Week 3

Basic Python 1

Abstraction is wonderful! ... and terrifying.

- Druthers Haver
g @6thgradedever

the most consequential figures in
the tech world are half guys like
steve jobs and bill gates and half
some guy named ronald who
maintains a unix tool called 'runk’
which stands for Ronald's Universal
Number Kounter and handles all
math for every machine on earth

3:57 PM - Sep 2, 2021 - Twitter for Android

6,256 Retweets 216 Quote Tweets 33.1K Likes

xked.com

ALL MODERN DIGITAL
INFRASTRUCTURE

T)

A PROJECT SOME
RANDOM PERSON
J IN NEBRASKA HAS
L BEEN THANKLESSLY

MANTAINING
SINCE 2003
=) A

L]
L

Notes from Assignment 2

e Regular expressions are tricky --
these are the pattern inputs to sed and grep --
we will go over in much more detail later in the quarter!

Notes from Assignment 2

e Whitespace is invisible and therefore tricky
e.g. top word = 46401 instances of *’

Can run another sed to remove this, or a one-command fix:
sed 's/ +/\n/g"

e Similar, seda '/~s/da' works but misses lines with spaces

e [0-9] isall digits (doesn’t work to do e.g. [0-100])

Notes from Assignment 2

Quoting!

e Be very careful with quoting! And (), [], ete.
Each ' requires another ' to close it,
each " requires another " to close it.

e Syntax highlighting helps a lot.

Notes from Assignment 2

Quoting!

e Double quotes interpret arguments (e.g. "s1") and escapes,
Single quotes leave them be.

https: stackoverflow.com/guestions/6697753/difference-between-single—and-d

ouble—guotes—-in-bash

e Whitespace (spaces, tabs, newlines) is
interpreted as a delimiter between arguments!
(See TLCL Ch. 7)

https://stackoverflow.com/questions/6697753/difference-between-single-and-double-quotes-in-bash
https://stackoverflow.com/questions/6697753/difference-between-single-and-double-quotes-in-bash

Notes from Assignment 2

Stream Management!

e DBe aware that almost all text filter commands can accept the
input file as an argument (e.g. sed 's/sad/happy/g' input.txt)

e C(areful with > (write) vs. >> (append)

e > and >> end the stream (alternatively can use tee)

Notes from Assignment 2

e DBetter to not generate auxiliary files, e.g.:

grep love shakes.txt > lovelines.txt

wc —1 lovelines.txt

e This works, but adds cruft and obscures things later - if we
come back in a day, how exactly did we get 1ovelines.txt?
Once it’s created we lose the “story,” if you will.

Thus piping!

grep love shakes.txt | wc -1

Notes from Assignment 2

e Don’t call programs like nano / less from a script:
it’ll stop execution of the script until you close that instance.
nano/less are not text filters like grep/sed/tr/sort/ete.

o They can *receive® input from stdin,
they just don’t pass it through to stdout

e This and all further assignments should be runnable!
(don’t write the answer, write the code that generates it)

... and now for something
completely different!

Welcome to Python world!

What is the “stuff” of programming?

Gienerally, we are manipulating data
in ever-more-complex ways

We think of that data as a set of objects,
like objects in the real world

Variable Names are symbolic names
that point to persistent bits of data

‘@ =i) Classroom Objects
o

Encil blackboard | calender glue
| — @ |00
chair stapler backpack clips
pins books ruler Idesk |
y 0123436 ‘ o)

, oo L

notebooks scissors calculator | compasses
highlighter | sharpener | pencilcase eraser

www.englishgrammarhere.com

11

Variable Types

Numeric

integer

42

float
42 .0

Sequence

list

['y', 2,

tuple

(6,

\b/ ,

False]

19.7)

Text

string

'hello!'

None

None

Truthy

boolean

True,

False

12

Statements

Assignment (-)

year

mssg

e:

2020 # integer

'hooray!' # string

2.71828 # float

13

Statements

Equality Testing (-, =, >, <, >=, <=
>>> year != 2016
True
>>> mssg == 'howdy!'
False

>>> e <= 3
True

14

Statements

Arithmetic «+, -, «, 7,
>>> year * 3
6060

>>> 'hip hip ' + mssg
'hip hip hooray!'

>>> e / 2
1.35914

15

Statements

Incrementing (arithmetic plus assignment)

>>> year += 18

>>> year
2038

>>> mssg *= 5
>>> mssg
'hooray'!'hooray!hooray'!'hooray!hooray!'

16

Functions

1. Take some input

Often called “arguments” to the function
2. Do some computation

Often called the “body” of the function
3. Produce some output

Often called “return”ing data

17

Functions

Important Built-ins 1

print (x) # print representation of x
help(x) # detailed help on x
type (x) # return type of x

dir(x) # list methods and attributes of x

18

Functions

Important Built-ins 2

sorted (x) # return sorted version of x

min(x), max(x) # mathematical operations
sum (x) # on sequences

int(x), float(x), bool(x) # 'casting', a.k.a.
list(x), tuple(x), str(x) # type conversion

19

Functions

Defining New Functions

def keyword
function name

|

def my function (argl
body # all my amazing
indented . # ~ode goes here
one level eessEn A2

arguments

/N

, argz,

arg3) :

20

Control Flow

Conditionals - if, elif, else -

>>> x = int (input ("Please enter an integer:
Please enter an integer: 42
>>> 1f x < 0O:
print ('Negative!')
elif x ==
print ('Zero!"'")
else:
print ('Positive!")
Positive!

"))

21

Control Flow

Loops - for ... In -

>>> # Measure some strings:
words = ['cat', 'window',
>>> for w in words:
print (w, len(w))
cat 3
window 6
defenestrate 12

'defenestrate']

22

Control Flow

Loops - for ... In -

>>> for 1 1n range (D) :

print (1)

S w N -k O

23

Control Flow

Loops - for ... In -

>>> for line in open('shakes.txt'):
... print (line)

1609
THE SONNETS

by William Shakespeare

24

Control Flow

Loops - while -

>>> # Fibonacci:
a, b =20, 1
>>> while a < 10:

print (a,
a, b = b,
print('")

0112 358

sum of two elements defines the next

end=" ")
a+b

25

Whitespace

The body of
funection definitions
and
control flow elements
must be indented
by one level

Recommended to be
--\t-- one tab
. or four spaces

ts(func, tests):

(

errors =
val, ret in tests:

(val) == tuple:

‘unc(*val) == ret
(val) == ret
AssertionError:

(
errors +=
errors ==

()

1t (val))

26

Whitespace

e Most text editors deal with whitespace semi-intelligently

e [.g., emacs sees that a file ends in .py,
and interprets the text as python code (syntax highlighting)
and tries to make the whitespace consistent

e Pressing the [Tab] key will jump to the logical indent.
But be careful e.g. closing control flow statements,
try pressing [Tab] multiple times. 27

String and List Indexing

>>> job title = 'LINGUIST'

Char (or List Item) | L T N G U T
Index 0 1 2 3 4 5
Reverse Index -8 :-7 :-6 :-5 -4 :-3

>>> job title[3:-1]
'GUIS' # inclusive of start,

>>> job title[:5]

Syntax:
sequence|start:end]

not inclusive of end

'LINGU'! # can leave off start or end

28

=i Classroom Objects

- ‘ c '.
[— ;
a

. WV
: b
pencil blackboard | calender glue
| — iy
chair stapler backpack clips
pins books

notebooks

scissors

calculator

compasses

highlighter

K

&

sharpener

&

pencilcase

eraser

www.englishgrammarhere.com

We categorize real-world objects by their

properties (facts about them)
“Scissors have two loops to hold
and two blades that open
when you separate the loops.”

and affordances (what we can do with them)
“We use scissors to cut things.”

29

ObJect oriented Programming

01
f
5 4l '0
iﬁ o
/ i

Classroom Objects

R L
:
4 tal &
pencil blackboard | calender glue
=K NI
chair stapler backpack clips
pins books

notebooks

scissors

calculator

compasses

highlighter

K

&

sharpener

pencilcase

&

eraser

www.englishgrammarhere.com

In Python, objects
of a certain type have certain
attributes (associated variables/metadata)
and methods (associated functions)

>>> 111 snippy = PairOfScissors ()
>>> 111 snippy.size
15

>>> 111 snippy.cut (robs finger)
\ (:)‘AI ! 144

30

Object-oriented Programming

In Python (and many other OOP languages),
everything is officially an object.

Many types come with very informative attributes
and useful methods!

OOP is a “programming paradigm.” There are others!
At this stage you don’t need to worry about that.

31

String Methods
strip, rstrip, Istrip

>>>
>>>
>>>
'my
>>>
>>>

'my

s = ' my sTrInGggg!\n'

s = s.strip()

S

sTrInGggg!'

s = s.strip('!"').strip('g")
S

sTrInG'

upper, lower

>>2>
>>>

me

s = s.lower ()
S
string'

find

>>> s.find('str')
3

replace
>>> s.replace('my', 'your"')
'vour string'

startswith, endswith
>>> s.startswith('balloon')
False

32

List Methods

append

>>> x = [1, 4,
>>> x.append (9)
>>> x

9,

(1, 4, 9, 16, 9]

index
>>> x.index (4)
1

16]

remove

>>> x.remove (9)
>>> X

[1, 4, 1o, 9]

pop

>>> x.pop ()
9

>>> x

(1, 4, 16]

33

Strings and Lists
Strings are like sequences of characters
Key difference: lists are mutable strings are immutable

my list[3] = 'yes'g my str[3] = 'n'x

String methods to convert to/from lists

split join
>>> s = 'my string' >>> ' ' jJoin(['your', 'string'])
>>> s.split () 'yvour string'

['my', 'string']

34

Assignment Walkthrough

Answers are short but can be tricky!

Think Decomposition
how can I break this into smaller, doable sub-problems?

Tests provided after each function!

35

Assignment Walkthrough

You must do:
module load python/anaconda3.6
every time you login to Quest

Run the assignment with:
python assignment3.py

The assignment must run when you are done!

36

