
Week 9
Python for Text (and Beyond)

1

LING 331
Text Processing for Linguists

Wednesday 3/2

● Assignment 6 FYIs
● Content:

Dependency Parsing
WordNet
Word Vectors

● Final Assignment

Roadmap for Our Last Two Days

2

Monday 3/7

● Assignment 6 Notes
● Content:

Classification
● Final Self-Evaluation
● Where To Go From Here

● -PRON- is a spaCy idiosyncrasy
○ Some weird version issues though...

● Stemming vs. Lemmatization
○ Stemmers are a much more coarse heuristic algorithm

○ Lemmatizers are machine learning models
= more computationally expensive, but not crazily so

Notes for Assignment 6

3

● Sometimes you get a nice docstring, comments, etc
sometimes you don’t!

● Figuring out types of objects:
○ type(obj), dir(obj), help(obj), print(obj)

● If you’re running into trouble this is the first thing to try!

● With dicts, useful also to print(d.keys())

● E.g. sentences in 2.g., what’s in a row in 5.a.

Notes for Assignment 6

4

● Nested dictionaries: dicts are key-value,
but value can be anything, including another dict

intensity = {}

... # do some stuff

if not word in intensity:
intensity[word] = {}

... # do some stuff

intensity[word][emotion] = score

Notes for Assignment 6

5

● left_adjectives:
This is another common sort of programming meme,
requires a sort of “spatial orientation” / “navigation” skill

● enumerate to maintain an index,
when current word matches, check index - 1

● Working with dependency trees is a yet-trickier
version of this meme!

Notes for Assignment 6

6

● Words are connected to other words with a tag
representing their relationship

● Main verb is the
sentence root

● Directed:
head → dependent

● Tag is role the played
by the dependent

Dependency Parsing gives a syntax representation

7

https://spacy.io/usage/visualizers

https://explosion.ai/demos/displacy

https://spacy.io/usage/visualizers
https://explosion.ai/demos/displacy

● Most common formalism for syntax in Comp Ling / NLP

○ Interesting contrast with formal syntax!

● Partially because of computational feasibility

● Very exciting project: Universal Dependencies

○ https://universaldependencies.org/

○ (you can contribute!)

Dependency Parsing gives a syntax representation

8

https://universaldependencies.org/

● spaCy does dependency parsing inherently
(if you don’t disable "parser")

● Access dependency tag with token.dep_
List of children with token.children

● More info:
https://spacy.io/usage/linguistic-features

Dependency Parsing gives a syntax representation

9

https://spacy.io/usage/linguistic-features

● Represents semantic
relationships in a
large network

● Allows to calculate
e.g. “path similarity”

● Play with directly:

http://wordnetweb.princeton.edu/perl/webwn

WordNet is a lexical resource for semantic relations

10

http://wordnetweb.princeton.edu/perl/webwn

● NLTK has an interface for working with WordNet

● … but it’s not the most intuitive thing in the world

● More info here:
https://www.nltk.org/howto/wordnet.html

WordNet is a lexical resource for semantic relations

11

https://www.nltk.org/howto/wordnet.html

● Language is creative, flexible, and ever-evolving;
there are many ways to say the “same thing”

● Translations for instance! But even within a language.

Q: Where is he?

He went to the store

Oh, Johnny left to get groceries

Out to grab the essentials

Sparsity is a property of natural language

12

● Zipf’s Law:

If you order words by frequency rank, e.g.

 1 the
 2 and
 3 I
 4 to
 5 of

Sparsity is a property of natural language

13

 So ‘the’ will
appear roughly
2x as often as

‘and’, which will
appear 2x as

often as ‘I’, etc

Counts will be
inversely

proportional
to rank!

14

Zipf’s
Law
Across

languages on
Wikipedia

https://en.wikipedia.org/wiki
/Zipf%27s_law

https://en.wikipedia.org/wiki/Zipf%27s_law
https://en.wikipedia.org/wiki/Zipf%27s_law

Closed-Class Words
of, she, or, the, no, and

● a.k.a. ‘function words’
● Includes pronouns, articles,

conjunctions, particles
● Rarely gain new members
● Very dense!
● Perform grammatical and

discourse functions

Sparsity is a property of natural language

15

Open-Class Words
walrus, fleek, margarine, poindexter

● a.k.a. ‘content words’
● Includes nouns, verbs,

adjectives, etc.
● Frequently gain new members
● Very sparse!
● Perform semantic functions,

i.e. carry most of the meaning

'cat' != 'cat,' != 'CAT' != ‘Cat’ != ‘cats’

We’ve seen some ways to deal with this:

● Stripping punctuation
● Downcasing
● Tokenization
● Stemming
● Lemmatization

Sparsity is a problem for computing with language

16

… and more abstractly:
● POS tagging
● Lexicons

(concreteness, emotion)
● Syntactic roles and relations

But what if we want a different semantic operation than a
pure exact match?

For instance, how can we know if words are more or less
similar?

Answer: create a numerical representation that can be
operated on mathematically - word vectors!

Sparsity is a problem for computing with language

17

● Key mathematical notes:

○ A vector is simply a list of numbers

○ Those numbers form an abstract representation of a word

○ Each “dimension” refers to the number at a certain index

○ Dimensions can be meaningful or not depending on how
the vectors are constructed

Word Vectors provide a numerical representation
 of the meaning of a word

18

Word Vectors provide a numerical representation
 of the meaning of a word

19

word cuteness furriness animacy growth_stage

You could imagine manually constructing them:

Word Vectors provide a numerical representation
 of the meaning of a word

20

word cuteness furriness animacy growth_stage

cat 5 7 7 6

You could imagine manually constructing them:

Word Vectors provide a numerical representation
 of the meaning of a word

21

word cuteness furriness animacy growth_stage

cat 5 7 7 6

kitten 8 8 5 -4

You could imagine manually constructing them:

Word Vectors provide a numerical representation
 of the meaning of a word

22

word cuteness furriness animacy growth_stage

cat 5 7 7 6

kitten 8 8 5 -4

lizard -3 -8 4 0

You could imagine manually constructing them:

Word Vectors provide a numerical representation
 of the meaning of a word

23

word cuteness furriness animacy growth_stage

cat 5 7 7 6

kitten 8 8 5 -4

lizard -3 -8 4 0

houseplant 2 -4 2 2

You could imagine manually constructing them:

Word Vectors provide a numerical representation
 of the meaning of a word

24

word cuteness furriness animacy growth_stage

cat 5 7 7 6

kitten 8 8 5 -4

lizard -3 -8 4 0

houseplant 2 -4 2 2

teddy_bear 6 6 -10 0

You could imagine manually constructing them:

● But this would be unthinkably time-consuming and arbitrary

● Solution: the distributional hypothesis
“You shall know a word by the company it keeps.”

-Firth 1957

● Intuitively:

○ “Cat” occurs near “furry”, “claws”, “cute”, “feline” in
everyday speech, so does “kitten”, so they are similar.

Word Vectors provide a numerical representation
 of the meaning of a word

25

● So, use word vectors generated from co-occurrence statistics

● Methods described in more detail in SLP Ch. 6

○ Raw co-occurrence counts, TF-IDF, PPMI

Word Vectors provide a numerical representation
 of the meaning of a word

26Jurafsky and Martin Ch.6

● These are still relatively sparse; most words don’t co-occur
with most other words, matrix is full of many zeroes

● Solution: Machine learning approach (e.g. word2vec)

● Generates compressed vectors of dimension ~500

○ Pro: learn dense vectors implicitly from natural language!
Con: dimensions become much less interpretable!

Word Vectors provide a numerical representation
 of the meaning of a word

27

● “Embeddings” are
the same as vectors

● Representation is
“embedded”
in a shared
“vector space” with
other representations
(i.e. they have comparable dimensions)

Word Vectors == Word embeddings

28

Jurafsky and Martin Ch.6

● More and more on your own! Get creative!

● Key point!

○ If you want to use LDC or BYU data,
let me know by Wednesday

● Please turn in on time! March 15th, where you’re at

○ For grading purposes, but I’m always available to talk
more later if you keep working on it!

Final Assignment

29

