
Week 9
Python for Text (and Beyond)
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LING 331
Text Processing for Linguists



Wednesday 3/2

● Assignment 6 FYIs
● Content:

Dependency Parsing
WordNet
Word Vectors

● Final Assignment

Roadmap for Our Last Two Days
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Monday 3/7

● Assignment 6 Notes
● Content:

Classification
● Final Self-Evaluation
● Where To Go From Here



● -PRON- is a spaCy idiosyncrasy
○ Some weird version issues though...

● Stemming vs. Lemmatization
○ Stemmers are a much more coarse heuristic algorithm

○ Lemmatizers are machine learning models 
= more computationally expensive, but not crazily so

Notes for Assignment 6

3



● Sometimes you get a nice docstring, comments, etc 
sometimes you don’t!

● Figuring out types of objects:
○ type(obj), dir(obj), help(obj), print(obj)

● If you’re running into trouble this is the first thing to try!

● With dicts, useful also to print(d.keys())

● E.g. sentences in 2.g., what’s in a row in 5.a.

Notes for Assignment 6
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● Nested dictionaries: dicts are key-value, 
but value can be anything, including another dict

intensity = {}

... # do some stuff

if not word in intensity:
intensity[word] = {}

... # do some stuff

intensity[word][emotion] = score

Notes for Assignment 6
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● left_adjectives: 
This is another common sort of programming meme,
requires a sort of “spatial orientation” / “navigation” skill

● enumerate to maintain an index, 
when current word matches, check index - 1

● Working with dependency trees is a yet-trickier
version of this meme!

Notes for Assignment 6
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● Words are connected to other words with a tag 
representing their relationship

● Main verb is the
sentence root

● Directed:
head → dependent

● Tag is role the played
by the dependent

Dependency Parsing gives a syntax representation

7

https://spacy.io/usage/visualizers

https://explosion.ai/demos/displacy

https://spacy.io/usage/visualizers
https://explosion.ai/demos/displacy


● Most common formalism for syntax in Comp Ling / NLP

○ Interesting contrast with formal syntax!

● Partially because of computational feasibility

● Very exciting project: Universal Dependencies

○ https://universaldependencies.org/

○ (you can contribute!)

Dependency Parsing gives a syntax representation
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https://universaldependencies.org/


● spaCy does dependency parsing inherently
(if you don’t disable "parser")

● Access dependency tag with token.dep_
List of children with token.children

● More info:
https://spacy.io/usage/linguistic-features

Dependency Parsing gives a syntax representation
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https://spacy.io/usage/linguistic-features


● Represents semantic
relationships in a 
large network

● Allows to calculate
e.g. “path similarity”

● Play with directly:

http://wordnetweb.princeton.edu/perl/webwn

WordNet is a lexical resource for semantic relations
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http://wordnetweb.princeton.edu/perl/webwn


● NLTK has an interface for working with WordNet

● … but it’s not the most intuitive thing in the world

● More info here:
https://www.nltk.org/howto/wordnet.html

WordNet is a lexical resource for semantic relations
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https://www.nltk.org/howto/wordnet.html


● Language is creative, flexible, and ever-evolving;
there are many ways to say the “same thing”

● Translations for instance! But even within a language.

Q: Where is he?

He went to the store

Oh, Johnny left to get groceries

Out to grab the essentials

Sparsity is a property of natural language
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● Zipf’s Law:

If you order words by frequency rank, e.g.

  1 the
  2 and
  3 I
  4 to
  5 of

Sparsity is a property of natural language
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 So ‘the’ will 
appear roughly 
2x as often as 

‘and’, which will 
appear 2x as 

often as ‘I’, etc

Counts will be 
inversely 

proportional
to rank!
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Zipf’s 
Law 
Across 

languages on 
Wikipedia

https://en.wikipedia.org/wiki
/Zipf%27s_law

https://en.wikipedia.org/wiki/Zipf%27s_law
https://en.wikipedia.org/wiki/Zipf%27s_law


Closed-Class Words
of, she, or, the, no, and

● a.k.a. ‘function words’
● Includes pronouns, articles, 

conjunctions, particles
● Rarely gain new members
● Very dense!
● Perform grammatical and 

discourse functions 

Sparsity is a property of natural language
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Open-Class Words
walrus, fleek, margarine, poindexter

● a.k.a. ‘content words’
● Includes nouns, verbs, 

adjectives, etc.
● Frequently gain new members
● Very sparse!
● Perform semantic functions, 

i.e. carry most of the meaning



'cat' != 'cat,' != 'CAT' != ‘Cat’ != ‘cats’

We’ve seen some ways to deal with this:

● Stripping punctuation
● Downcasing 
● Tokenization
● Stemming
● Lemmatization

Sparsity is a problem for computing with language
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… and more abstractly:
● POS tagging
● Lexicons 

(concreteness, emotion)
● Syntactic roles and relations



But what if we want a different semantic operation than a 
pure exact match?

For instance, how can we know if words are more or less 
similar?

Answer: create a numerical representation that can be 
operated on mathematically - word vectors!

Sparsity is a problem for computing with language
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● Key mathematical notes:

○ A vector is simply a list of numbers

○ Those numbers form an abstract representation of a word

○ Each “dimension” refers to the number at a certain index

○ Dimensions can be meaningful or not depending on how 
the vectors are constructed

Word Vectors provide a numerical representation
 of the meaning of a word
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Word Vectors provide a numerical representation
 of the meaning of a word
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word cuteness furriness animacy growth_stage

You could imagine manually constructing them:



Word Vectors provide a numerical representation
 of the meaning of a word
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word cuteness furriness animacy growth_stage

cat 5 7 7 6

You could imagine manually constructing them:



Word Vectors provide a numerical representation
 of the meaning of a word
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word cuteness furriness animacy growth_stage

cat 5 7 7 6

kitten 8 8 5 -4

You could imagine manually constructing them:



Word Vectors provide a numerical representation
 of the meaning of a word
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word cuteness furriness animacy growth_stage

cat 5 7 7 6

kitten 8 8 5 -4

lizard -3 -8 4 0

You could imagine manually constructing them:



Word Vectors provide a numerical representation
 of the meaning of a word
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word cuteness furriness animacy growth_stage

cat 5 7 7 6

kitten 8 8 5 -4

lizard -3 -8 4 0

houseplant 2 -4 2 2

You could imagine manually constructing them:



Word Vectors provide a numerical representation
 of the meaning of a word
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word cuteness furriness animacy growth_stage

cat 5 7 7 6

kitten 8 8 5 -4

lizard -3 -8 4 0

houseplant 2 -4 2 2

teddy_bear 6 6 -10 0

You could imagine manually constructing them:



● But this would be unthinkably time-consuming and arbitrary

● Solution: the distributional hypothesis
“You shall know a word by the company it keeps.”

-Firth 1957

● Intuitively:

○ “Cat” occurs near “furry”, “claws”, “cute”, “feline” in 
everyday speech, so does “kitten”, so they are similar.

Word Vectors provide a numerical representation
 of the meaning of a word

25



● So, use word vectors generated from co-occurrence statistics

● Methods described in more detail in SLP Ch. 6

○ Raw co-occurrence counts, TF-IDF, PPMI

Word Vectors provide a numerical representation
 of the meaning of a word

26Jurafsky and Martin Ch.6



● These are still relatively sparse; most words don’t co-occur 
with most other words, matrix is full of many zeroes

● Solution: Machine learning approach (e.g. word2vec)

● Generates compressed vectors of dimension ~500

○ Pro: learn dense vectors implicitly from natural language!
Con: dimensions become much less interpretable!

Word Vectors provide a numerical representation
 of the meaning of a word
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● “Embeddings” are 
the same as vectors

● Representation is
“embedded” 
in a shared 
“vector space” with 
other representations 
(i.e. they have comparable dimensions)

Word Vectors == Word embeddings
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Jurafsky and Martin Ch.6



● More and more on your own! Get creative!

● Key point!

○ If you want to use LDC or BYU data, 
let me know by Wednesday

● Please turn in on time! March 15th, where you’re at

○ For grading purposes, but I’m always available to talk 
more later if you keep working on it!

Final Assignment
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