Week 9

Python for Text (and Beyond)

Roadmap for Our Last Two Days

Wednesday 3/2 Monday 3/7

e Assignment 6 FYIs e Assignment 6 Notes

e (ontent: e (ontent:
Dependency Parsing Classification
WordNet e [inal Self-Evaluation
Word Vectors e Where To Go From Here

e [Kinal Assignment

Notes for Assignment 6

e -PRON- is a spaCy idiosyncrasy
o Some weird version issues though...
e Stemming vs. Lemmatization
o Stemmers are a much more coarse heuristic algorithm

o Lemmatizers are machine learning models
— more computationally expensive, but not crazily so

Notes for Assignment 6

Sometimes you get a nice docstring, comments, etc
sometimes you don’t!

Figuring out types of objects:

o type(obj), dir(obj), help(obj), print (obj)
If you’re running into trouble this is the first thing to try!
With dicts, useful also to print (d.keys ())

E.g. sentences in 2.g., what’s in a row in 5.a.

Notes for Assignment 6

e Nested dictionaries: dicts are key-value,
but value can be anything, including another dict

intensity = {}
do some stuff

1f not word 1n 1ntensity:
intensity[word] = {}

do some stuff

intensity[word] [emotion] = score

Notes for Assignment 6

¢ left adjectives:
This is another common sort of programming meme,
requires a sort of “spatial orientation” / “navigation” skill

® cnumerate to maintaln an index,
when current word matches, check index - 1

e Working with dependency trees is a yet-trickier
version of this meme!

Dependency Parsing

Words are connected to other words with a tag
representing their relationship

Main verb is the
sentence root =
Directed:
head —dependent 7L 5 W
Tag is role the played https://spacy.io/usage/visualizers

by the dependent https://explosion.ai/demos/displacy 7

https://spacy.io/usage/visualizers
https://explosion.ai/demos/displacy

Dependency Parsing

e Most common formalism for syntax in Comp Ling / NLP
o Interesting contrast with formal syntax!

e Partially because of computational feasibility

e Very exciting project: Universal Dependencies

o https://universaldependencies.org/

o (you can contribute!)

https://universaldependencies.org/

Dependency Parsing
e spaCy does dependency parsing inherently
(if you don’t disable "parser")

e Access dependency tag with token.dep
List of children with token.children

e More info:
https://spacy.io/usage/linguistic-features

https://spacy.io/usage/linguistic-features

WordNet

Represents semantic

relationships in a
large network

Allows to calculate
e.g. “path similarity’

Play with directly:

Y

{wheeled vehicle} <has-part>{brake} 7 p
¢ 6/)‘7&‘0‘? ot 0“\;(’0 f gfé
i b Lagy slow X & .
- 7 B Nfyheel) & %
| " %o, g v
{splasher} ’60/ i {quick, speedy}
{J

{wagon, {self-propelled vehicle}

waggon}
5 {speed, swiftness, fastness}
> %
4 % Ta
7
-3
£ i i |
{motor vehicle} {tractor} {locomotive, engine, {acceleration}
locomotive engine,
railway locomotive}
g %
> ®

<€ sazIfeurwiou—

‘a{car window}
{car, auto, automobile, __ Thas-Par

{golf cart, !
golfcart} machine, motorcar}
/ N {accelerate, speed, speed up}
2 £ 663-\ &
e] 6,.’ Q,\.\(\'
,\L‘g’ RN 6'\\0
{convertible} y {accelerator, &
{air bag} accelerator pedal, 4

gas pedal, throttle}

1INV MO WordNet viewed as a graph. Figure from Navigli (2016).

http://wordnetweb.princeton.edu/perl/webwn

10

http://wordnetweb.princeton.edu/perl/webwn

WordNet

® NLTK has an interface for working with WordNet

e ... butit’s not the most intuitive thing in the world

e More info here:
https://www.nltk.org/howto/wordnet.html

11

https://www.nltk.org/howto/wordnet.html

Sparsity
e Language is creative, flexible, and ever-evolving;
there are many ways to say the “same thing”
e Translations for instance! But even within a language.
Q: Where is he?
He went to the store
Oh, Johnny left to get groceries

Out to grab the essentials

12

Sparsity

o Zipf’s Law:

If you order words by frequency rank, e.g.

1 the L
Counts will be So ‘the” will
2 and e appear roughly
3 I : Y 'J.” 2x as often as
proportional "¢ ;¢ \which will
¢ to to rank! appear 2x as
5 of _ often as ‘I, ete

13

Zipt’s
Law

Across

languages on
Wikipedia

https://en.wikipedia.ora/wiki

[Zipf%27s_law

log(frecuency)

14

10

12

Zipf's law

log(rank)

~—— Esperanto German
~—— Latin Malay
- Ukrainian English
- Czech Slovak
= - Italian Romanian
- Spanish Polish
- Slovene Uzbek
Finnish - French
Hebrew - Basque
B - Turkish - Serbian
- Hungarian - Dutch
- Galician - Catalan
- Danish - Indonesian
i - Belarusian - Lithuanian
Portuguese - Croatian
1 1
0 6 8 14

https://en.wikipedia.org/wiki/Zipf%27s_law
https://en.wikipedia.org/wiki/Zipf%27s_law

Sparsity
Closed-Class Words

e a.k.a. ‘function words’

e Includes pronouns, articles,
conjunctions, particles

e Rarely gain new members

e Very dense!

e Perform grammatical and
discourse functions

Open-Class Words

a.k.a. ‘content words’
Includes nouns, verbs,
adjectives, etc.

Frequently gain new members
Very sparse!

Perform semantic functions,

i.e. carry most of the meaning

Sparsity

'cat' != 'cat,' != 'CAT' != ‘Cat’ != ‘cats’

We’ve seen some ways to deal with this:

Stripping punctuation

Downcasing ... and more abstractly:
Tokenization e POS tagging
Stemming e Lexicons

Lemmna e (concreteness, emotion)

e Syntactic roles and relations

16

Sparsity
But what if we want a different semantic operation than a

pure exact match?

For instance, how can we know if words are more or less
similar?

Answer: create a numerical representation that can be
operated on mathematically - word vectors!

17

Word Vectors

® Key mathematical notes:

O

O

A vector is simply a list of numbers

Those numbers form an abstract representation of a word

Each “dimension” refers to the number at a certain index

Dimensions can be meaningful or not depending on how
the vectors are constructed

18

Word Vectors

You could imagine manually constructing them:

‘ cuteness furriness animacy

growth_stage

19

Word Vectors

You could imagine manually constructing them:

cuteness furriness animacy

cat 5 7 7

growth_stage
6

20

Word Vectors

You could imagine manually constructing them:

cuteness furriness animacy growth_stage

cat 5 7 7 6

kitten 8 8 5 -4

21

Word Vectors

You could imagine manually constructing them:

cuteness furriness animacy growth_stage
cat S 7 I 6
kitten 8 8 3 -4

lizard -3 -8 4 0

Word Vectors

You could imagine manually constructing them:

cat
kitten
lizard

houseplant

cuteness

furriness

animacy

I

)
4
2

growth_stage

23

Word Vectors

You could imagine manually constructing them:

cuteness furriness animacy growth_stage
cat S 7 I 6
kitten 8 8 3 -4
lizard -3 -8 4 0
houseplant 2 -4 2 2
teddy bear 6 6 -10 0

Word Vectors

® But this would be unthinkably time-consuming and arbitrary

® Solution: the distributional hypothesis

“You shall know a word by the company it keeps.”
-Firth 1957

e Intuitively:

7« 7«

o “Cat” occurs near “furry”, “claws”, “cute”, “feline” in
everyday speech, so does “kitten”, so they are similar.

Word Vectors

® So, use word vectors generated from co-occurrence statistics

e Methods described in more detail in SLP Ch. 6

o Raw co-occurrence counts, TF-IDF, PPMI

aardvark ... computer data result pie sugar
cherry 0 2 8 9 442 25
strawberry 0 0 0 1 60 19
digital (o 1670 1683 85 5 4)
information 0 33925 3982 378 S5 13

Co-occurrence vectors for four words in the Wikipedia corpus, showing six of
the dimensions (hand-picked for pedagogical purposes). The vector for digital is outlined in
red. Note that a real vector would have vastly more dimensions and thus be much sparser.

2

Q ‘

T 500 —

] = cherry

2 ; digital information

g i - —_—— e I%>A
Q 500 1000 1500 2000 2500 3000

Dimension 2: ‘computer’

A (rough) graphical demonstration of cosine similarity, showing vectors for
three words (cherry, digital, and information) in the two dimensional space defined by counts
of the words computer and pie nearby. Note that the angle between digital and information is
smaller than the angle between cherry and information.

Word Vectors

® These are still relatively sparse; most words don’t co-occur
with most other words, matrix is full of many zeroes

e Solution: Machine learning approach (e.g. word2vec)
e (enerates compressed vectors of dimension ~500

o Pro: learn dense vectors implicitly from natural language!
Con: dimensions become much less interpretable!

27

Word Vectors == Word embeddings

® “Embeddings” are

the same as vectors

e Representation is
“embedded”
in a shared
“vector space” with

(i.e. they have comparable dimensions)

to

that
a
than

by
now
i
with

not good
- bad
'S dislike worst
incredibly bad
are worse
you
is
very good incredibly good
amazing fantastic
terrific s wonderful
good

IO CA Ml A two-dimensional (t-SNE) projection of embeddings for some words and
phrases, showing that words with similar meanings are nearby in space. The original 60-

0 th er rep res ent ath ns dimensional embeddings were trained for sentiment analysis. Simplified from Li et al. (2015).

28

Final Assignment
e More and more on your own! Get creative!
o Key point!

o If you want to use LDC or BYU data,
let me know by Wednesday

e Please turn in on time! March 15th, where you’re at

o For grading purposes, but I'm always available to talk
more later if you keep working on it!

29

