Exoplanets!

Yoram Lithwick

Known planets before I990:

Giordano Bruno
(burned at the stake in 1600)

Does life exist elsewhere?

Is the Solar System special?

How do planets form?


```
First discovery.
    of extrasolar
planet (in I995):
    5l Pegasi b
    Jupiter-mass
Orbital period: 4 days!
```

```
"Hot Jupiter"
    1000% C
```


Detection method I: Radial Velocity ("RV")
stellar spectrum

Orbital period: 4.2 days
 Mass: $0.4 \times$ Jupiter's mass

there will be lesson about RV

Planet discoveries by 2009:

For life, probably need:

- rocky planet

For life, probably need:

- rocky planet
- liquid water
liquid water ("habitable zone")

- RV probably can't find such planets, but:

Detection method 2: Transit

HD 209548 (Brown et al. 'or)

Kepler Telescope

- Launched in 2009, for $\$ 500 \mathrm{M}$
- Stared at 150,000 stars, waiting for transits

- Expected to find a few Earth-like planets around Sun-like stars (assuming all other stars have planetary systems like ours)

Kepler Telescope

- Launched in 2009, for $\$ 500 \mathrm{M}$
- Stared at 150,000 stars, waiting for transits

- Expected to find a few Earth-like planets around Sun-like stars
- Number actually found: o

6 planets

- Whole system fits within Venus's orbit
- All 6 are larger than Earth and smaller than Neptune
- And, they all transit

The Kepler Orrery III $\quad \mathrm{t}[\mathrm{BuD}=2455215$

Circumbinary planets

Kepler's Final Tally

- mass: between Earth \& Neptune (mostly) periods: inward of Mercury (mostly)
- around 30% of stars have "Kepler planets"

What are these planets made of?

- Kepler measures:
planet radius (transit depth)
\& period/semimajor axis (transit times)

- Would also like to know: mass

gas?

Transit Time Variations (TTV)

Transit Time Variations (TTV)

Remove

Kepler 18
(Cochran et al. 'II)

Transit Time Variations (TTV)

Remove

$$
\begin{aligned}
& \mathrm{e}_{\mathrm{c}}=0[\pm 0.0003] \\
& \mathrm{M}_{\mathrm{c}}=\mathrm{I} 7 \mathrm{M}_{\text {Earth }}
\end{aligned}
$$

Kepler 18
(Cochran et al. 'ıı)

$$
e_{d}=0[\pm 0.0003]
$$

$$
M_{d}=I 6 M_{\text {Earth }}
$$

Density of 70 Exoplanets from TTV (Hadden \& Lithwick)

- Small ones rocky (or even denser)

Bigger ones covered in gas. Up to -50% of mass in gas. Surprising: closer to star than Mercury \& not much bigger than Earth.

Detection method 3: Direct Detection

Beyond mass, radius \& period

Next step: spectrum

Hat-P-2 $\overline{\mathrm{b}}$

- Hard to do for Kepler's planets (too far away)
- New telescope (TESS) just launched to find nearby candidates
- Biosignatures (oxygen?)...

Planet-forming Disks!

Formation of Hot Jupiters

- Jupiter-mass planets almost certainly formed outside i AU (Inside i AU: temperature too high \& star's gravity too strong)
- How did hot Jupiters "migrate" from >I AU to < O.IAU?

Hot Jupiters

2 types of migration scenarios:
r. Disk Migration

Planet forms in a gas disk, then is transported along as disk is accreted

2. Interplanetary chaos:

- Planet forms far from star, with companions

- Innermost planet's eccentricity is excited by other planets
- When planet comes close enough to star, strong tides are raised on planet, circularizing its orbit

Solar system also exhibits chaos
Earth's eccentricity

Solar system also exhibits chaos

Earth's eccentricity

Mercury's eccentricity

- Solar system unstable!

Lucky we haven't lost Mercury yet

How did "Kepler planets" form?

Two possibilities:

Migration

- Planets form far from star, then migrate inwards in gas disk

In situ

