LING 331
Text Processing for Linguists

Week 10

Python for Text 2 (and Beyond)

Roadmap for Our Last Two Days

Wednesday 3/5

- Assignment 6 FYIs
- Content:

Dependency Parsing

WordNet

Word Vectors

• Final Assignment

Monday 3/10

- Assignment 6 Notes
- Content:

Classification

- Final Self-Evaluation
- Where To Go From Here

Notes from Assignment 6

- Run POS taggers (and other models) on full sentences What tag is "run" if we have:
 - Just "run"
 - Verb
 - "I went on a run"
 - Noun

Notes from Assignment 6

- Careful with negative indexing!
- In left_adjectives:

```
for idx, token in enumerate(doc):
   if token.text == target_word and
        doc[idx - 1].tag_ == 'JJ':
        adj counts[doc[idx - 1].text] += 1
```

Classification!

Is this spam?

YOUU Have Been PAID (a) Check Yourr Account-Now (b) \$ \$1000.00 \$ User ID#372-75784 D Span x CashAP \$ uqaxeuhkmhorygq@extentor.help via pm.mtasv.net Sat, Mar 18, 11:08 PM to contigome -THIS MESSAGE WAS SENT FROM A TRUSTED SENDER. CONGRATULATIONS ****@gmail.com! A.balance..0F \$1000.00 Is AVAILABLE F0R..your *CashApp*.Accountt Thiss.TRANSACTION.may.0nly.appearr. 0n.your.ACC0UNTT..afterr. VALIDATE.your.Info. PAYOUT: \$1000.000 03/2023 FUNDING.For: **** EMAIL: ****@gmail.com **Confirm Here** Balance Amount: \$1000.00 **PAYOUT** SIGNATURE Memo

Is this spam?

URGENTLY

Samir Khuller <drwhitneywhitaker@gmail.com>
To: ○ Rob Voigt

0

Mon 4/3/2023 10:34 AM

Hello,

Are you in the office?

Samir Khuller

Chair, Department of Computer Science

Office: Mudd Room 3017

Phone: 847-491-2748

Email: samir.khuller@northwestern.edu

Classification is the task of assigning labels

Which is spam?

Congrats Andy Spellman!!!! You have won the sweepstakes!!!
Click here to receive your FREE \$50 Costco gift card!

Andy Spellman,

Thank you for your purchase of a \$50 Costco giftcard. Your order details are listed below.

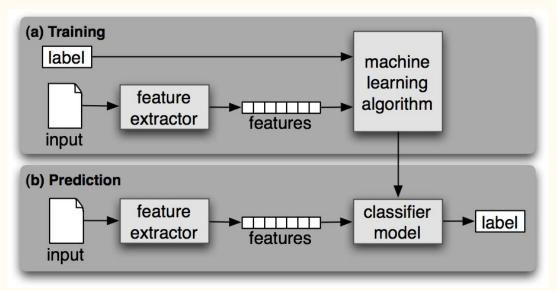
Classification is the task of assigning labels

Basic approach: rule-based!

Rules based on combinations of words or other features

• spam: black-list-address OR

("dollars" AND "you have been selected")


Accuracy can be high

If rules carefully refined by expert

But building and maintaining these rules is expensive

Classification is the task of assigning labels

• Use known input-label pairs to train an algorithm to decide which category a previously unseen input belongs to

Features are leveraged to make predictions

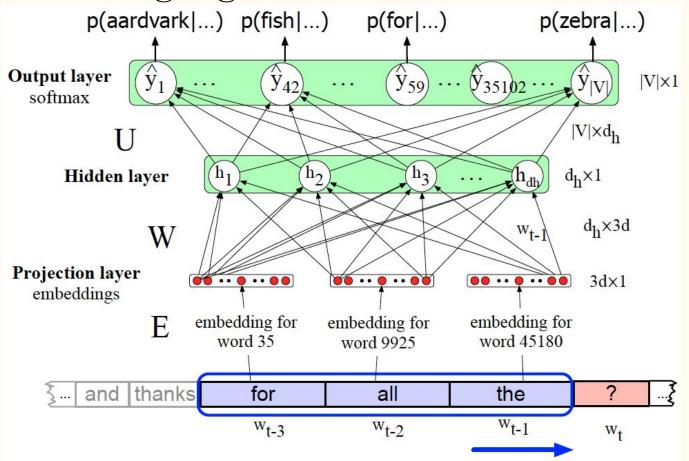
- Features can take many forms:
 - Counts of particular words
 - \circ Counts of n-grams
 - multi-word phrases of length *n*: e.g. trigrams are three-word phrases ("so it goes")
 - Numerical values (e.g., average concreteness)
 - Word vector dimensions
- Each is part of a mathematical representation of a document

Features are leveraged to make predictions

• "Learning" is most frequently the process of assigning numerical weights to each feature

NLTK movie review classification example:

https://www.nltk.org/book/ch06.html


But, hand-engineered features are sort of out of date

• Neural networks / LLMs start from an abstract feature set induced from data (like word embeddings)

• ... and induce intermediary features from the data

• Key task is Language Modeling: given some context, predict the next word or a masked-out word

Neural Language Model

Why Neural LMs work better than N-gram LMs **Training data:**

We've seen: I have to make sure that the cat gets fed.

Never seen: dog gets fed

Test data:

I forgot to make sure that the dog gets ____

N-gram LM can't predict "fed"!

Neural LM can use similarity of "cat" and "dog" embeddings to generalize and predict "fed" after dog

Where To Go From Here

Congratulations!

You are all officially computational linguists!

Programming is very useful

• The skills you've learned are broadly applicable to linguistic and non-linguistic applications

• Try out your new computational tools and thinking in other parts of your life!

Other things you are now well-equipped to start learning

- Version control (git, see <u>these lectures</u>)
- Data science (see e.g. pandas and numpy)
- Machine learning (see e.g. <u>scikit-learn</u>)
- Web scraping (see e.g. <u>BeautifulSoup</u>)
- Dynamic web programming (see e.g. <u>Flask</u> or <u>Django</u>)
- App development (see e.g. <u>Kivy</u>)
- Game programming (see e.g. <u>pygame</u> or <u>Godot</u>)

Natural Language Processing (NLP) and Computational Linguistics (CL)

• NLP = more engineering, everything is a "task", focus on system performance

• CL = computational social science, using and developing
NLP tools for social, linguistic, humanistic questions

• No need, of course, to strictly pick a camp!

AI and LLMs

Modern "neural networks" - I recommend this book:
 https://d2l.ai/

• and these more advanced lectures (Stanford CS224N):

https://www.youtube.com/playlist?list=PLoROMvodv4rO SH4v6133s9LFPRHjEmbmJ

AI and LLMs

• Or more practically:

https://huggingface.co/docs/transformers/en/tasks/sequen ce_classification

Closing out the Class!

Walkthrough of Final Self-Evaluation

Thank you!

It's been a privilege and a joy to teach this class.