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Secular changes brought about by tidal friction in the solar system are reviewed. The 
presence or absence of specific changes is used to bound the values of Q (the specific 
dissipation function) appropriate for the planets and satellites. It  is shown that the values 
of Q separate sharply into two groups. Values in the range from 10 to 500 are found for 
the terrestrial planets and satellites of the major planets. On the other hand, Q for the 
maior planets is always larger than 6 X 104. Estimates of tidal dissipation in the atmos- 
pheres of the Jovian planets lead to values of Q which are consistent with those we have 
calculated on the basis of secular changes in the satellites' orbits. However, it is difficult 
to reconcile these large Q's with the much smaller values obtained in laboratory tests of 
solids. Lyttleton's hypothesis that Pluto is an escaped satellite of Neptune is critically 
examined. Using the Q's we obtain for the major planets and their satellites, we show 
that any eccentricity that Triton's orbit may have possessed after a near encounter with 
Pluto would have been subsequently damped, thus accounting for its present near- 
circular orbit. 

~[. INTRODUCTION 

The  depar ture  of a t idal ly  dis tor ted b o d y  
f rom perfect  elast ici ty or fluidity is nea t ly  
summar ized  in terms of the  pa ramete r  Q. 
The  effective t idal  dissipation function,  Q-I, 
is defined b y  

Q-l=  1 ~ (  --~) 
2~E0 - dr, (:) 

where E0 is the m a x i m u m  energy stored in 
the  t idal  distort ion and  the integral  over 
-- dE/dr, the  rate  of dissipation, is the  energy 
lost during one complete cycle. 

1 Now at the Center for Radiophysics and Space 
Research, Cornell University, Ithaca, New York. 

The  mechanism of tidal friction is shown 
for a planet  in Fig. 1. The  potent ia l  field due 
to  a satellite m raises a t idal d is tor t ion on 
the ro ta t ing  planet  M. If  the  planet  were 
perfect ly elastic, the t idal dis tor t ion would 
be symmetr ica l  a b o u t  the  line of centers Mm,  
and  the  figure of the planet  would  ro ta te  
th rough  it. Bu t  the presence of friction in 
the  planet  will produce a delay in the  t ime 
of high tide. If  the satellite's revolut ion 
period is longer t h a n  the p lanet ' s  ro ta t ion  
period, the  lagging tide is carried ahead  of 
the  satellite by  an  angle e. The  relation of 
Q to  this lag angle e is (MacDonald ,  1964, 
Eq. 130) 

1/Q = t an  2e, (2) 

or, since Q is general ly large, Q-1 ~ 2~. 
375 
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FIG. 1. The force of attraction between the satellite m and the nearer tidal bulge A exceeds that  between 
m and B; a component of the net torque retards the rotation of the planet M and accelerates the satellite 
in its orbit. 

The asymmetrical position of lhe tidal 
bulges with respect to the line of centers, 
Mm, introduces a net torque between the 
planet and satellite. Because the satellite is 
a t t racted more strongly by  the near side 
bulge which is leading it in longitude, the 
torque acts to transfer angular momentum 
and energy from the planet's rotation into 
the satellite's orbital revolution. The excess 
planetary spin energy is dissii.~ated as heat 
in the planet's interior. As a familiar exam- 
ple, the Earth 's  rotation is gradually slowing 
down while the lunar semimajor axis is 
expanding. In addition to affecting the 
satellite's semimajor axis, the frictionally 
retarded tides on the planet also produce 
secular changes in eccentricity, inclination, 
and obliquity. As we are particularly inter- 
ested in the changes of eccentricity, we shall 
briefly describe the mechanism by which 
they are produced. 

The tidal torque on a satellite which 
moves in an eccentric orbit is larger at 
pericenter than at apocenter. For  this rea- 
son, we may  approximate the total addition 
of angular momentum to the satellite orbit 
by one impulse at pericenter and by another, 
somewhat smaller impulse at apocenter. Due 
to the periodic nature of bound orbits in an 
inverse-square-law force field, it is evident 
that  an impulse at pericenter increases the 
apocenter distance without altering the 
distance to pericenter. Similarly, an impulse 
at apocenter increases the pcricenter dis- 
tance but doesn't affect, the distance Co 
apocenter. Because the larger impulse occurs 
at pericenter, the net effect of the ~idal 

torque is to increase the eccentricity, as 
well as the semimajor axis, of the sateIlite's 
orbit. The tangential component of force 
on the satellite, which is responsible for the 
tidal torque, is not the only component 
which affects the eccentricity. The radial 
component also plays a role in this process. 
Consider the situation where the satellite's 
orbital period just equals the planet's 
rotation period. High tide on a perfectly 
elastic planet would occur when the satellite 
was at pericenter. In reality, the maximum 
occurs some time after pericenter due to 
dissipation in these radial tides. Now con- 
sider the more usual case of relative rotation 
between the planet and satellite: the tides 
still retain a periodic radial component, pro- 
vided e ~ 0. Although this component in- 
volves no net torques that  transfer angular 
momentum between the planet and satellite, 
it nonetheless dissipates mechanical energy 
of the system. Because they decrease the 
orbital energy without changing the orbital 
angular momentum, the radial tides must 
diminish the eccentricity of the relative 
orbit. The net change in eccentricity, due to 
both the tidal torque and the radial forces, 
may be shown to be positive if the planet 
rotates much faster than the satellite 
revolves in its orbit. For  constant Q, the 
planet's spin rate must be at  least 50% 
faster than the satellite's mean motion in 
order that  the eccentricity be increasing. 

Up to now we have discussed the tides 
raised by a satellite on its planet. Tides 
raised on a satellite by its planet work to 
retard the satellite's spin (e.g., the Moon's 
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TABLE I 

POSSIBLE TIDAL INTERACTIONS 

Tides raised on by affect rotation of and orbitsa of 

(1) planets satellites some planets all close satellites 
(2) planets the Sun the inner planets 
(3) satellites planets close satellites close satellites 
(4) satellites the Sun 
(5) the Sun satellites 
(6) the Sun planets 

Semimajor axis, eccentricity, and inclination. 

synchronous rotation). These tides, by 
virtue of their radial character, also act to 
decrease the orbital eccentricity. Finally, 
tides raised on planets by the Sun are 
analogous to tides on satellites due to planets 
in that they tend to despin the distorted 
body. 

There are altogether six cases of solar 
system tidal interactions, as listed in Table 
I. The tidal torques are all of the same form 
whether the tide-raising body (m in Fig. 1) 
be the Sun, a planet, or a satellite. However 
the magnitude of the interaction is insig- 
nificant if the tide-raising body is too distant 
and/or too small. We indicate in Table I 
only those effects which may lead to sig- 
nificant changes over the age of the solar 
system. For example, tides raised on the 
Sun by a planet (Case 6) can be shown to 
have virtually no effect on the rotation and 
relative orbit of the Sun so these effects are 
not listed. 

In general, we might expect Q to depend 
on the frequency and amplitude of the tidal 
oscillation, i.e., upon the relevant rotation 
period and the amplitude of the strain. The 
relevant range of rotation periods in the 
solar system is from 7h40 m, for the presumed 
synchronous rotation of Phobos, to --~244 
days for the retrograde rotation of Venus. 
Strains to be considered range up to the 
order of 10 -4 for Triton, Mimas, and some 
other close satellites, assuming they are 
about as rigid as ice (u ,-~ 3 X 101° dynes/ 
cm~). However, laboratory and seismic in- 
vestigations on the Q of rocks involve 
oscillations with periods always less than 
several minutes and strains smaller than 
10 -6 (Knopoff, 1964). These studies indicate 
that Q values for dry solids become in- 
creasingly frequency-independent in the 

lower frequency range, with little or no 
frequency dependence for the longest period 
oscillations. However, an increasing ampli- 
tude dependence is found for strains larger 
than 10 -6 . Extrapolation from these data 
suggests that Q for solid body solar system 
tides is independent of frequency but may 
involve a nonlinear dependence on the 
amplitude of strain when the strains are 
larger than 1 0  - 6  . 

Experimental values of Q ranging between 
40 and several thousand have been deter- 
mined for various rocks and metals, but 
ignorance of the outer composition and state 
of other planets and satellites precludes any 
confident assignment of Q's to these objects. 
The secular acceleration of the Moon is con- 
sistent with a tidal lag ~= 2716 for the 
Earth. At present it is not yet determined 
how nmch of the dissipation is due to ocean 
tides as opposed to solid body tides (Mac- 
Donald, 1964, Sec. 6). Much less is known 
about the Q's for dense atmospheres which 
are perhaps responsible for tidal dissipation 
in Venus and the major planets. 

Much previous work on tidal evolution 
in the solar system has relied on conjectured 
values of tidal lag angles or Q values (e.g., 
Darwin, 1908; Jeffreys, 1962; Goldreich 
1963). As a result the time scales for these 
processes are uncertain and in some cases 
even the direction is not known. For exam- 
ple, Earth tides work to increase the Moon's 
orbital eccentricity while tides on the Moon 
tend to decrease it; these two rates are of 
the same order of magnitude but they 
depend on the respective Q's for the Earth 
and Moon. Without a reliable Q for the 
Moon, it is uncertain whether the eccen- 
tricity is at present increasing or decreasing. 
(For an argument which implies that this 
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Mass Radius 

Orbital Axial 
semimaj or angular Mean 

axis velocity motion 

Satellite s m a r 

Planet p M A R 

eccentricity was smaller in 1he past see 
Goldreich, 1965c.) 

In this paper, we sununarize the relevant 
information about Q in the solar system and 
examine those cases in which tidal evolution 
has been appreciable since the origin of the 
planets and satellites. 

II.  MECHANISM OF TIDAL EVOLUTION 

The subscripts and notation to be used 
throughout  are as shown above. 

The satellite radii values to be used are 
those in Allen (1963). Most of the remaining 
data is from Blanco and McCuskey (1961). 

We begin with tides raised on a planet by 
a satellite. From an integration of the 
satellite-produced tidal couple throughout 
the tidal distortion of a planet (Jeffreys, 
1962, Chap. 8.02), the net effective torque 
is found to be 

N1 = ~r(GmA4/~ ~) (pH sin 2e)p 

= ~ ( G M m / r 2 ) ( A / r ) ( H  sin 2e)~, (3) 

where G is the gravitational constant and e 
the tidal lag angle. Strictly speaking, the 
density p should refer to the tidal bulge, but 
with the uncertainties involved, we can set 
it equal to the mean density of the planet. 

The actual height of the tide is 

u = rh, (4) 

where 

= ~ ( , , / M ) ( A V ~  ) (5) 

is the equilibrium tidal height (disturbing 
potential divided by undisturbed surface 
gravity) and 

h = 5/2 (6) 
1 -{- 19~/2gpA 

is a correction factor for the rigidity of the 
planet and for a second degree disturbance 
of the tidal potential due to the deformation 

itself (Love, 1927, p. 259). The planet's 
rigidity and surface gravity are denoted by 
/~ and g, respectively. For large planets, in 
which self-gravity far exceeds rigidity, h 
approaches 5/2. 

From (2), for smM1 tidal lag angle e (large 
Q), we may set 

sin 2e = 1/Q. (7) 

Now let 

Q' = Q(1 -~ 19#/2gpA). (8) 

With a substitution of these equations into 
(3), the torque due to tides raised on a 
planet by a satellite becomes 

N1 = ~G(A~/Q'p)(m2/r~). (9) 

By  analogous reasoning, the tides raised on 
a planet by the Sun give a torque of the same 
for ln ,  

.¥2 = ~G~r~(AS/Q'pR6), (10) 

where ffr~ is the mass of the Sun. Finally, tides 
raised on a satellite by a planet have an 
associated torque of 

N3 = ~GM2(aS/Q'~r6), (11) 

where 

Q'. = Q~(1 -[- 38ra~tL/aGm2). (12) 

This is the same as (8) but it eliminates 
having to use g and p for satellites. The 
effects of these three torques upon tidal 
evolution are now considered. 

Despin of Planets and Satellites 

The moment of inertia through the spin 
axis of a planet is 

Ip = a M A  2, (13) 

where a depends on internal structure. Then 
the retardation of a planet's rotation due to 
the tidal torque from a satellite is 
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_ _  A s m s d[h _- N1 = 9 G _ _  (14) 
dt I v 4 aMQ'p r 8' 

while tha t  due to the Sun is 

d ~  N2 9 Gffr~ 2 A 3 
- d--7 = I---p = _ c~MO,pR 6. (15) 

Because of the R -6 factor, only the spins of 
the innermost planets are substantially 
retarded by  the Sun. Indeed, the solar con- 
tr ibution to the Earth 's  rotational decelera- 
tion is considerably smaller than that  due to 
the Moon. 

In dealing with satellites, we shall assume 
a rotational moment of inertia given by 

18 = §ma 2. (16) 

Thus the rate of despin of a satellite due to 
tides raised on it by a planet is given by  

d~ Ns 45 a s 
- G M  ~ - -  ( 1 7 )  

dt 18 8 mQ'sr 6' 

which is analogous to (15). 

Secular Acceleration of Satellites 

The satellite torque Nl acting on a planet 
produces an almost negligible despin of the 
planet (except for the Ea r th -Moon  system). 
However, there is an equal and opposite 
tidal torque working on the smaller orbital 
angular momentum of the satellite which 
may produce a significant secular accelera- 
tion. The orbital angular momentum of the 
satellite is 

L = mr2n(1 -- e~) I/2 
= m(GM)i/2rl/2(1 -- e2) 1/2. (18) 

For  a circular orbit 

dL/d t  = ½m(GM)~/2r-ll~(dr/dt), (19) 

but  this must be the same torque as N1 in 
(9). Equating them, we can solve for 

d r U ( e ) i / 2 A  5 m (20)  
dt 2 Q'~ r 1112" 

Differentiation of Kepler's third law, n2r a = 
GM, gives an equivalent expression for (20) 
in terms of the satellite's mean motion, 

dn 27 A 5 m 
- -  - -  G - -  - -  ( 2 1 )  

dt 4 Q'~, r 8" 

Therefore, tides raised on a planet by  a 
satellite cause expansion of the satellite's 

orbit, but with two exceptions: (a) Phobos is 
unique as the only satellite with an orbit 
period shorter than the rotation period of 
its planet, i.e., with n > ~. The tidal bulge 
it raises must lie on the trailing side of the 
line of centers (reverse both direction arrows 
in Fig. 1) and the resulting torque acts to 
retard the satellite. An equal and opposite 
torque adds angular momentum to the 
planet, but  the effect of this is negligible due 
to the insignificant mass of Phobos. (b) 
Tri ton (Neptune I) is the only close satellite 
with a retrograde orbit. In this case (change 
m's direction in Fig. 1) the transfer of angu- 
lar momentum by the tidal torque works 
to retard both the satellite and the planet. 
I t  is clear that  both Phobos and Tri ton are 
approaching their primaries due to secular 
tidal deceleration, and a change of sign in 
(20) and (21) will allow for this. 

Change in Satellite Eccentricity 

Darwin (1908) developed the tidal dis- 
turbing function into Fourier components 
and then worked out the equations of varia- 
tion for the orbital elements. In reviewing 
this solution, Jeffreys (1961) indicated how 
tides raised on planets by  satellites would 
usually cause a secular increase in orbital 
eccentricity. Goldreich (1963) showed that  
tides raised on satellites tend to decrease 
eccentricity and may  often succeed in con- 
teracting the effect of tides raised on the 
planet, i.e., 

( )  ( d e )  de de ~ "4- dtt (22) 
d~ = ~ 

is frequently negative. Simplifying the 
results in the latter paper (Goldreich, 1963, 
pp. 259, 261) by  assigning the same lag 
angle to all the component tides we can 
write 

i ( d e )  ~ 6  ( G ) l / 2 A 5  m (23) 
e -~ , = Q,--~p rlS/2 a, 

where 

a = sign (2~t -- 3n) (24) 

and 

1 (de~ 63 (GMS),,2 a 5 
e \dr~8 -- 4 mr ls/2 Q's" (25) 



380 P. GOLDREICH AND S. SOTER 

The sign condition (24) is analogous to the 
n > ~2 criterion following (21) which deter- 
mines that ? ~ 0 for Phobos. It is not the 
same condition however, because tidal com- 
ponents other than the simple diurnal bulge 
are of importance in affecting eccentricity. 
As a result, (23) is negative for the close 
satellites Deimos and Jupiter V as well as 
for Phobos and Triton. 

For tides raised on satellites, it is the radial 
component that works to decrease eccentric- 
ity since this involves energy loss with 
angular momentum conservation. Thus (25) 
is always negative for satellites which rotate 
synchronously because this behavior assures 
the dominance of radial tides. Since it may 
be shown (See. V) that any satellite close 
enough to its primary to have undergone 
tidal orbital evolution will have suffered a 
despinning to synchronous or nearly syn- 
chronous rotation, it is therefore safe to say 
that (de/dt) ,  is negative in every case where 
it is not negligible. 

IlI.  T I D E S  ON TERRESTRIAL PLANETS 

AND SATELLITES 

M e r c u r y  

Tides raised on Mercury by the Sun have 
obviously worked to despin the planet to its 
present rotation rate. These tides would 
have brought Mercury into a synchronous 
88-day rotation i f  the orbit were circular. 
But with a sizeable eccentricity (of 0.2056), 
the R -6 tidal torque (10) exerts its maximum 
drag effect at perihelion and tends to impart 
a rotation period of close to 56.6 days, 
characteristic of the orbital angular velocity 
at perihelion. Therefore, the final spin state 
will not be synchronous rotation but instead 
will possess a period between 56.6 and 88 
days. The precise value of the period is 
determined by the condition that the time- 
averaged (over each orbit) tidal torque 
about Mercury's spin axis should equal zero 
(Peale and Gold, 1965). Indeed this new 
approach was prompted by the recent radar 
discovery of a 59 :t: 5-day rotation period for 
Mercury (Pettengill and Dyce, 1965). 

Let us assume then that Mercury has 
reached its final state of stable rotational 
angular velocity, and let this be ~t = 1.23 X 
10 -6 sec -~, corresponding to P = 59 days. 

Further, let 9O be the initial spin imparted 
to the planet at its origin and let At be the 
time interval during which this spin was 
retarded to ~. Then integrating (15), it is 
clear that 

9 A 3 
9O -- ~t = ~ G ~  2 a M Q , p R  6 At, (26) 

with a and R both roughly constant in time 
and thus taken outside the integral. From 
(8) and (26), the Qp for despin tidal attenua- 
tion is written as 

A 8 At 

Q~ -- G~I~ aM(1 + 19t t /2gpA)pR 8 9o -- ~" 

(27) 

It now becomes possible to place an upper 
bound on Qp because 

At _< AT = 4.5 × 109 years. (28) 

In other words, although we do not know 
how long it has taken the planet to achieve 
the (presumed final) rotation rate presently 
observed, we can at least bound the despin 
time within the age of the solar system. An 
evaluation of (27) requires that the moment 
of inertia factor a, the initial rotation 9O, 
and the internal rigidity ~ of the planet be 
known. 

We will assume for Mercury, as for satel- 
lites (16), that a possible indication as to 
the value of Mercury's long-vanished initial 
rotation is found in the striking empirical 
relationship of spin angular momentum 
density to planet mass first pointed out by 
MacDonald (1963), as shown in Fig. 2. 

It is easily shown that Mars and the major 
planets must have maintained roughly their 
initial rotational angular momenta, perhaps 
only very slightly diminished by solar- 
and/or satellite-induced tides. Now notice 
that these planets lie nearly on a straight 
line in Fig. 2, the slope of which is given 
approximately by 

aA2~ ~ M °'sT, (29) 

where aA2~ is the rotational angular mo- 
mentum per unit mass of the planet. What 
is significant here is that Mercury and Venus 
fall well below this line of presumed initial 
angular momentum density. Also, the Earth, 
which has been somewhat retarded by the 
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Moon and Sun, falls measurably below the 
line. Thus those planets, and only those 
planets, tha t  could have suffered substantial 
tidal despin fail to conform to (29). Assum- 
ing that  the position marked 1 in Fig. 2 
actually represents the original angular 
momentum density of Mercury,  then the 
corresponding initial rotation velocity is 
9~ ~-~ 9.1 X 10 -6 sec -1, so P0 ~ 19 hr. 

Now the coefficient of rigidity u in (27) is 
not known for Mercury. On the basis of the 
values determined for rocks and for the 
interior of the Ear th  we suspect ~ to be at 
least 1011 dynes/cm 2. For  convenience, we 
shall write 

-- b X 1011 dynes/cm ~. (30) 

Surface granite has b N 3. The calculated 
rigidity for the Earth 's  mantle ranges 
monotonically from b ~ 7 at 200 km to 
b ~ 2 8  at  2800 km, and then drops off 
sharply at  the outer core (Gutenberg, 1959, 
Chap. 8.6). Assuming that  the effect of 
lower internal pressure more than com- 
pensates for the probable absence of a 
viscous core in Mercury, we choose as a 
rough lower limit to the planet's rigidity 
b ~-~ 7. 

Using this value of rigidity and assuming 
that  Fig. 2 gives a reasonable initial spin 
~0, (27) and (28) then set the upper bound 
for the Qp of Mercury at 

16 

JUPITERJ 
15 S A T ~  

14 U R ~  NEPTUNE 

13 2(EA I; TH 

l |  

~VENUS 
eMERCURY f I I J I 

1~4 2 26 27 28 29 30 3| 
Log Id 

Fro. 2. Logarithmic plot of rotational angular 
momentum density vs. mass among the planets 
(egs units). 

Q ,  ~ 190, (31) 

which corresponds to a tidal lag angle of not 
less than 9 arc minutes. 

Venus 

If the initial angular monmntum density 
of Venus were indeed that  suggested by 
location 2 in Fig. 2, then ~0 is approximately 
1.34 X 10 -8 sec -1, corresponding to P0 ~'~ 
13.5 hr. Since the orbital eccentricity is 
small, we would expect tides raised by the 
Sun to despin Venus to a synchronous rota- 
tion with P ~ 225 days (~ = 3.23 × 10 -7 
sec-1). But  recent observations with radar 
ascribe to Venus a (e.g., Carpenter, 1966) 
retrograde rotation of P ~ 244 days. Possi- 
bly tidal drag was sufficient to bring Venus 
into synchronous spin long ago and then 
some other source of torque (perhaps 
atmospheric tidal effects as suggested by 
MacDonald, 1964) continued the retarda- 
tion into retrograde rotation. 

Assuming for Venus an internal structure 
similar to the Earth 's  (including a core), we 
use a -- 1/3 and set a lower limit on the 
mean rigidity at b ~ 7. Then (27) and (28) 
set an upper bound for the Qp of Venus at 

Q v ~ 17, (32) 

which corresponds to a tidal lag angle 
>/ 177. 

Earth and Moon 

Tidal effects in the Ear th -Moon  system 
are by far the most complex in the solar 
system. In this case three separate inter- 
actions are of importance. They  are the tides 
produced on the Ear th  by  the Sun and Moon 
and the tides raised on the Moon by the 
Earth. Par t  of the complexity in this case 
arises from the large solar perturbations of 
the Moon's orbit. In addition, the Ea r th -  
Moon system is unique in that  in this case 
the satellite's orbital angular momentum is 
not only comparable with, but  actually 
exceeds, the planet's spin angular momen- 
tum. Those features of the Ear th -Moon  
system lead to complications in the motion 
of the Moon's orbit plane and in the preces- 
sion of the Earth 's  axis which are not en- 
countered in other cases of solar system 
tidal evolution. Nevertheless, our presence 
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on the Ear th  has enabled us to obtain far 
more detailed information about its Q than 
about  the Q of any other solar system body. 
This knowledge comes from many  sources, 
most of which have received ample treat- 
ment in the current literature. Thus, we 
shall only briefly mention those of greatest 
importance. 

The most direct measure of the tidal 
effective Q for the Ear th  is obtained from 
astronomical observations of the Moon's 
secular acceleration. These observations lead 
to a tidal phase lag of ~ = 2716 and a corre- 
sponding Q = 13 (MacDonald, 1964). The 
phase lag may  also be estimated (but with 
considerably less accuracy) from direct 
observations of the body tides. These values 
possess a large scatter but  are consistent 
with the astronomical value of 2716. An 
excellent brief summary, with references, of 
other lines of evidence bearing on the 
Earth 's  Q is given in MacDonald (1964). 

The Moon's Q is very uncertain. However, 
extrapolation from the available data on the 
Q of the Earth 's  upper mantle (Knopoff, 
1964) strongly suggests tha t  its value is less 
than about 150. Indeed, if Q really decreases 
with amplitude as MacDonald (1964) has 
suggested, then Q for the Moon may be 
comparable to that  for the Earth,  the tidal 
strains on the Moon being somewhat larger 
than the terrestrial ones. Finally, by  means 
of an indirect argument we can derive a 
lower bound for the Moon's Q. Our argument 
is based on the obvious synchronous rota- 
tion of the Moon. As is discussed by  Gold- 
reich (1965c), the Moon could not have 
attained synchronous rotation in an orbit 
having the present value of eccentricity (at 
least if its initial spin angular velocity were 
direct and of greater magnitude than its 
orbital mean motion). However, the Moon 
could have reached synchronous rotation 
if its orbital eccentricity was smaller in the 
pasi (by about 250-/0 or more below the pres- 
ent value). As we have previously men- 
tioned, tides raised on the Ear th  by the 
Moon tend to increase the eccentricity 
while tides raised on the Moon by the Ear th  
act to decrease it. Using Eqs. (23) and (25), 
we find that  these two effects just cancel, i.e., 
de/dt  = (de/dt)~, + (de/dt), = O, for QJQp 
= 0.79, where we have set b = 7 in esti- 

mating ~ for the Moon. If we believe that  
the Moon's orbital eccentricity is increasing, 
then Q8 > 0.79 Qp = 10. Thus we estimate 

10 < Om < 150. (33) 

Mars and Its Satellites 

The planet Mars is effectively outside the 
Sun's range of tidal influence. Further,  the 
minute tidal bulges raised by Phobos and 
Deimos have not materially affected the 
planet's spin. However, these latter tides do 
affect the orbits of the two satellites, par- 
ticularly that  of the closer and larger 
Phobos. Since tile "month"  of Phobos is 
shorter than the Martian "(lay," the con- 
ventional tidal effects are reversed and the 
satellite should be gradually spiralling in 
toward the planet. Indeed a secular accelera- 
tion coefficient in its longitude of +0?001882 
4- 0.000171 year -1 has been reported (Sharp- 
less, 1945). Assuming that  this change is 
real and that  it is caused entirely by tidal 
friction, it can be used in (21) to estimate 
Qp for Mars, although torque terms due to 
the second order tidal potential ought to be 
retained because of the close proximity of 
Phobos. 

This has been done by Redmond and Fish 
(1964) and by Fish (1965). From density 
and albedo considerations, they set an 
upper bound for the mass of Phobos at. 
<7.6 X 10 is gm. Then estimating the tidal 
effective rigidity of Mars at b < 8, they 
show that  the minimum tidal lag angle that  
would account for the observed secular 
acceleration in longitude is 171. This corre- 
sponds to a Qp for Mars of 

Qo~ < 26, (34) 

comparable to the values for Venus and the 
Earth. 

IV .  TIDES ON THE MAJOR PLANETS 

Jupiter 

Tidal transfer of angular momentum is 
working to drive the satellites of Jupiter  
outward into everexpanding orbits. The 
very existence of close satellites supplies a 
lower bound to the Qp of Jupiter, if we 
assume that  they are about as old as the 
solar system. For  if Qp were too small, the 
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orbits' evolutions would be too rapid and, 
tracing them back in time, the satellites 
would have been at the surface of the planet 
less than 4.5 X 109 years ago. 

Thus, integrating (20) for a satellite, 

(r13/2-- royal2) 9 ( G )  u2 - 2 
1--3 = ~ . _ . _ .  ~ m(t -- to), 

(a5) 

and the lower bound for Qp is given by 

117 ( G )  m A 5 A T  

Q~ > / ~  (1 + 19~/2gpA)~  
m 

X rlal 2 -- r013/2 (36) 

where AT is the age of the solar system. 
Strictly speaking, r0 ought to be set at the 
Roche limit for the satellite, but it will be 
neglected altogether since r 13/~ >> ro ~3/~. 

The greatest lower bound to the Qp of 
Jupiter is supplied by the satellite Io. It is 
Q2~/> (8.05 X 105)/(1 + 0.04b), where b is 
the tidal effective rigidity factor for the 
planet. Since the atmosphere of Jupiter may 
account for a substantial fraction of the 
total tidal dissipation, and since b for the 
outer layers of the planet is probably small 
for any reasonable model in any case, we 
will neglect rigidity here and for the other 
major planets as well. 

An additional consideration affects the 
lower limit on Q~ for Jupiter. As a satellite 
orbit evolves, its mean motion may come into 
a low order commensurability with that of 
another (assumed independently evolving) 
satellite. Several such commensurabilities 
are known to be stable against disruption. 
Although the tides continue to transfer 
angular momentum independently to the 

satellites, this angular momentum is dis- 
tributed between them by mutual perturba- 
tions in such a way as to preserve the 
commensurability (Goldreich, 1965b). Now 
To is involved in a stable commensurability 
with Europa and Ganymede. Therefore, 
some of the angular momentum it receives 
from Jupiter is transferred to these other 
two satellites. Thus the rate at which its 
semimajor axis expands is somewhat smaller 
than ~ given by (20). Allowing for the possi- 
bility that the commensurability has existed 
for an appreciable fraction of the age of the 
solar system, the calculated lower bound to 
Qp must be reduced by a factor of between 5 
and 7.5 (Goldreich, 1965b). The lower limit 
to Qp for Jupiter we arrive at then becomes 

Qg~ ~" (1 to 2) X 105. (37) 

The lower bound we have obtained for 
Jupiter's Q is at least three orders of magni- 
tude greater than the values of Q we derived 
for the terrestrial planets. Unfortunately, 
our ignorance of the internal structure of 
Jupiter makes it impossible to estimate an 
independent Q value for the planet. How- 
ever, we can investigate the rate of turbulent 
tidal dissipation in Jupiter's atmosphere and 
show that it is not inconsistent with the 
lower bound we have derived for Jupiter's Q. 
Our estimate of the tidal dissipation in 
Jupiter's atmosphere will lead to an estimate 
of an upper bound to Jupiter's Q (since we 
neglect dissipation in the planet's solid 
interior). 

Let D be the depth of the atmosphere 
beneath the observed surface of radius A, 
and let ~ be the height of its fluid tidal dis- 
tortion over and above its normal level (see 

/ \ \  m 

Fro. 3. Atmospheric tides of height ]" above a planetary atmosphere of depth D, where i" << D. 
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Fig. 3). Taking v as the velocity of the tidal 
current, the boundary layer thickness at the 
solid-fluid interface would be ~ ~--- @/2~) ~n, 
if the boundary layer flow were laminar. 
Here r is the fluid's kinematic viscosity and 

is the planet's angular velocity (Tr/~ is 
approximately the tidal period). The Rey- 
nolds number in the boundary layer is given 
by 

Re ~ -  v~/~, ~ -  v/(2~v) 1/2. (38) 

Since most of the energy dissipation is due to 
the semidiurnal tide (shown in Fig. 3) the 
tidal period is approximated by one-half the 
planet's rotation period. The velocity v of 
the tidal current is less than the velocity 
of the tidal bulge, 2 r A / P  -- ~ A ,  because the 
material contributing to the bulge flows 
under it from all depths in the atmosphere. 
In other words, the bulge is not a separate 
quantity of material racing along the surface 
of the atmosphere, but is instead continually 
replenished by deeper tidal currents of 
velocity v. The volume available to the 
currents is, per unit surface area, simply 
equal to the atmospheric depth D. Thus v 
equals the surface velocity of the bulge 
reduced by the ratio of the height of the 
bulge to the atmospheric depth D, or, 
approximately 

v = ~ A ( ~ / D ) ,  (39) 

where ~" is the equilibrium height of the 
fluid bulge, as defined in (5). Using the 
values for Io we estimate the velocity of the 
tidal current to be v " ~  O . 1 7 A / D .  The 
kinematic viscosity will, in any case, be 
less than 10 -3 cm ~ sec -1 so that R e  >/ 300 
A / D ,  where A / D  is always greater than 
unity and in general will contribute at least 
one to two orders of magnitude to Re. Thus 
the Reynolds number criterion for turbu- 
lence in the boundary layer will be satisfied; 
whether turbulence actually arises is un- 
doubtedly dependent on the degree to which 
the atmosphere is stably stratified at these 
depths. In any case, the rate of dissipation 
calculated on the assumption of a turbulent 
boundary layer will represent an upper 
1)ouud to the actual dissipation rate. 

Assuming a turbulent boundary layer, the 
energy dissipated by the tides per unit area 
is jusl kpv 3 (Jeffreys, 1962, Chap. 8.06), 

where k = 0.002 is the coefficient of skin 
friction, p is the density of the atmosphere, 
and v is the velocity of the tidal current. 
The total energy loss per tidal period 
becomes 

A E  = (~-/~)kpv 3 ergs cm -~. (40) 

The potential energy stored per unit area 
in the tidal distortion is (Jeffreys, 1962, 
Chap. 8.08). 

E0 = ½gpi "2 ergs cm -~. (41) 

Then, using the definition of Q in (1), we 
find 

Q ~ 27rE.___2o = 4 GM~D3r :~ (42) 
A E  3 k~22A%~ " 

Evaluation in the case of tides raised by Io 
gives Q~ = 1.4 X 10 -19 D 3, and since this 
should be greater than or equal to the Q~ 
found by examining the orbital evolution of 
Io in (37), we can solve for a very rough 
lower limit to the depth of the Jovian 
atmosphere. The result is 

D > 1000 kin, (43) 

which is comparable to recent independently 
deduced values, e.g., the upper bound of 
~--2800 km suggested by Hide (1962) from 
hydrodynamic considerations concerning the 
Great Red Spot. 

An upper bound for Jupiter's Qp may be 
estimated if we assume a tidal origin for the 
commensurabilities. Then the very fact that 
Io is found to be involved in a commensura- 
bility indicates that a considerable tidal 
evolution of its mean motion has occurred. 
Thus, the upper bound for Q must be low 
enough for this evolution to have taken 
place. Applying Eq. (20) we find Q9~ < 106. 

Sa turn  

The analysis for Saturn is similar to that 
for Jupiter. The innermost satellite Mimas 
provides the greatest lower bound on Q~, 
and since Mimas has achieved a commen- 
surability with the mean motion of another 
satellite, the upper bound is probably not 
far removed. We have (Goldreich, 1965b) 

Qb ~" (6 to 7) × 104, (44) 
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and by the reasoning following (42), this 
supplies a lower bound to the depth of 
Saturn's atmosphere, 

Db /> 180 km, (45) 

where we again assume that the boundary 
layer flow is turbulent. 

Uranus 

The existence of the innermost and non- 
commensurate satellite Miranda sets a lower 
bound for the Qp of Uranus at 

Q8 /> 7.2 × 104 . (46) 

Neptune and Pluto 

Neptune has two known satellites: Nereid 
is tiny and distant while Triton, though 
massive and close, has a retrograde orbit 
and is thus approaching the planet. So 
neither satellite orbit yields information on 
the Qp of Neptune by the method previously 
discussed. 

A possible explanation for the retrograde 
motion of Triton was provided by Lyttleton 
(1936). If both Pluto and Triton were 
originally direct satellites of Neptune, then 
their separate tidal orbital evolutions could 
have eventually arranged a near collision. 
Provided that Pluto's mass is not too much 
greater than Triton's, such an encounter 
could have reversed the motion of Triton 
and discharged Pluto into its present orbit. 

Now it may be shown (Sec. V) that all but 
the more distant satellites must relax into 
synchronous or near-synchronous rotation 
about a planet in a time short with respect 
to the age of the solar system. Thus if Pluto 
was once a satellite of Neptune, close enough 
for an encounter with Triton, it would have 
possessed a roughly synchronous rotation 
period. I t  is doubtful that the spin could 
have adjusted to the short-lived eccentricity 
induced by perturbations prior to the actual 
encounter. Pluto's present spin should then 
equal its mean motion near the time of its 
ejection by Triton, provided that this did 
not actually involve a physical collision. 

Lyttleton's hypothesis has been enhanced 
by the subsequent determination of Pluto's 
rotation period at 6.39 days (Walker and 
Hardie, 1955). If this was once Pluto's 
synchronous rotation period about Neptune, 

this would place Pluto at the time of ejection 
just outside the present orbit of Triton which 
has a period of 5.88 days. 

Such an ejection of Pluto may also account 
for Triton's presently observed large in- 
clination (~20 ° to Neptune's equator in a 
retrograde sense). Triton's low eccentricity 
(zero to three figures) may have been 
damped from a larger value by tidal friction. 
We assume that prior to the encounter, both 
Pluto and Triton had direct orbits in or very 
near Neptune's equator plane. Dynamical 
considerations strongly favor low inclina- 
tions for close satellites of an oblate planet 
(Goldreich, 1965a). In conserving momen- 
tum, any encounter sufficient to eject Pluto 
would presumably reverse Triton and impart 
sizeable eccentricities and inclinations to 
both bodies. Subsequently, tides raised on 
Neptune and on the retrograde Triton would 
dissipate orbital energy and reduce the 
satellite's orbital eccentricity. From (23) 
and (24), we have for tides raised on Neptune 
by Triton, 

(1/e)(de/dt)p = --2.4 X 10 -18 see -1, (47) 

where we have used Qp= 7.2X 104, the 
lower limit obtained for Uranus. 

This alone would be insufficient to damp 
out any reasonable eccentricity given Triton 
by the encounter. But from (25), tides raised 
on Triton by Neptune give 

l ( d e )  9 .4×  10 -1~ 
e -~ , Q,(1 + 5.6b~) sec-l" (48) 

If we assume for Triton that Q,b ~ 300, an 
upper bound which is close to the one we 
derive for Iapetus (cf. Sec. V), then 

l( e) 
e d-t , = --5"0 X 10 -16 see -1, (49) 

which predicts a marked damping of Triton's 
eccentricity in times on the order of 101~ sec. 
In any case, the orbital inclination would not 
be strongly affected by the cumulative drag 
of tides, since it is not as sensitive to energy. 

Even if Triton was captured into a retro- 
grade orbit, the tides could still damp its 
eccentricity. 

The radius of Pluto has been determined 
at ~-~3000 km from disc meter readings by 
Kuiper and Humason with the 200-inch 
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telescope (Kuiper, 1950). Using this value, 
the mass of Pluto as calculated from per- 
turbations of Neptune and Uranus would 
yield a density of ~ 5 0  gm cm -3, so the 
mass remains in question (Brouwer, 1955). 
These perturbations are perhaps caused by a 
postulated trans-Neptunian cometary belt 
for which there exists independent evidence 
(Whipple, 1964). We shall see that  the 
enhanced plausibility of the Lyt t le ton 
hypothesis lends credence to a less anomal- 
ous value for the density of Pluto. The 
hypothesis requires tha t  Tri ton and Pluto 
have comparable masses. If we assume that  
the mass of Pluto is not more than twice tha t  
of Triton, then the density of Pluto will be 
less than ~ 2 . 3  gm cm -3, a value which is 
consistent with those found for other satel- 
lites of the major planets. 

V. TINES ON SATELLITES 
OF MAJOR PLANETS 

I t  is easily shown from (17) and (20) that,  
since the values of the intrinsic spin angular 
momenta of satellites are so small in com- 
parison to their orbital angular momenta, 
the satellites would relax to synchronous or 
near-synchronous rotations before the tides 
could substantially evolve their orbits, even 
if the satellites had values of Q as large as 
those of their planets. The eccentricities of 
close satellite orbits are small, consistent 
with the general dominance of (de/dt)~ over 
(de/dt)p as suggested by Goldreich (1963). 
But  even with a sizeable eccentricity, a 
close satellite would achieve near-synchrone- 
i ty (as has Mercury).  

All satellites for which rotations have been 
observed exhibit synchroneity. This is in- 
ferred from the equivalence of any regular 
magnitude variation period and the satel- 
lite's orbit period. But  since most of these 
satellites achieved synchroneity relatively 
soon after they were formed, this tells us 
little about  their Q values. We can obtain a 
useful upper bound on Q only for those more 
distant satellites which are known to have 
achieved synchronous rotation. Iapetus (Sat- 
urn VIII) is the most distant satellite from 
its planet for which there exist reliable 
photometric observations, and fortuitously, 
it exhibits a regular sinusoidal light varia- 
tion of about  two magnitudes (by far the 

largest for any planet or satellite) which 
corresponds to its orbital period (Widorn, 
1950). This secure evidence of synchronous 
rotation for Iapetus sets a meaningful upper 
bound on its Q, providing we know roughly 
its rigidity and the initial rotational angular 
velocity from which it has been retarded. 

If we simply plot Iapetus by mass in Fig. 
2 and read off the initial spin angular 
momentum density, the corresponding ini- 
tial rotation period is about  5 days. Now 
this angular momentum density line for 
planets may have a slope and intercept 
entirely different from a similar curve for a 
family of satellites. However, it may  be an 
improvement over mere guess work to obtain 
rough initial rotation rates for satellites from 
Fig. 2. In any case, it seems reasonable tha t  
Iapetus was originally spinning at only a 
fraction of its present synchronous period of 
79.33 days, and so we provisionally adopt 
an initial period of 5 days. 

Integrating (17), we obtain an upper 
bound on Q8 analogous to tha t  in (27) and 
(28) 

a 3 
Q, <_ -~- GM 2 

m(1 + 38ra4b X lOU/3Gm~)r 6 
AT 

- - .  (50) 
~ ~0 0 - -  OJ 

Using ~0 corresponding to 5 days for Iapetus, 
we obtain for tha t  satellite 

Q,b < 290. (51) 

The rigidity for small satellites is unknown 
except tha t  it is probably not  very great, 
say b < 5, because of the relatively low 
internal pressure. In any ease, Q, < 500. 

V I .  DISCUSSION AND SUMMARY 

Let us begin by taking a critical look at  
each of the Q values we have obtained in 
order to assess its reliability. We start  with 
Mercury. 

The explanation of Mercury's rotation 
put  forth by Peale and Gold (1965) proves 
beyond reasonable doubt tha t  Mercury is 
very close to its final spin state and that  
this was brought about by tidal friction. 
The upper bound of Q -- 190 tha t  we have 
derived for Mercury involves uncertain 
values for the planet's rigidity and for its 
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initial rate of rotation. Of these two factors 
the lat ter  is undoubtedly the more uncer- 
tain. However, it is hard to believe that  our 
estimate of the initial spin rate could be in 
error by more than a factor of 5, so we con- 
sider the derived upper limit for Q to be 
quite reliable. In addition, tests of laboratory 
rocks lead to Q values of this order or 
smaller, which gives us an added reason for 
confidence. 

The case for Venus is much more uncer- 
tain. The slow retrograde rotation of the 
planet could not  have resulted purely from 
conventional tidal torques (if the planet were 
originally rotating in the direct sense). Thus, 
we must invoke the presence of another 
source of torque, which must dominate the 
ordinary tidal torque for a t  least some frac- 
tion of the time. The question then arises 
as to whether this other torque might not  
always have been dominant on Venus. This 
suspicion is heightened by the low upper 
bound we have derived for the Q of Venus. 
In particular, we suspect tha t  tides of 
thermal origin in the planet's dense atmos- 
phere may  be responsible for the observed 
rotation of Venus. Thus we conclude that  
the upper bound of Q for Venus, which we 
set at  17, must be regarded as uncertain. 

For the Ear th  we consider the present 
value of Q to be very well determined (to 
within factors of a few) from observations 
of the Moon's secular acceleration. In addi- 
tion, values of Q derived from seismic 
observations and from the damping of the 
Chandler wobble give us additional, some- 
what larger, values for processes which in- 
volve smaller strains. 

The case for Mars is again rather  uncer- 
tain. The low value for Q (<26) ,  derived 
from the secular acceleration of Phobos, is 
rather surprising in view of the small tidal 
strains tha t  are involved. This small value 
must  be viewed with distrust compared with 
the larger ones obtained from laboratory 
tests of rocks (at the same values of strain). 
The reality of the reported secular accelera- 
tion is, however, in doubt. 

We have no direct evidence bearing on the 
Q's of the Moon or of the satellites of Mars. 
However, based on the values obtained for 
Mercury and the Earth,  together with those 
obtained in laboratory tests of rocks, we 

conclude that  these objects probably possess 
Q's in the range from 10 to 500. 

For  the planets Jupiter, Saturn, and 
Uranus we have derived lower limits for 
Q of 1 . 0 X  10 s, 6 . 0 ×  104 , and 7 .2X104,  
respectively. These values are quite secure, 
being based merely on the existence of close 
satellites. For Jupiter and Saturn, the pres- 
ence of commensurate satellites indicates 
tha t  the lower bounds for Q are probably 
not far removed from the actual values. 

As regards values of Q for the satellites of 
the major planets, we have two separate 
pieces of information. The first, involving 
the synchronous rotation of Iapetus is quite 
straightforward. The large magnitude varia- 
tion displayed by Iapetus makes it clear 
tha t  we are dealing with an example of 
synchronous rotation. Because of its great 
distance from Saturn we find that  this 
implies tha t  Iapetus must have a Q which is 
smaller than about 500, a value which is 
derived by choosing a very low value for the 
satellite's rigidity. As a more probable upper 
limit we would estimate Q ~  150. The 
second, indirect piece of evidence involves 
the low (zero to three places) eccentricity 
of Triton's  orbit. This satellite moves on a 
retrograde orbit inclined by 20 ° to the plane 
of Neptune's  equator. Its unusual orbit 
(compare with the orbits of the larger satel- 
lites of Jupiter and Saturn, all of which are 
direct and have nearly zero inclinations) 
makes it appear tha t  Tri ton has been the 
victim of a near collision with another object 
at some past date. I t  would be truely re- 
markable if such an interaction left Triton 
with a zero orbital eccentricity. We expect 
then, tha t  the eccentricity of Triton's orbit 
was subsequently damped to its present low 
value. When this damping was investigated 
in more detail (in Sec. IV) it  was found tha t  
the tides raised on Neptune by Triton would 
have been unable to produce sufficient 
damping in 4.5 X 109 years. On the other 
hand, tides raised on Tri ton by Neptune 
could have produced the requisite damping, 
if Tri ton had a Q of several hundred or less. 
Thus, we conclude that  Tri ton probably 
possesses a Q ~ 200, which is comparable to 
the value tha t  we derive for Iapetus. 

The values of Q tha t  we have obtained 
divide sharply into two classes. The first 
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class, containing values from ten up to 
several hundred (the larger values are upper 
limits, not actual values) includes the Q's of 
the terrestrial planets, their satellites, and 
the satellites of the major planets. The 
second class, consisting of the Q's of the 
major planets, has as lower bound the value 
of 6 X 104 derived for Saturn. Larger values 
still are obtained for Uranus and Jupiter.  

There is a fundamental  difficulty involved 
in comparing the Q's of different bodies. We 
expect the amount  of energy dissipated in 
the distortion of a body to be proportional 
to the square of the amplitude of strain. The 
energy stored during the distortion will be 
of two kinds, elastic and gravitational. The 
former will depend only on the strains, while 
the latter will be a function of the size of the 
body as well. Thus, for equal strains in two 
bodies of identical material the stored energy 
per unit  volume will be larger in the larger 
body. Since the energy dissipated per unit 
volume will be the same for both bodies, the 
larger body will have the larger Q. This 
difficulty is only of importance when the 
stored gravitational energy is comparable 
to, or exceeds, the stored elastic energy. 
Thus, for the terrestrial planets and satel- 
lites it is only of slight relevance. However, 
for the major planets it may be somewhat 
more important.  In particular, distortion of 
Jupiter 's  presumed solid interior will involve 
storing comparable amounts of gravitational 
and elastic energy if its rigidity ~--~ 2.5 × 
10 ~2, a value slightly greater than twice the 
tidal rigidity of the Earth.  The problem of 
comparison is further complicated by the 
varied nature of fluid portions of the different 
planets. In spite of these difficulties a very 
real difference has been demonstrated be- 
tween the properties of terrestrial planets, 
their satellites, and the satellites of the major 
planets on the one hand and, on the other 
hand, the properties of the major planets 
themselves. For similar tidal strains, the 
rate of energy dissipation in the former 
objects exceeds tha t  in the latter group by a 
factor of at  least 10 a. Also, while the mag- 
nitudes of the Q's tha t  we have derived for 
the first group are consistent with values 
obtained from laboratory tests of solids, the 
values obtained from the second group are 
much higher than the experimentally deter- 

milled ones. Perhaps a clue to the interior 
structure of the major planets is to be found 
from their large values of Q. 

As a final remark, we mention that  use of 
the Q's that  we have obtained for the major 
planets and Iapetus enables us to check the 
consistency of Lytt leton's  hypothesis on the 
origin of Pluto. We find that  tides raised on 
Tri ton by Neptune would have been able to 
damp Triton's  eccentricity, provided the 
satellite's Q is comparable to tha t  of Iapetus. 
Furthermore, the predicted rate of change of 
semimajor axis of Triton's orbit is suffi- 
ciently small (provided Neptune has a Q 
similar to the one for Uranus), so that  the 
similarity of Triton's  orbital period (5.9 
days) with Pluto's rotational period (6.4 
days) suggests that  Pluto may once have 
been a satellite of Neptune, in an orbit 
close to Triton's. Finally, the requirement 
tha t  Pluto have a mass comparable to tha t  
of Triton, together with the observed diam- 
eter of Pluto, implies a reasonable value for 
its density. 
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