
Week 2
More Unix, and Command-line Text Processing

1

LING 331
Text Processing for Linguists

Notes from Assignment 1
● Use assignment1, assignment2 folders please!

(and no spaces in directories or filenames)

● Don’t remove the “>>>” or “YOUR ANSWER HERE” stuff

● Please remember to fill out the top part of the assignments!

○ (asking about hours is us trying to make sure no one falls

behind or is spending their whole life on this)

2

Notes from Assignment 1
● Is the assignment really ~270 lines?

○ Seems maybe more?

● How does wc count lines?

○ Returns number of <newline> characters, aka \n

○ Try -S and -N flags on less

3

Notes from Assignment 1!
● MobaXTerm and X-forwarding

X-forwarding means the graphics pass through

We want this off - no reason to use GUI emacs, it’s slow

Or use e.g. alias emacs="emacs -nw"

(Rob will demo)

4

Notes from Assignment 1
● Dotfiles (.bashrc, .nanorc)

○ Saves us from typing e.g. umask 002

every time we open a terminal

○ bash/nano/etc run these files verbatim when they open

○ Generally have to be in your home directory (~/)

5

Notes from Assignment 1
● Remember errors are friends!

● Example from Ed (with apologies):

○ -bash: umash: command not found

6

Notes from Assignment 1

● Tab completion! Our very good friend.

○ `cd<tab>` vs. `cd <tab>`

7

Notes from Assignment 1

8

Notes from Assignment 1!
● Is there an ‘undo’ on the terminal?

NO! (Oh no)

● Is stuff that I rm gone forever?

YES! (Oh no)

9

Notes from Assignment 1!
● Emacs backups:

○ assignment1.txt <- actual file

○ assignment1.txt~ <- backup file

○ #assignment1.txt# <- auto-save file

https://emacsredux.com/blog/2013/05/09/keep-

backup-and-auto-save-files-out-of-the-way/
10

https://emacsredux.com/blog/2013/05/09/keep-backup-and-auto-save-files-out-of-the-way/
https://emacsredux.com/blog/2013/05/09/keep-backup-and-auto-save-files-out-of-the-way/

Notes from Assignment 1!
● Nano backups:

○ assignment1.txt <- actual file

○ assignment1.txt.save <- auto-save file

https://askubuntu.com/questions/601985/what-

are-save-files

11

https://askubuntu.com/questions/601985/what-are-save-files
https://askubuntu.com/questions/601985/what-are-save-files

Notes from Assignment 1!
● Vim backups:

○ assignment1.txt <- actual file

Uh, that’s it.

12

Notes from Assignment 1!
● Other files you may be seeing:

○ assignment1.txt.1 <- wget extra copy

13

Notes from Assignment 1!
Questions you may have on text editors!

● Are vim/nano/emacs just different ways to write code?

● Do vim/nano/emacs create different kinds of files?

● Why do people make such a big deal about text editors?

● Why do we need them when we can also just write commands

in the terminal?
14

Important Concepts This Week
● Unix operates line-by-line

● You’re creating a data pipeline, and ordering matters

● Imagine starting with a big piece of clay (all the lines)

and bit by bit carving away and transforming it

● One liners! These techniques are very powerful for getting

a quick, high-level picture of what you’re working with

15

Unix Philosophy
● One program does one thing

Write programs that do one thing and do it well.

Write programs to work together.

Write programs to handle text streams, because that is

a universal interface. -Doug McIlroy (inventor of pipes)

16
https://homepage.cs.uri.edu/~thenry/resources/unix_art/philosophychapter.html

https://homepage.cs.uri.edu/~thenry/resources/unix_art/philosophychapter.html

Abstraction
(we can trust programs and functions to do their thing)

We don’t need to worry about how something is
sorted, we just trust that it will be properly done!

Decomposition
(big problems can be solved by breaking them into small steps)

For each problem, think about how to decompose
it into small things we can do

17

Notes on Assignment 2
● In a way, this is a hands-on guided tour

● We’ll see many very useful programs we can chain together
to do complicated and powerful things quickly

● Each program is a command, and we can trust it will do its job
 abstraction!

● When we want to do something complicated, we think of how
to break it down into smaller pieces we have in our toolkit

decomposition!
18

Notes on Assignment 2
● The assignment file itself is an executable shell script

(a type of runnable program)

● The .sh ending is a suggestion of this
(your browser may take the suggestion and auto-download)

19

Notes on Assignment 2 (cont.)

● Write the command that produces the answer,

not the answer itself

● The scripting section (section 7) has been tricky in the past,

read carefully and slowly there! We’ll talk about it more Thurs.

20

