
Week 5
Basic Python cont. (More Assignment Notes)

1

LING 331:
Text Processing for Linguists

● Counting ‘thy’s, problem?:

○ grep 'thy' shakes.txt

● Counting words, problem?:

○ sed 's/ /\n/g' clean_shakes.txt | wc -l

● Deleting blank lines, problem?:

○ sed '/^$/d' shakes.txt

More Notes from Assignment 2

2

● Getting ‘thy’ to ‘your’ lines, problem?

○ cat shakes.txt | sed s/thy/your/g | sed
s/Thy/Your/g | grep "[Yy]our" | head

● Scripting (demo)

More Notes from Assignment 2

3

(Feeding a fed horse) PLEASE
MAKE
SURE
YOUR
ASSIGNMENT

RUNS!
PYTHON ASSIGNMENT4.PY!!

Notes from Assignment 3

4

● Periods at the end of a few of the initial typeing questions:
… my bad.

○ E.g. print(‘a. university + department.’)
● g. expected_gpa and in_person

○ How is this evaluated?
● k. having_fun > total_students

○ What’s going on here?

Notes from Assignment 3

5

● l. department[1532:] vs.
m. department[1532]

○ What’s going on here?

Notes from Assignment 3

6

● for line in open(f)
Does not strip whitespace!

○ If you got 5-letter palindromes using min_length,
this is because each line has ‘\n’ on the end!

Notes from Assignment 3

7

● and is not distributive

○ type(d1) and type(d2) == int
 is not the same as
type(d1) == int and type(d2) == int

● The results of comparisons can be returned directly

○ E.g., no need for
if x == y return True else return False
Just do return x == y

Notes from Assignment 3

8

● for loops implicitly have a unit of operation:

○ For lists, [‘abc’, 123, ‘you n me’]

■ List item ‘abc’ -> 123 -> ‘you n me’

○ For strings, ‘ling300’

■ Character ‘l’ -> ‘i’ -> ‘n’ -> ‘g’

○ For file objects, open(f)

■ Line

Notes from Assignment 3

9

● in gives useful functionality about presence/absence.

○ Is this char/string in this other one?

○ Is this item in this list or set or tuple?

Notes from Assignment 3

10

● return stops execution of a function.
 if type(d1) != int or type(d2) != int is True:
 return not_dice_message
 elif d1 > 6 or d1 < 1 or d2 > 6 or d2 < 1 is True:
 return not_dice_message
 else: #[RV: Not necessary to have this else!]
 if d1 + d2 == 7 or d1 + d2 == 11 is True:
 return win_message
 else:
 return lose_message

Notes from Assignment 3

11

== vs. is

 Logical equality Object equality

>>> a = [1,2]
>>> b = [1,2]
>>> a == b # are these logically equivalent?
True
>>> a is b # are they the exact same object?
False

Notes from Assignment 3

12

● There’s a near-infinite variety of ways to do most things.

● Example: reverse_string
○ s[::-1]
○ l = list(s), while len(l) > 0, l.pop()
○ l = list(s), l.reverse(), ' '.join(l)
○ i = len(s) - 1, while i > 0, i -= 1
○ new_s = '', for c in s, new_s = c + new_s

Notes from Assignment 3

13

● Efficiency: not a huge deal for now, but be aware!
e.g. consider how many times we loop over what

 Which is better?
for word in s.split(): vs. for word in stopwords:
 if word in stopwords: if word in s.split():

● Anti-corollary: “Don’t optimize prematurely”
Doing it whichever way is fine, until it gets too slow to work

Notes from Assignment 3

14

● Standards? Somewhat, e.g. style guide: https://www.python.org/dev/peps/pep-0008/

● Opinions? Many!

● Key consideration is readability.

○ Other people may have to read your code

○ You may have to read your own code in five years

Style Notes from Assignment 3

15

https://www.python.org/dev/peps/pep-0008/

● Readability Basics:
○ # comments are good practice to explain the

purpose and functionality of more
complicated bits

○ The best code is also somewhat “self-documenting”

○ Variable names are a form of comment

○ Logical decomposition helps readability

Style Notes from Assignment 3

16

● Consider:
a = sum(vals)
b = len(vals) vs. return sum(vals)/len(vals)
return a/b

length1 = len(s1)
length2 = len(s2) vs. if len(s1) > len(s2):
if length1 > length2: ...
 ...

Style Notes from Assignment 3

17

● Variable naming: try not to overload (one name does one thing)
document = open(f) # file object
document = document.read() # string
document = letters_only(document) # string
document = document.split() # list

vs.
document = open(f) # file object
text = letters_only(document.read()) # string
words = document.split() # list

Style Notes from Assignment 3 (cont.)

18

● Nitpicky example from an assignment:
def reverse_string(s):
 rev_chars = ''
 count = len(s) #[RV: My problem is here, why?]
 for char in s:
 count = count - 1
 let = s[count]
 rev_chars = rev_chars + let
 return rev_chars

Style Notes from Assignment 3 (cont.)

19

● Variable naming: try not to overload (one name does one thing)

○ Special case of this: .join()
output = ' '
output = output.join(words)

○ Both ‘output’s are strings, but they’re different -
first is the delimiter, second is the actual output. Just do:
✔ output = ' '.join(words)

Style Notes from Assignment 3 (cont.)

20

● Simple is better and more readable. Try not to repeat yourself!
def vowel_count(s):
 index = 0
 low_s = s.lower()
 for l in low_s:
 if l == 'a':
 index = index + 1
 elif l == 'e':
 index = index + 1
 elif l == 'i':
 index = index + 1

Style Notes from Assignment 3 (cont.)

21

...
elif l == 'o':

 index = index + 1
elif l == 'u':

 index = index + 1
 else:
 continue
 return index

● List Comprehension
output = ' '.join([c for c in s if c.isalpha()])

● Ternary Conditional Assignment
x = 0 if random.random() > 0.3 else 1

● Step slicing:
my_string[start:end:step]

Advanced Syntactic Sugar

22

● List Comprehension with Conditionals
- nice example from an assignment!

def vowel_count(s):
 vowels = 'aeiouAEIOU'
 return sum(1 for c in s if c in vowels)

Advanced Syntactic Sugar

23

● help(the_thing)

● Read error messages carefully

● Carefully re-read the problem

● Talk your code out loud

When You’re Stuck!

24

● https://docs.python.org/3/

● Ed (try to explain the issue)

● Google it! (totally fine)

● Take a break
(or skip the problem for now)
and try again later

https://docs.python.org/3/

Demo
Let’s talk through

proportion_of_vowels_in_english

25

