1. Measurements of the radial recession velocities of five galaxies in a cluster give velocities of 9700, 8600, 8200, 8500, and 10,000 km s\(^{-1}\).

 a. What is the distance to the cluster if the Hubble parameter is \(H_0 = 72 \) km s\(^{-1}\) Mpc\(^{-1}\)?

 Hint: Use the Hubble law for the average velocity of the members in the cluster.

 b. Estimate, to an order of magnitude, the mass of the cluster if every galaxy is projected roughly half a degree from the cluster center. *Hint: Use the virial theorem*

2. **The age of the Universe** For a Hubble constant of \(H_0 = 72 \) km s\(^{-1}\) Mpc\(^{-1}\), calculate the Hubble time \(t_H = H_0^{-1} \).

3. **The critical density**

 a. Consider the Friedmann equation: \(\left(\frac{\dot{R}}{R} \right)^2 = H^2 = \frac{8\pi G}{3} \rho - \frac{k c^2}{R^2} \). What is the critical density \(\rho_c \) that gives a marginally bound Universe. Assume: \(H_0 = 72 \) km s\(^{-1}\) Mpc\(^{-1}\) and flat Universe.

 b. Estimate the stellar mass density \(\rho_* \). Assume that the density of galaxies is \(2 \times 10^{-2} \) Mpc\(^{-3}\) and that in each galaxy there are \(5 \times 10^{10} \) stars, and that each star has an average mass of \(0.5 \) M\(_\odot\). What is the ratio \(\frac{\rho_*}{\rho_c} \).

4. The proper distance to a source is \(rR_0 \) where \(r \) is the comoving distance and \(R \) is the scale factor.

 a. Use the relation between redshift and the scale factor, i.e., \(1 + z = \frac{R}{R(t)} \) and show that \(\frac{1}{R(t)} = \frac{1}{R_0} - \frac{1}{R_0} H_0 (t - t_0) \). *Hint: Use Taylor series about the point \(t = t_0 \) (the age of the Universe today) to the first order*

 b. Consider the geodesic expression: \(c dt = R(t) \frac{dx}{\sqrt{1 - k x^2}} \), and assume a flat Universe. Calculate to the first order the physical distance today, \(rR_0 \), in terms of \(z \) and Hubble time \(t_0 \). *Hint: Use the above approximation, and approximate to the first order.*