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Sparse versus dense vectors

tf-idf (or PPMI) vectors are
◦ long (length |V|= 20,000 to 50,000)

◦ sparse (most elements are zero)

Alternative: learn vectors which are
◦ short (length 50-1000)

◦ dense (most elements are non-zero)



Sparse versus dense vectors

Why dense vectors?
◦ Short vectors may be easier to use as features in machine 

learning (fewer weights to tune)
◦ Dense vectors may generalize better than explicit counts
◦ Dense vectors may do better at capturing synonymy:
◦ car and automobile are synonyms; but are distinct dimensions
◦ a word with car as a neighbor and a word with automobile as a 

neighbor should be similar, but aren't

◦ In practice, they work better3



Common methods for getting short dense vectors

“Neural Language Model”-inspired models
◦ Word2vec (skipgram, CBOW), GloVe

Singular Value Decomposition (SVD)
◦ A special case of this is called LSA – Latent Semantic Analysis

Alternative to these "static embeddings":
• Contextual Embeddings (ELMo, BERT)
• Compute distinct embeddings for a word in its context
• Separate embeddings for each token of a word



Simple static embeddings you can download!

Word2vec (Mikolov et al)

https://code.google.com/archive/p/word2vec/

GloVe (Pennington, Socher, Manning)

http://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
http://nlp.stanford.edu/projects/glove/


Word2vec
Popular embedding method
Very fast to train
Code available on the web
Idea: predict rather than count
Word2vec provides various options. We'll do:
 skip-gram with negative sampling (SGNS)

 



Word2vec
Instead of counting how often each word w occurs near "apricot"
◦ Train a classifier on a binary prediction task:
◦ Is w likely to show up near "apricot"?

We don’t actually care about this task
◦ But we'll take the learned classifier weights as the word embeddings

Big idea:  self-supervision: 
◦ A word c that occurs near apricot in the corpus cats as the gold "correct 

answer" for supervised learning
◦ No need for human labels
◦ Bengio et al. (2003); Collobert et al. (2011) 



Approach: predict if candidate word c is a "neighbor"

1. Treat the target word t and a neighboring context word c 
as positive examples.

2. Randomly sample other words in the lexicon to get 
negative examples

3. Use logistic regression to train a classifier to distinguish 
those two cases

4. Use the learned weights as the embeddings



Skip-Gram Training Data

Assume a +/- 2 word window, given training sentence:

…lemon, a [tablespoon of  apricot  jam,   a]  pinch…
                        c1                   c2                 c3      c4                                [target]



Skip-Gram Classifier

(assuming a +/- 2 word window)

…lemon, a [tablespoon of  apricot  jam,   a]  pinch…
                        c1                   c2 [target]    c3      c4

Goal: train a classifier that is given a candidate (word, context) pair
 (apricot, jam)

  (apricot, aardvark)
…

And assigns each pair a probability:
P(+|w, c) 
P(−|w, c) = 1 − P(+|w, c) 



Similarity is computed from dot product

Remember: two vectors are similar if they have a high 
dot product
◦ Cosine is just a normalized dot product

So:
◦ Similarity(w,c)  ∝ w

 
· c

We’ll need to normalize to get a probability 
◦ (cosine isn't a probability either)
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Turning dot products into probabilities

Sim(w,c) ≈ w · c …to turn this into a probability 

we'll use the very useful sigmoid function:



How Skip-Gram Classifier computes P(+|w, c) 

This is for one context word, but we have lots of context words.
We'll assume independence and just multiply them:



Skip-gram classifier: summary

A probabilistic classifier, given 
• a test target word w 
• its context window of L words c

1:L

Estimates probability that w occurs in this window based 
on similarity of w (embeddings) to c

1:L
 (embeddings).

To compute this, we just need embeddings for all the 
words.



These embeddings we'll need: 
a set for w, a set for c

Each of these 
embeddings is a dense 
“word vector” 

Each composed of d 
dimensions of numbers 
which we hope to make 
(very) abstractly 
represent its meaning / 
semantics
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Skip-Gram Training data

…lemon, a [tablespoon of  apricot  jam,   a]  
pinch…

                        c1                   c2   [target]    c3      c4
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Skip-Gram Training data

…lemon, a [tablespoon of  apricot  jam,   a]  
pinch…

                        c1                   c2   [target]    c3      c4
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For each positive 
example we'll grab k 
negative examples, 
sampling by frequency



Skip-Gram Training data

…lemon, a [tablespoon of  apricot  jam,   a]  
pinch…

                        c1                   c2   [target]    c3      c4
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Word2vec: how to learn vectors

Given the set of positive and negative training instances, 
and an initial set of embedding vectors 

The goal of learning is to adjust those word vectors such 
that we:
◦ Maximize the similarity of the target word, context word pairs 

(w , c
pos

) drawn from the positive data
◦ Minimize the similarity of the (w , c

neg
) pairs drawn from the 

negative data. 

5/12/21 21



Learning the classifier

Learning is the process by which we 
incrementally adjust the word weights to
◦ make the positive pairs more likely,
◦ and the negative pairs less likely, 
◦ over the entire training set.



Intuition of one step of learning



This reminds of the Perceptron

… but a bit trickier. 

There we only did updates when incorrect

Here, as a raw prediction task, we will almost always 
“guess wrong” (but we don’t mind)

What we actually want is to incrementally raise
the probabilities of the “right” answers

Another problem: sigmoid gives a probabilistic 
interpretation, but introduces a non-linearity



Two New Learning Components

A loss function:

● cross-entropy loss

An optimization algorithm:

● stochastic gradient descent



Loss functions

We know the true label y - in the case of word2vec, e.g.:

positive example, y = 1 (apricot, jam)

negative example, y = 0 (apricot, matrix)

Given some setting of weights / embeddings w and c, 
we can calculate ŷ - the probability of the positive class:

          Maximize:

We want one equation to quantify “how wrong we were” -

the loss function L(ŷ, y)



Cross-entropy Loss

Defined as the negative log-likelihood of the probability we 
want to maximize

Notice ŷ must incorporate the negative examples as well, 
have to think about “maximizing” their probability,
therefore need to define by flipping positive class:



Loss function for one w with c
pos

 , c
neg1

 
...c

negk
 

Maximize the similarity of the target with the actual context words, 
and minimize the similarity of the target with the k negative sampled 
non-neighbor words. 

This total quantity 
is relatively smaller 
if our probabilities 

are closer to 
1 for + and 0 for -, 
bigger if they’re 

further away



Our goal: minimize the loss

 



Stochastic Gradient Descent: Intuition 
How do I get to the bottom of this river canyon?

x

Look around me 360∘

Find the direction of 
steepest slope down

Go that way



Our goal: minimize the loss

For logistic regression, loss function is convex
• A convex function has just one minimum
• Gradient descent starting from any point is 

guaranteed to find the minimum
• (Loss for neural networks is non-convex)

 



Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function 



Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function 

So we'll move positive

Let's first visualize for a single scalar w



Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function 

So we'll move positive

Let's first visualize for a single scalar w



Gradients

The gradient of a function of many variables is a 
vector pointing in the direction of the greatest 
increase in a function. 

Gradient Descent: Find the gradient of the loss 
function at the current point and move in the 
opposite direction. 



How much do we move in that direction ?

 



Now let's consider N dimensions

We want to know where in the N-dimensional 
space (of the N parameters that make up θ ) we 
should move. 

The gradient is just such a vector; it expresses the 
directional components of the sharpest slope 
along each of the N dimensions. 



Imagine 2 dimensions, w and b

Visualizing the 
gradient vector at 
the red point

It has two 
dimensions shown 
in the x-y plane



Real gradients

Are much longer; lots and lots of weights

For each dimension w
i
 the gradient component i tells us 

the slope with respect to that variable. 
◦ “How much would a small change in w

i
 influence the total loss 

function L?” 
◦ We express the slope as a partial derivative ∂ of the loss ∂w

i
 

The gradient is then defined as a vector of these partials.

same dimensionality as the original weights 



Hyperparameters

The learning rate η is a hyperparameter
◦ too high: the learner will take big steps and overshoot
◦ too low: the learner will take too long

Hyperparameters:

• A special kind of parameter for an ML model

• Instead of being learned by algorithm from 
supervision (like regular parameters), they are 
chosen by algorithm designer.



The derivatives of the loss function



Update equation in SGD

Start with randomly initialized C and W matrices, then incrementally do updates



Two sets of embeddings

SGNS learns two sets of embeddings

Target embeddings matrix W

Context embedding matrix C 

It's common to just add them together, 
representing word i as the vector  wi + ci



Summary: How to learn word2vec 
(skip-gram) embeddings

Start with V random d-dimensional vectors as initial 
embeddings

Train a classifier based on embedding similarity
◦Take a corpus and take pairs of words that co-occur as positive 
examples
◦Take pairs of words that don't co-occur as negative examples
◦Train the classifier to distinguish these by slowly adjusting all 
the embeddings to improve the classifier performance
◦Throw away the classifier code and keep the embeddings.
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The kinds of neighbors depend on window size

Small windows (C= +/- 2) : nearest words are syntactically 
similar words in same taxonomy
◦Hogwarts nearest neighbors are other fictional schools
◦Sunnydale, Evernight, Blandings

Large windows (C= +/- 5) :  nearest words are related 
words in same semantic field
◦Hogwarts nearest neighbors are Harry Potter world:
◦Dumbledore, half-blood,  Malfoy



Analogical relations

The classic parallelogram model of analogical reasoning 
(Rumelhart and Abrahamson 1973)

To solve: "apple is to tree as grape is to  _____"

Add tree – apple  to grape to get vine



Analogical relations via parallelogram

The parallelogram method can solve analogies with 
both sparse and dense embeddings (Turney and 
Littman 2005, Mikolov et al. 2013b)

king – man + woman is close to queen

Paris – France + Italy is close to Rome

For a problem a:a*::b:b*, the parallelogram method is:



Structure in GloVE Embedding space



Caveats with the parallelogram method

It only seems to work for frequent words, small 
distances and certain relations (relating countries to 
capitals, or parts of speech), but not others. (Linzen 
2016, Gladkova et al. 2016, Ethayarajh et al. 2019a) 

Understanding analogy is an open area of research 
(Peterson et al. 2020)



Train embeddings on different decades of historical text to see meanings shift

~30 million books, 1850-1990, Google Books data

Embeddings as a window onto historical semantics

William L. Hamilton, Jure Leskovec, and Dan Jurafsky. 2016. Diachronic Word Embeddings Reveal 
Statistical Laws of Semantic Change. Proceedings of ACL.



Embeddings reflect cultural bias!

Ask “Paris : France :: Tokyo : x” 
◦ x = Japan

Ask “father : doctor :: mother : x” 
◦ x = nurse

Ask “man : computer programmer :: woman : x” 
◦ x = homemaker

Bolukbasi, Tolga, Kai-Wei Chang, James Y. Zou, Venkatesh Saligrama, and Adam T. Kalai. "Man is to computer 
programmer as woman is to homemaker? debiasing word embeddings." In NeurIPS, pp. 4349-4357. 2016.

Algorithms that use embeddings as part of e.g., hiring searches for 
programmers, might lead to bias in hiring



Historical embedding as a tool to study cultural biases

• Compute a gender or ethnic bias for each adjective: e.g., how 
much closer the adjective is to "woman" synonyms than 
"man" synonyms, or names of particular ethnicities
• Embeddings for competence adjectives (smart, wise, 

brilliant, resourceful, thoughtful, logical) are biased toward 
men, a bias slowly decreasing 1960-1990

• Embeddings for dehumanizing adjectives (barbaric, 
monstrous, bizarre)  were biased toward Asians in the 
1930s, bias decreasing over the 20th century.

• These match the results of old surveys done in the 1930s

Garg, N., Schiebinger, L., Jurafsky, D., and Zou, J. (2018). Word embeddings quantify 100 years of gender and ethnic stereotypes. 
Proceedings of the National Academy of Sciences 115(16), E3635–E3644.
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