
Week 7
Jupyter and Basic Python 3

1

LING 331
Text Processing for Linguists

● Choose a round-robin cycle

○ A checks B’s, B checks C’s, C checks A’s

● Start by going to your partner’s directory and doing:
cp assignment4.py assignment4_peer.py

● Edit assignment4_peer.py, make comments like I do:
[AE] This is great!

● ~30 mins review, ~15 mins discussion

Today: Code Review! A3 and A4

2

● Questions to ask yourself:

○ Does this work?

○ Do I understand why it works?

○ What could be better? (style, efficiency, readability)

○ Compare to our grading and/or solutions

Today: Code Review!

3

Basic steps:

● wget assignment link into a Quest assignment5 directory

● Do unzip assignment.zip

● Go to https://jupyter.questanalytics.northwestern.edu
(must be on NU VPN)

● Navigate to your assignment5 dir
and open ‘Assignment 5.ipynb’

Jupyter! - Live Assignment 5 Demo

4

https://jupyter.questanalytics.northwestern.edu/

Writing Files
● With a file path as a str f, we’ve seen open(f)
● open takes a mode argument which explains how to open it

○ Actions:
'r' to read (default) like Unix <
'w' to write (to a new file) like Unix >
'a' to append (add to existing file) like Unix >>

○ Formats:
't' for text (default)
'b' for binary

5

action and format
can both be included
and are both optional

Writing Files
● Write using the .write() method on a file object.
● Say given a Counter of word counts in some text

file = open('output.txt', 'w') # creates/overwrites
for word in counts:

line = "{}, {}".format(word, counts[word])
file.write(line + '\n') # must be str

file.close() # makes sure everything is written

● Unlike print, .write() only takes one argument, a string

6

JSON (Javascript String Object Notation)
provides a way to save objects as text
● Say given our dictionary variable cmudict

import json
json.dump(cmudict, open('cmudict.json','wt'))

Later, or in another script:

cmudict = json.load(open('cmudict.json','rt'))

7

JSON (Javascript String Object Notation)
provides a way to save objects as text
● Can also just convert them to strings:

json.dumps(cmudict)

'{"3-D": ["TH R IY1 D IY2"], "3D": ["TH R IY1 D IY2"], "A":
["AH0", "EY1"], "A\'S": ["EY1 Z"], "A.": ["EY1"], "A.\'S": ["EY1
Z"], "A.S": ["EY1 Z"], "A42128": ["EY1 F AO1 R T UW1 W AH1 N T
UW1 EY1 T"], "AA": ["EY2 EY1"], "AAA": ["T R IH2 P AH0 L EY1"],
"AABERG": ["AA1 B ER0 G"], "AACHEN": ["AA1 K AH0 N"], "AACHENER":
["AA1 K AH0 N ER0"], "AAH": ["AA1"], ...

8

Pickle
provides a way to save objects in binary
● Say given our dictionary variable cmudict

import pickle
pickle.dump(cmudict, open('cmudict.pkl','wb'))

Later, or in another script:

cmudict = pickle.load(open('cmudict.pkl','rb'))

9

JSON vs. Pickle
● Saved as plaintext

(easy to open and look at)
● Can even be edited directly

outside python (carefully)
● Compatible with many other

programming langs
● Some objects are not JSON

serializable, e.g. set
10

● Not human readable
● Python-only
● Slower (generally)
● But works on

almost any object

Takeaway
Use JSON unless you can’t.

FYI, Jupyter notebooks
are in JSON format!

11

