
Vector
Semantics &
Embeddings

 Word2vec

Sparse versus dense vectors

tf-idf (or PPMI) vectors are
◦ long (length |V|= 20,000 to 50,000)

◦ sparse (most elements are zero)

Alternative: learn vectors which are
◦ short (length 50-1000)

◦ dense (most elements are non-zero)

Sparse versus dense vectors

Why dense vectors?
◦ Short vectors may be easier to use as features in machine

learning (fewer weights to tune)
◦ Dense vectors may generalize better than explicit counts
◦ Dense vectors may do better at capturing synonymy:
◦ car and automobile are synonyms; but are distinct dimensions
◦ a word with car as a neighbor and a word with automobile as a

neighbor should be similar, but aren't

◦ In practice, they work better3

Common methods for getting short dense vectors

“Neural Language Model”-inspired models
◦ Word2vec (skipgram, CBOW), GloVe

Singular Value Decomposition (SVD)
◦ A special case of this is called LSA – Latent Semantic Analysis

Alternative to these "static embeddings":
• Contextual Embeddings (ELMo, BERT)
• Compute distinct embeddings for a word in its context
• Separate embeddings for each token of a word

Simple static embeddings you can download!

Word2vec (Mikolov et al)

https://code.google.com/archive/p/word2vec/

GloVe (Pennington, Socher, Manning)

http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/

Word2vec
Popular embedding method
Very fast to train
Code available on the web
Idea: predict rather than count
Word2vec provides various options. We'll do:
 skip-gram with negative sampling (SGNS)

Word2vec
Instead of counting how often each word w occurs near "apricot"
◦ Train a classifier on a binary prediction task:
◦ Is w likely to show up near "apricot"?

We don’t actually care about this task
◦ But we'll take the learned classifier weights as the word embeddings

Big idea: self-supervision:
◦ A word c that occurs near apricot in the corpus cats as the gold "correct

answer" for supervised learning
◦ No need for human labels
◦ Bengio et al. (2003); Collobert et al. (2011)

Approach: predict if candidate word c is a "neighbor"

1. Treat the target word t and a neighboring context word c
as positive examples.

2. Randomly sample other words in the lexicon to get
negative examples

3. Use logistic regression to train a classifier to distinguish
those two cases

4. Use the learned weights as the embeddings

Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 c3 c4 [target]

Skip-Gram Classifier

(assuming a +/- 2 word window)

…lemon, a [tablespoon of apricot jam, a] pinch…
 c1 c2 [target] c3 c4

Goal: train a classifier that is given a candidate (word, context) pair
 (apricot, jam)

 (apricot, aardvark)
…

And assigns each pair a probability:
P(+|w, c)
P(−|w, c) = 1 − P(+|w, c)

Similarity is computed from dot product

Remember: two vectors are similar if they have a high
dot product
◦ Cosine is just a normalized dot product

So:
◦ Similarity(w,c) ∝ w

· c

We’ll need to normalize to get a probability
◦ (cosine isn't a probability either)

11

Turning dot products into probabilities

Sim(w,c) ≈ w · c …to turn this into a probability

we'll use the very useful sigmoid function:

How Skip-Gram Classifier computes P(+|w, c)

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:

Skip-gram classifier: summary

A probabilistic classifier, given
• a test target word w
• its context window of L words c

1:L

Estimates probability that w occurs in this window based
on similarity of w (embeddings) to c

1:L
 (embeddings).

To compute this, we just need embeddings for all the
words.

These embeddings we'll need:
a set for w, a set for c

Each of these
embeddings is a dense
“word vector”

Each composed of d
dimensions of numbers
which we hope to make
(very) abstractly
represent its meaning /
semantics

Vector
Semantics &
Embeddings

 Word2vec

Vector
Semantics &
Embeddings

 Word2vec: Learning the
embeddings

Skip-Gram Training data

…lemon, a [tablespoon of apricot jam, a]
pinch…

 c1 c2 [target] c3 c4

18

Skip-Gram Training data

…lemon, a [tablespoon of apricot jam, a]
pinch…

 c1 c2 [target] c3 c4

19

For each positive
example we'll grab k
negative examples,
sampling by frequency

Skip-Gram Training data

…lemon, a [tablespoon of apricot jam, a]
pinch…

 c1 c2 [target] c3 c4

20

Word2vec: how to learn vectors

Given the set of positive and negative training instances,
and an initial set of embedding vectors

The goal of learning is to adjust those word vectors such
that we:
◦ Maximize the similarity of the target word, context word pairs

(w , c
pos

) drawn from the positive data
◦ Minimize the similarity of the (w , c

neg
) pairs drawn from the

negative data.

5/12/21 21

Learning the classifier

Learning is the process by which we
incrementally adjust the word weights to
◦ make the positive pairs more likely,
◦ and the negative pairs less likely,
◦ over the entire training set.

Intuition of one step of learning

This reminds of the Perceptron

… but a bit trickier.

There we only did updates when incorrect

Here, as a raw prediction task, we will almost always
“guess wrong” (but we don’t mind)

What we actually want is to incrementally raise
the probabilities of the “right” answers

Another problem: sigmoid gives a probabilistic
interpretation, but introduces a non-linearity

Two New Learning Components

A loss function:

● cross-entropy loss

An optimization algorithm:

● stochastic gradient descent

Loss functions

We know the true label y - in the case of word2vec, e.g.:

positive example, y = 1 (apricot, jam)

negative example, y = 0 (apricot, matrix)

Given some setting of weights / embeddings w and c,
we can calculate ŷ - the probability of the positive class:

 Maximize:

We want one equation to quantify “how wrong we were” -

the loss function L(ŷ, y)

Cross-entropy Loss

Defined as the negative log-likelihood of the probability we
want to maximize

Notice ŷ must incorporate the negative examples as well,
have to think about “maximizing” their probability,
therefore need to define by flipping positive class:

Loss function for one w with c
pos

 , c
neg1

...c

negk

Maximize the similarity of the target with the actual context words,
and minimize the similarity of the target with the k negative sampled
non-neighbor words.

This total quantity
is relatively smaller
if our probabilities

are closer to
1 for + and 0 for -,
bigger if they’re

further away

Our goal: minimize the loss

Stochastic Gradient Descent: Intuition
How do I get to the bottom of this river canyon?

x

Look around me 360∘

Find the direction of
steepest slope down

Go that way

Our goal: minimize the loss

For logistic regression, loss function is convex
• A convex function has just one minimum
• Gradient descent starting from any point is

guaranteed to find the minimum
• (Loss for neural networks is non-convex)

Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

So we'll move positive

Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

So we'll move positive

Let's first visualize for a single scalar w

Gradients

The gradient of a function of many variables is a
vector pointing in the direction of the greatest
increase in a function.

Gradient Descent: Find the gradient of the loss
function at the current point and move in the
opposite direction.

How much do we move in that direction ?

Now let's consider N dimensions

We want to know where in the N-dimensional
space (of the N parameters that make up θ) we
should move.

The gradient is just such a vector; it expresses the
directional components of the sharpest slope
along each of the N dimensions.

Imagine 2 dimensions, w and b

Visualizing the
gradient vector at
the red point

It has two
dimensions shown
in the x-y plane

Real gradients

Are much longer; lots and lots of weights

For each dimension w
i
 the gradient component i tells us

the slope with respect to that variable.
◦ “How much would a small change in w

i
 influence the total loss

function L?”
◦ We express the slope as a partial derivative ∂ of the loss ∂w

i

The gradient is then defined as a vector of these partials.

same dimensionality as the original weights

Hyperparameters

The learning rate η is a hyperparameter
◦ too high: the learner will take big steps and overshoot
◦ too low: the learner will take too long

Hyperparameters:

• A special kind of parameter for an ML model

• Instead of being learned by algorithm from
supervision (like regular parameters), they are
chosen by algorithm designer.

The derivatives of the loss function

Update equation in SGD

Start with randomly initialized C and W matrices, then incrementally do updates

Two sets of embeddings

SGNS learns two sets of embeddings

Target embeddings matrix W

Context embedding matrix C

It's common to just add them together,
representing word i as the vector wi + ci

Summary: How to learn word2vec
(skip-gram) embeddings

Start with V random d-dimensional vectors as initial
embeddings

Train a classifier based on embedding similarity
◦Take a corpus and take pairs of words that co-occur as positive
examples
◦Take pairs of words that don't co-occur as negative examples
◦Train the classifier to distinguish these by slowly adjusting all
the embeddings to improve the classifier performance
◦Throw away the classifier code and keep the embeddings.

Vector
Semantics &
Embeddings

 Word2vec: Learning the
embeddings

Vector
Semantics &
Embeddings

 Useful and Interesting
 Properties of Embeddings

The kinds of neighbors depend on window size

Small windows (C= +/- 2) : nearest words are syntactically
similar words in same taxonomy
◦Hogwarts nearest neighbors are other fictional schools
◦Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) : nearest words are related
words in same semantic field
◦Hogwarts nearest neighbors are Harry Potter world:
◦Dumbledore, half-blood, Malfoy

Analogical relations

The classic parallelogram model of analogical reasoning
(Rumelhart and Abrahamson 1973)

To solve: "apple is to tree as grape is to _____"

Add tree – apple to grape to get vine

Analogical relations via parallelogram

The parallelogram method can solve analogies with
both sparse and dense embeddings (Turney and
Littman 2005, Mikolov et al. 2013b)

king – man + woman is close to queen

Paris – France + Italy is close to Rome

For a problem a:a*::b:b*, the parallelogram method is:

Structure in GloVE Embedding space

Caveats with the parallelogram method

It only seems to work for frequent words, small
distances and certain relations (relating countries to
capitals, or parts of speech), but not others. (Linzen
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a)

Understanding analogy is an open area of research
(Peterson et al. 2020)

Train embeddings on different decades of historical text to see meanings shift

~30 million books, 1850-1990, Google Books data

Embeddings as a window onto historical semantics

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal
Statistical Laws of Semantic Change. Proceedings of ACL.

Embeddings reflect cultural bias!

Ask “Paris : France :: Tokyo : x”
◦ x = Japan

Ask “father : doctor :: mother : x”
◦ x = nurse

Ask “man : computer programmer :: woman : x”
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer
programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016.

Algorithms that use embeddings as part of e.g., hiring searches for
programmers, might lead to bias in hiring

Historical embedding as a tool to study cultural biases

• Compute a gender or ethnic bias for each adjective: e.g., how
much closer the adjective is to "woman" synonyms than
"man" synonyms, or names of particular ethnicities
• Embeddings for competence adjectives (smart, wise,

brilliant, resourceful, thoughtful, logical) are biased toward
men, a bias slowly decreasing 1960-1990

• Embeddings for dehumanizing adjectives (barbaric,
monstrous, bizarre) were biased toward Asians in the
1930s, bias decreasing over the 20th century.

• These match the results of old surveys done in the 1930s

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes.
Proceedings of the National Academy of Sciences 115(16), E3635–E3644.

Vector
Semantics &
Embeddings

 Useful and Interesting
 Properties of Embeddings

