
Week 3
Basic Python 1

1

LING 331:
Text Processing for Linguists

Abstraction is wonderful! … and terrifying.

2

xkcd.com

● Regular expressions are tricky --
these are the pattern inputs to sed and grep --
we will go over in much more detail later in the quarter!

Notes from Assignment 2

3

● Whitespace is invisible and therefore tricky
e.g. top word = 46401 instances of ‘ ’
Can run another sed to remove this, or a one-command fix:

sed 's/ +/\n/g'

● Similar, sed '/^$/d' works but misses lines with spaces

● [0-9] is all digits (doesn’t work to do e.g. [0-100])

Notes from Assignment 2

4

Quoting!

● Be very careful with quoting! And (), [], etc.
Each ' requires another ' to close it,
each " requires another " to close it.

● Syntax highlighting helps a lot.

Notes from Assignment 2

5

Quoting!

● Double quotes interpret arguments (e.g. "$1") and escapes,
Single quotes leave them be.
https://stackoverflow.com/questions/6697753/difference-between-single-and-d
ouble-quotes-in-bash

● Whitespace (spaces, tabs, newlines) is
interpreted as a delimiter between arguments!
(See TLCL Ch. 7)

Notes from Assignment 2

6

https://stackoverflow.com/questions/6697753/difference-between-single-and-double-quotes-in-bash
https://stackoverflow.com/questions/6697753/difference-between-single-and-double-quotes-in-bash

Stream Management!

● Be aware that almost all text filter commands can accept the
input file as an argument (e.g. sed 's/sad/happy/g' input.txt)

● Careful with > (write) vs. >> (append)

● > and >> end the stream (alternatively can use tee)

Notes from Assignment 2

7

● Better to not generate auxiliary files, e.g.:
grep love shakes.txt > lovelines.txt

wc -l lovelines.txt

● This works, but adds cruft and obscures things later - if we
come back in a day, how exactly did we get lovelines.txt?
Once it’s created we lose the “story,” if you will.
Thus piping!

grep love shakes.txt | wc -l

Notes from Assignment 2

8

● Don’t call programs like nano / less from a script:
it’ll stop execution of the script until you close that instance.

nano/less are not text filters like grep/sed/tr/sort/etc.

○ They can *receive* input from stdin,
they just don’t pass it through to stdout

● This and all further assignments should be runnable!
(don’t write the answer, write the code that generates it)

Notes from Assignment 2

9

● If you tried “Unix for Poets” you may have
encountered some version differences!

● The standard `tr` worked differently some years ago!

● Welcome to version differences - an eternal problem.

Notes from Assignment 2

10

… and now for something
completely different!

11

Welcome to Python world!

What is the “stuff” of programming?

12

Generally, we are manipulating data
in ever-more-complex ways

We think of that data as a set of objects,
like objects in the real world

Variable Names are symbolic names
that point to persistent bits of data

(a lot like file names)

Variable Types define different sorts of data

Numeric

integer

42

float

42.0

13

Sequence

list

['y', 2, False]

tuple

(6, ‘b’, 19.7)

Text

string

'hello!'

(next week)

Set set

Mapping dict{}

Truthy

boolean

True, False

None

 None

Statements are units of code that do something

14

Assignment (=)

year = 2020 # integer

mssg = 'hooray!' # string

e = 2.71828 # float

Statements are units of code that do something

15

Equality Testing (==, !=, >, <, >=, <=)

>>> year != 2016
True

>>> mssg == 'howdy!'
False

>>> e <= 3
True

Statements are units of code that do something

16

Arithmetic (+, -, *, /, **)

>>> year * 3
6060

>>> 'hip hip ' + mssg
'hip hip hooray!'

>>> e / 2
1.35914

Incrementing (arithmetic plus assignment)

>>> year += 18
>>> year
2038

>>> mssg *= 5
>>> mssg
'hooray!hooray!hooray!hooray!hooray!'

Statements are units of code that do something

17

Functions - a three-step process

18

1. Take some input

Often called “arguments” to the function (can be no args)

2. Do some computation

Often called the “body” of the function

3. Produce some output

Often called “return”ing data (can be None)

Functions take input, do some computation, produce output

19

Important Built-ins 1

print(x) # print representation of x

help(x) # detailed help on x

type(x) # return type of x

dir(x) # list methods and attributes of x
(methods are functions bound to objects)
(attributes are variables bound to objects)

Functions take input, do some computation, produce output

20

Important Built-ins 2

sorted(x) # return sorted version of x

min(x), max(x) # mathematical operations
sum(x) # on sequences

int(x), float(x), bool(x) # 'casting', a.k.a.
list(x), tuple(x), str(x) # type conversion

Defining New Functions

def my_function(arg1, arg2, arg3):
 # all my amazing
 # code goes here
 return 42

def keyword
 function name arguments

body
indented
one level

Functions take input, do some computation, produce output

21

Control Flow organizes the order code executes

22

Conditionals - if, elif, else - enter section if condition is met
>>> x = int(input("Please enter an integer: "))
Please enter an integer: 42
>>> if x < 0:
... print('Negative!')
... elif x == 0:
... print('Zero!')
... else:
... print('Positive!')
Positive!

Control Flow organizes the order code executes

23

Loops - for … in - loop over items of a sequence
>>> # Measure some strings:
... words = ['cat', 'window', 'defenestrate']
>>> for w in words:
... print(w, len(w))
...
cat 3
window 6
defenestrate 12

Control Flow organizes the order code executes

24

Loops - for … in - loop over numbers by using range
>>> for i in range(5):
... print(i)
…
0
1
2
3
4

Control Flow organizes the order code executes

25

Loops - for … in - for reading lines in a file with open
>>> for line in open('shakes.txt'):
... print(line)
1609

THE SONNETS

by William Shakespeare

Control Flow organizes the order code executes

26

Loops - while - loop until condition is met
>>> # Fibonacci: sum of two elements defines the next
... a, b = 0, 1
>>> while a < 10:
... print(a, end=' ')
... a, b = b, a+b
... print('')
...
0 1 1 2 3 5 8

Whitespace is obligatory for demarcating code blocks

27

The body of
function definitions

and
control flow elements

must be indented
by one level

Recommended to be
--\t-- one tab
. . . . or four spaces

Whitespace is obligatory for demarcating code blocks

28

● Most text editors deal with whitespace semi-intelligently

● E.g., emacs sees that a file ends in .py,
and interprets the text as python code (syntax highlighting)
and tries to make the whitespace consistent

● Pressing the [Tab] key will jump to the logical indent.
But be careful e.g. closing control flow statements,
try pressing [Tab] multiple times.

String and List Indexing

29

>>> job_title = 'LINGUIST'

Char (or List Item) L I N G U I S T

Index 0 1 2 3 4 5 6 7

Reverse Index -8 -7 -6 -5 -4 -3 -2 -1

>>> job_title[3:-1]
'GUIS' # inclusive of start, not inclusive of end

>>> job_title[:5]
'LINGU' # can leave off start or end

Syntax:
sequence[start:end]

Object-oriented Programming

30

We categorize real-world objects by their

properties (facts about them)
“Scissors have two loops to hold

and two blades that open
when you separate the loops.”

and affordances (what we can do with them)
“We use scissors to cut things.”

Object-oriented Programming

31

In Python, objects
of a certain type have certain

attributes (associated variables/metadata)
and methods (associated functions)

>>> lil_snippy = PairOfScissors()
>>> lil_snippy.size
15
>>> lil_snippy.cut(robs_finger)
“Ow!”

Object-oriented Programming

32

In Python (and many other OOP languages),
everything is officially an object. Even functions!

Many types come with very informative attributes
and useful methods!

OOP is a “programming paradigm.” There are others!
At this stage you don’t need to worry about that.

String Methods are functions associated with string objects

33

strip, rstrip, lstrip
>>> s = ' my sTrInGggg!\n'
>>> s = s.strip()
>>> s
'my sTrInGggg!'
>>> s = s.strip('!').strip('g')
>>> s
'my sTrInG'

upper, lower
>>> s = s.lower()
>>> s
'my string'

find
>>> s.find('str')
3

replace
>>> s.replace('my','your')
'your string'

startswith, endswith
>>> s.startswith('balloon')
False

List Methods are functions associated with list objects

34

append
>>> x = [1, 4, 9, 16]
>>> x.append(9)
>>> x
[1, 4, 9, 16, 9]

index
>>> x.index(4)
1

remove deletes the first occurrence
>>> x.remove(9)
>>> x
[1, 4, 16, 9]

pop removes and returns the last element
>>> x.pop()
9
>>> x
[1, 4, 16]

Strings and Lists

35

Strings are like sequences of characters

Key difference: lists are mutable strings are immutable
can be changed cannot be changed
my_list[3] = 'yes' my_str[3] = 'n'

String methods to convert to/from lists
split join
>>> s = 'my string' >>> ' '.join(['your','string'])
>>> s.split() 'your string'
['my', 'string']

Assignment Walkthrough

36

Answers are short but can be tricky!

Think Decomposition
 how can I break this into smaller, doable sub-problems?

Tests provided after each function! (non-exhaustive)

Assignment Walkthrough

37

You must do:
 module load python/anaconda3.6
every time you login to Quest
(or include this line in your .bashrc)

Run the assignment with:
 python assignment3.py

The assignment must run when you are done!

