |
|                           | -               |              |          |        |        |        |             |             |
|                           |                 | p(context)   | 0.4265   | 0.4842 | 0.0404 | 0.0437 | 0.0052      |             |

 $pmi(information, data) = log_{2}(.3399 / (.6575*.4842)) = .0944$ 

#### Resulting PPMI matrix (negatives replaced by 0)

|             | computer | data | result | pie  | sugar |
|-------------|----------|------|--------|------|-------|
| cherry      | 0        | 0    | 0      | 4.38 | 3.30  |
| strawberry  | 0        | 0    | 0      | 4.10 | 5.51  |
| digital     | 0.18     | 0.01 | 0      | 0    | 0     |
| information | 0.02     | 0.09 | 0.28   | 0    | 0     |

# Weighting PMI

PMI is biased toward infrequent events

• Very rare words have very high PMI values

Two solutions:

- Give rare words slightly higher probabilities
- Use add-one smoothing (which has a similar effect)

# Weighting PMI: Giving rare context words slightly higher probability

Raise the context probabilities to  $\alpha = 0.75$ :

$$PPMI_{\alpha}(w,c) = \max(\log_2 \frac{P(w,c)}{P(w)P_{\alpha}(c)}, 0)$$

$$P_{\alpha}(c) = \frac{count(c)^{\alpha}}{\sum_{c} count(c)^{\alpha}}$$

This helps because  $P_{\alpha}(c) > P(c)$  for rare cConsider two events, P(a) = .99 and P(b)=.01

$$P_{\alpha}(a) = \frac{.99^{.75}}{.99^{.75} + .01^{.75}} = .97 \ P_{\alpha}(b) = \frac{.01^{.75}}{.01^{.75} + .01^{.75}} = .03$$