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Summary. The weak friction model for tidal interaction in a close
binary system is investigated, in which the tides assume their
equilibrium shape, but with a constant time lag (Darwin, 1879;
Alexander, 1973). From this model differential equations are
derived for the tidal evolution of several orbital and rotational
parameters, using energy and angular momentum considerations
only. The behaviour of the solutions to these equations is
investigated.

First a local linear analysis is made of the approach towards a
stable equilibrium configuration. Several time scales are in-
troduced and compared, including a pseudo-synchronization time
scale, which describes a near synchronization of revolution and
rotation around periastron. Then a global analysis is presented for
unrestricted eccentricity. A classification is made of all different
types of tidal evolution behaviour, determined by only one
parameter o, defined as the ratio of orbital to rotational angular
momentum at the equilibrium configuration.

Increasing o above certain critical values qualitatively changes
the global pattern of tidal evolution. A few examples are in-
stability against circularity of the orbit, arising only for a>10.932,
and instability against coplanarity of the orbital and equatorial
planes, setting in above a>21.532. For several values of o the
equations for tidal evolution are integrated numerically to illus-
trate the global flow pattern, as well as the details of the approach
to an equilibrium configuration or a collision of the two stars.

Key words: binary stars — celestial mechanics — tidal evolution —
X-ray binaries

1. Introduction

In a detached close binary, tidal evolution will continually change
the orbital and rotational system parameters. Ultimately either an
equilibrium state will be reached asymptotically, or the two stars
will spiral in towards each other at an increasing rate, leading to a
collision. An equilibrium state is characterized by coplanarity (the
equatorial planes of the two stars coincide with the orbital planes),
circularity (of the orbit) and corotation (the rotation periods of the
stars equal the revolution period).

Such an equilibrium state is stable (unstable) if more (less) than
three quarters of the total angular momentum are in the form of
orbital angular momentum, as proved in a limited case by
Counselman (1973) and more generally by Hut (1980).

The existence and stability properties of equilibrium states can
be investigated by energy and angular momentum considerations
alone. Tidal dissipation decreases the total orbital and rotational

energy, while conserving the total angular momentum, allowing
only an exchange between orbital and rotational angular momen-
tum. However, in order to investigate the way in which an
equilibrium state is approached, a specific model of tidal in-
teraction must be given. Only then can we compare the time scales
for changes in different orbital parameters such as eccentricity,
semimajor axis, inclination and rotational velocity.

In the following a simple model will be used to derive explicit
equations of tidal evolution for the parameters mentioned above.
In this model the stars possess tides lagging by a constant small
time with respect to their equilibrium value, as introduced first by
Darwin (1879). Because of its mathematical simplicity many
features can be computed exactly in this model. Also for more
realistic models these features will still be of at least qualitative
relevance, just as polytropes are often illustrative for problems in
stellar structure.

In Sect. 2 an elementary derivation is given of the perturbing
tidal forces in the model under consideration. In the first two
appendices these perturbations are used to derive differential
equations for the evolution of several orbital and rotational
parameters of the binary system. Everywhere physical clarity is
stressed, and energy and angular momentum considerations are
used directly instead of the general perturbation techniques of
celestial mechanics.

In Sect. 3 the tidal evolution equations are analysed locally
around equilibrium configurations. Time scales are derived for the
rate of change of the semimajor axis and the rotational velocity,
approaching their equilibrium values, as well as for the eccen-
tricity and inclination, which go to zero asymptotically. For the
case where nearly all angular momentum is in the orbit a new
concept of pseudo-synchronization is introduced.

In Sect.4 the global aspects of the same tidal evolution
equations are analyzed. Far from equilibrium many features are
important which were completely overlooked in the local linear
analysis around equilibrium. For the case of small inclination, but
arbitrary eccentricity, a complete classification is made of all types
of tidal evolution possible in the model under consideration. Some
details of computations are given in Appendix C. Finally in Sect. 5
a discussion and conclusions are presented.

2. The Weak Friction Model for Tidal Interaction

Tidal interaction is an important factor in changing the orbit of a
close detached binary. Each star raises tides on the surface of the
other. Various dissipation mechanisms cause these tides to deviate
from an instantaneous equipotential shape. This results in a
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Fig. 1. Tides raised on the primary, with mass M, by the compan-
ion, with mass m, are approximated as point masses, with mass p,
to compute the perturbing tidal force reacting back on the
companion. See text for definitions of symbols used

misalignment of the tides with respect to the line joining the
centers of the two stars, which produces a torque component in
the gravitational attraction of the stars. Via this spin-orbit
coupling angular momentum is exchanged between the orbit and
the rotation of each star. At the same time energy is dissipated in
the tides, which diminishes the total energy of orbit and rotation.
Even without a misalignment in the direction of the tides, energy
will be dissipated if the amplitude of the tides lags in time with
respect to equipotential surfaces, although no angular momentum
is exchanged. In all cases the orbital parameters will change, and
either asymptotically approach an equilibrium state, or lead to an
accelerated spiralling in of the two stars (Counselman, 1973 ; Hut,
1980).

A detailed description of the evolution in time of the orbital
elements caused by tidal effects cannot be given in a general form.
One of the major complications arises from the possibility that the
stars can be forced to oscillate in a variety of eigen modes. For an
excellent review, the reader is referred to Zahn (1977).

In order to get a general qualitative picture of tidal evolution,
one can investigate a simple model in which only equilibrium tides
are described, with very small deviations in position and ampli-
tude with respect to equipotential surfaces. Dynamical tides,
where the stars oscillate, are then neglected. Choosing a math-
ematically simple description of the deviations from equilibrium
makes it possible to discuss tidal evolution in a quantitative way.
This can be compared with the use of polytropes in stellar
evolution.

The weak friction model, which we will investigate, was
discussed for the first time by Darwin (1879) and recently in detail
. by Alexander (1973). They assumed a constant time lag, where the
tidally deformed surface of a star always assumes the equipoten-
tial surface it would have formed a constant time t ago, in the
absence of dissipation. As seen by an observer corotating with the
surface of one star, the other star would raise a tidal bulge on his
star misaligned by an angle proportional to the apparent angular
velocity of the other star. As seen by a fixed observer, the tidal
bulge would lag (or lead) with respect to the companion star if the
rotational angular frequency Q of the first star would be less (or
greater) than the orbital angular velocity n. The case Q>n is
depicted in Fig. 1.
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The motivation for this simple model of equilibrium tides
stems partly from physical arguments (Zahn, 1977), but mainly
from its mathematical simplicity. The model gives a good de-
scription of viscous dissipation (which seems however not to be
relevant for tidal evolution in binary stars), and an approximate
description of turbulent dissipation in convective envelopes
(which is relevant for light main sequence stars). But in any case
where equilibrium tides are more important than dynamical tides,
we expect this model to be at least qualitatively correct, in that the
misalignment angle (¢ in Fig. 1) will be a monotonically increas-
ing function of Q — n, the difference between rotational and orbital
frequency. In the present model this function is approximated by a
linear expression.

Other discussions of the weak friction model, and applications
to binary stars and planet-satellite systems, are presented by
Kopal (1978) and Mignard (1979, 1980), respectively, which
include many additional references.

To simplify the discussion, one star (to be called the compan-
ion) is assumed to be point-like, so that only on the other star (the
primary) tides will be raised. This gives already a realistic
description of an X-ray binary or other binaries where the
companion is a compact object; a white dwarf, neutron star or
black hole. In the more general case the present analysis can be
simply applied twice, switching the role of primary and compan-
ion and adding both effects, since only coupling between spin and
orbit is important; spin-spin coupling is completely negligible.

The differential equations governing the rate of change of the
orbital and rotational parameters are derived in an elegant and
rather sophisticated way by Alexander (1973). Here a simple
derivation will be given using energy and angular momentum
considerations only, without using the whole machinery of celes-
tial mechanics. Only the leading order (quadrupole) deviation of
the surface of the primary will be treated, and therefore only
leading powers in the small quantity R/r will be considered, where
R is the radius of the primary and r the distance between the
centers of both stars. In this approximation, the tides can be
replaced by point masses at the surface of the primary with a mass
u each (see Fig. 1), where approximately

u— %m(?) 1)

Here m is the mass of the companion and k the apsidal motion
constant of the primary (Lecar et al, 1976). The factor m/r?
follows from the tidal gravitational force, exerted by the compan-
ion, while the apsidal motion constant takes into account the
structure of the primary, especially the central condensation (a
higher value of which corresponds to a lower k; for realistic stars k
has a value of ~0.1-0.01).

Without dissipation, u would be given by (1), while the
position angle ¢ would be ¢ =0 (Fig. 1); ie. the tides would be
aligned. In the present model, dissipation introduces a constant
small time lag t, such that both amplitude and direction of the
tides are slightly changed. In the following, only terms linear in ©
will be retained.

The amplitude lag gives

p(t)=3kmR>{r(t—7)} 3, @

where r(t — ) indicates the distance of the two stars at time ¢ —1.
To lowest order in ©

)= S (%) (1 +3§f), )
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where #=dr/dt. The lag in‘ direction results in a position angle
$p=(Q—0, )

where Q and 6§ are the rotational and instantaneous orbital
angular velocity, respectively (0 is the true anomaly).

Now we can compute the perturbed gravitational force be-
tween the two stars. As a simplification we start with the
restriction that the orbit coincides with the equatorial plane of the
primary. A finite value of the inclination will be taken into
account later. From Fig. 1 we have
Mm ; —G(M 2,u)mf

F=

M+m r?
pm _—
€ e — F— 0
r’+ R*—2rRcos¢ {cosyF —siny0}
um P
G—_—_ 7. — /0
T 0 T R 2R oos g (COSV T —sinv0), ©)

where u and ¢ are given by Egs. (3) and (4); # and @ are unit
vectors in the r and 0 direction and G is the gravitational constant.
The angles p and y' as indicated in Fig. 1, are given by

Rsing

I 6
S (r*+R*—2rRcos$)*/*’ ©
., Rsing

Sw= (r*+R*+2rRcos¢)**’ @

Expression (5) has to be developed to 5th order in R/r to find
the leading contribution to the tidal perturbing force:

F=—G#{f+3%(§)sk[(1+3:~r)F—(Q—é)19]}. ®)

The first term is the Newtonian attraction between two point
masses, while the other terms represent a perturbing acceleration,
which causes a slow change of orbital parameters. We will be
interested mainly in the semimajor axis a and the eccentricity e,
together with the rotational angular velocity Q.

The rates of change of a and e can be readily obtained by
standard perturbation methods (see e.g. Brouwer and Clemence,
1961), after which the change in Q follows from conservation of
total angular momentum. However, in Appendix A a simple and
physically more transparent derivation is given. First the torque
resulting from the perturbing force is calculated, and its effects on
the orbital elements a and e and on Q. Secondly, the time delay in
the amplitude of the tides is taken into account, which gives a
comparable change in a and e (but not in Q, since no angular
momentum is transferred). The derivation, as presented in
Appendix A, is similar to that given by Lecar et al. (1976) for the
perturbing torque. However, these authors overlooked the ampli-
tude delay effect, and therefore obtained different results.

The resulting tidal evolution equations are

da k R\® a
E“6T‘1(1+‘1)<2) A=)

-{f1<e2)—<1—e2)3/2f2(e2)%}, o)
de k R\8 e
praniabls LG +q)(2) (1—e)i3n

Q
- fga-erener), (10

Q qu(R6 n
dt T2 (1—e?)°

rer-a-erarel,

where

a

11

fue®)=1+3te? + 235e* + 18566 1 2208
fre)=1+13e? +45e* + €8

f3@) =1+ + e + e
fae)=1+3e*+}e*

fs@®)=1+3e* +3e*.

Here n=GY2(M +m)*/2a~ %2 is the mean orbital angular velocity
and the radius of gyration r, is defined as I=M(r,R)?, where I is

the moment of inertia of the primary. Furthermore g= N is the

mass ratio of the two stars and
R3? 1 (P,

T= GMt 47:2(1: )P‘

is a typical time scale on which significant changes in the orbit
take place through tidal evolution. P, is the orbital period of a test
particle moving in a grazing orbit over the surface of the primary;
in units of P, the tidal time scale T is the inverse of the tidal lag
time.

Until now we have limited ourselves to the case of coplanarity.
Deviations from coplanarity can be expressed in terms of the
inclination i, the angle between the orbital plane and the equa-
torial plane of the primary. Other orbital elements, such as the
longitude of the ascending node and the argument of periastron,
are of no interest for the present discussion. They change rapidly
due to rotational effects such as spin precession and apsidal
motion, which are effective on much shorter time scales than tidal
effects (Alexander, 1973).

In Appendix B the rate of change of i is computed to first order
in i. There are two reasons for this restriction. First of all, X-ray
binaries will generally start off after a supernova explosion with
an appreciable eccentricity, possibly close to unity, because of the
sudden mass loss to the system. But, if the initial binary system has
been aligned (i=0), a finite inclination can only be achieved by an
asymmetry in the supernova explosion, which is not expected to
be very big. The other reason for treating the inclination only
linearly is mathematical simplicity: to this accuracy no changes
are necessary in Eqgs. (9)+11), which would otherwise involve cosi
factors. In Appendix B again physical clarity and simplicity are
stressed. A more rigorous derivation and more complete results
are given by Alexander (1973).

From Appendix B it follows that

di k q* (R\® nogh .
a—”?g(;) (=e)rg

(12)

- sa-nZa-eprrenf, (13

where f,(e?) and f;(e?) are the same expressions defined before in
Eqg. (11), and

IQ M +m (R\? _., 8
n=—-=r ( )(1—e2) v

: (14

is the ratio of the rotational and the orbital angular momentum.
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The behaviour of the solutions to the four tidal evolution
equations (9)}«11), and (13) will be analyzed in detail around
equilibrium in Sect. 3, and far from equilibrium in Sect. 4. A few
observations can be made readily for the simple case of near
coplanarity (i~0) and near circularity (e~0), but arbitrary de-
viations from corotation (2n). All power series fi(e?) are now
approximately unity. As we would expect, for 2>n angular
momentum is transferred from spin to orbit, since Egs. (9) and (11)
show that Q<0 and a>0. Equation (10) marks the onset of
instability of the circularity of the orbit at @ =18n: higher rotation
rates give ¢>0. Finally Eq. (13) shows that instability against a
growing inclination starts when the orbital period becomes
slightly more than twice the rotation period, namely for
Q=2n(1—n)"*. This factor of two, for small inclination, can easily
be explained : for Q> n, the companion continually exerts a torque
on the leading tidal bulges (Fig. 1), thereby diminishing the
component Q of £2, parallel to the orbital angular momentum h.
At the same time Q,, the component of 2 perpendicular to h, also
decreases. This latter effect stems from tidal bulges lagging in
latitude, with respect to an observer attached to the surface of the
primary. But the sinusoidal movement in latitude of the tidal
bulges produces an average transverse lag angle only half the
value of the lag angle produced by a similar, but monotonous,
movement in longitude. Thus the factor of two in Eq.(13)
originates from the difference in effectivity of the periodic latitu-
dinal and the monotonic longitudinal lag of the tidal bulges in the
corotating frame.

3. Time Scales

Tidal interaction can lead either to a spiralling in of the two stars,
followed by a collision, or to the evolution towards an equilibrium
state, characterized by coplanarity (i=0), circularity (e=0) and
corotation (2=n). In the last case the parameters a, e, 2, and i will
asymptotically reach their equilibrium values, but on different
time scales. Both the absolute and relative values of these time
scales are of great observational importance. Knowledge of these
quantities can give a general impression of the tidal evolution of
observed binary systems. Moreover, in cases where only some of
the parameters mentioned are observed, knowledge of tidal
evolution time scales can give a reasonable impression of likely
values for the unobserved parameters.

In this section, we will use the weak friction model introduced
before to compare the time scales of alignment, circularization
and synchronization. To investigate the asymptotic evolution
towards equilibrium, we can linearize the Egs. (9)<(11), and (13)
around the equilibrium state. We can describe the deviations from
equilibrium in dimensionless form by defining

x=a_a0 (15)
o
and
Q-Qq
= 1
y 2, (16)

where the equilibrium values a, and Q,=n, can be determined
implicitly from the total angular momentum L with Eq. (A2):
L=1Q,+h=MR?*r2Q,+G*3M+m)~ P MmQ; 3, a7

according to Kepler’s third law. Denoting linearized approxi-
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mations of x, e, y, i by X, &, 7, i, the linearized equations read

= =3§q(1+q)(§0)8 (35427}, (18)
% =— ;;g(}%f {3x+27}, (20)
a__ ;gf_j(:;o)sa - @1)

These expressions can be simplified considerably by defining
the dimensionless quantity
hy qg 1 <ao)2

~fo 4 1% 22
T, 1+qr @)

R

the ratio of orbital and rotational angular momentum at the
(unique) stable equilibrium configuration (ie. x =7y ). Remember
that an equilibrium state is stable if and only if & > 3 (Counselman,
1973 ; Hut, 1980). Introducing a “slow” time

R\®¢
U'=kq(1+q) (—) =5 (23)
a,) T
the linearized equations read
dx — A
i 3(3x+2y), (24)
de 21
Z_o_Z3 25
dt/ 2 e7 ( )
dy 3
Frini Ea(3x+2y), (26)
&3
Zt"=_§(1+°‘)" (27)

The Eqgs. (24) and (26) are dependent since angular momentum
is conserved during tidal evolution. The total angular momentum
L is given by

L=IQ+h=MR*r}Q+G">Mm(M +m)~'2a">(1—e)*/2.  (28)
Using Kepler’s third law
Qy=ny=G"*(M+m)"/%a; 32, (29)
the previous expression reads
Q a\'?

L=MR*2Q, {— +a(—) 1 —e’)"z}, (30)

9 QO aO .
or in a linearized version
L=MR*r2Qo{1+F+o(1 +3%)}. (31)
Constancy of L thus gives
y=-3% (32)

which immediately explains the relation between (24) and (26).
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The solutions of Egs. (24}(27) are simply
X(t)=%(0)e "=, etc.

with time scales

(33)

To interprete these results, we have to distinguish between three
cases:

(i) >3, but o—3<1. This corresponds to a binary system
where the equilibrium state is just marginally stable, the rotational
angular momentum being only slightly less than a quarter of the
total angular momentum. Here t.=t;>t,~t. The eccentricity
and inclination will tend to zero relatively quickly, but synchroni-
zation (and adjustment of the semimajor axis) takes much more
time.

(ii) « of order 7, i.e. 4Sa <10, The equilibrium state is further
away from instability, but the rotational angular momentum is
still comparable in magnitude with the orbital angular momen-
tum. This means that the companion star is either much lighter
than the primary, or orbits very close to its surface. In this case we
have t;=t;~t,~t, All parameters change roughly at the same
pace.

(iii) > 7. The orbital angular momentum is much larger than
the rotational angular momentum. This can be the case when the
companion is the most massive star, or when the separation
between the stars is fairly large. Here t;>t;~t,=t; The in-
clination decreases relatively quickly, while at the same time
rotation tends to synchronise with revolution. The eccentricity of
the orbit diminishes much slower. There is one problem in the last
case: It looks as if the rotational period quickly settles to the
equilibrium orbital period to achieve synchronization, but this is
deceiving. Since the eccentricity changes relatively slowly, the
orbit will remain rather eccentric for a long time. During each
orbit the tidal interaction will then be most important around
periastron. This can be seen from the strong distance dependence
of the tidal force in Eq. (8): F~r~". It is to be expected that the
rotation of the primary quickly synchronizes with the instan-
taneous orbital angular velocity at periastron. This pseudo-
synchronization therefore keeps the rotational period shorter
than the orbital period as long as the eccentricity stays finite.

An interesting example in another context is the pseudo-
synchronization of Mercury, where three rotations take place
during two revolutions, but rotational and orbital angular
velocity are comparable around periastron (Fig. 2). In this case,
however, the rotation and revolution are locked in in a 3:2
resonance since Mercury, being a solid body, has a permanent
asymmetry in its shape. In a binary the stars, being gaseous
bodies, have no built-in asymmetry. Therefore tidal evolution
continues until the orbit becomes circular and real synchroni-
zation will be achieved.

This can be made more quantitative if we repeat the linear
analysis using the same variables, but taking e? instead of e as the
eccentricity parameter. This is a natural choice since e occurs only
quadratic in Egs. (9), (11), and (13), and also in Eq. (10) after
writing de?/dt. Especially for case (iii), «> 7, this is also a reason-
able choice, since t, is much larger than the other time scales.

Fig. 2. The 2:3 resonance of orbit and rotation of Mercury.
Through a permanent asymmetry in its shape, exaggerated here,
Mercury is locked in a state of pseudo-synchronization of orbit
and rotation around perihelium

Instead of (24)«27) we now have

% 6 —38 4 0 %
d |& 0 —14 0 0 &2
Ll L I “l (34)
ar'\ 'y 2 |—3a 120 —2a 0 y

i 0 0 0 —(+w)/\i

where &2 etc. now indicates linearization with respect to e?, instead
of e.

Again these equations are not independent, since the de-
terminant of the matrix in Eq. (34) vanishes. As shown before, this
follows from angular momentum conservation, since Eq. (30) now
linearizes to

L=MR*2Q,{1+7+a(1+ix—12%)}. (35)
Thus £ conservation gives
=2 (=%+2),
consistent with Eq. (34).
The solution of Eq. (34), for a=10, is given by
&(t)=2*0)e 1", (36)
St
it)=ioe 2", (37)
o o a—19 A
()= {x(O)— 82(0)}6 3~
oa—10
a—19 ., 21
+ ~-10° (0)e , (38)
#(t)= {9(0)~ 2 52(0)}e-3<“'3>"
2(a—10)
9(1 32 —21t
+2(a_10)e (0) . (39) .

For the case that the two eigenvalues of the matrix of coefficients
in Eq. (34) are degenerate, i.e. for o = 10, the solutions (38) and (39)
have to be replaced by

X(t)={%(0)—27e*(O) }e 21, (40)
Y&)={30)+Fae’(O) e~ 21" (41)

Now we can read off the anticipated result: for o> 10, the first
terms in Egs. (38) and (39) decrease faster than the second terms.
Thus the binary system approaches pseudo-synchronization, gov-
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- ——=11.0

e —>

Fig. 3. The rotational angular velocity €, for pseudo-
synchronization, expressed in units of the mean motion n, and of
the orbital angular velocity at periastron n, as a function of

eccentricity e

s |
E
'——
~N
>
t
010 ¢
005 b :
0 1 1 1
3 10 30 100 300

¢ —u
Fig. 4. Time scales for the approach of circularization t,; of
coplanarity t;; and of pseudo-synchronization t,, expressed in
units of a typical tidal time scale T*, defined in Eqg. (49)

erned by the second terms in Egs. (38) and (39), independent of the
initial values %(0) and J(0). As expected, pseudo-synchronization
gives a higher rotational velocity than the equilibrium state: y>0
for large ¢’ values in Eq. (39), which means Q> €,

To be even more quantitative, we can go back to the original
Eq. (11) for the rotational velocity. Pseudo-synchronization can
be defined as Q=0 if Q=0,ie.:

Q, 1 +15e2 + 450 4 306 @)
n (L+3e?+3e*)(1—e?)3?

or

Q 3 223

f=1+682+§e4+ Te6+0(88). 43)

Again it is clear that Q—n (e—0) while Q>n (e>0).
Pseudo-synchronization is caused by the fact that tidal in-

teraction is strongest around periastron. This can be seen most

directly by comparing Q,; with np=9 (0=0), the orbital angular
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velocity at periastron, which is given by
(1+e)?
= (1—e2)? n

[this follows immediately from Egs. (A5) and (A8)]. Instead of
Eq. (42) we can write

(44)

Q, 1+ Loe2 4456% + 5e® @)
n, (1+3e’+3e)(1+e)"
For small eccentricity this can be expanded as
Q 15 41
B =1-2¢e+ —e?-13e3+ —e* 5
" e+ 5 e e’ + 7 e*+0(e”), (46)
while for large eccentricities
Q 33
B =0825 1). 47
=% (=1 @7
For all eccentricities
Q
1>=2>0799, (43)
where the minimum value occurs around e=0.308.
In Fig. 3, Q,(e) is plotted twice, in units of n and n,. At small

eccentricity (e <0.2), tidal interaction is important over the whole
orbit, and Q, ~n is a much better approximation than Q, ~n .
For fairly large eccentricities (e>0.2), tidal interaction is only
effective around periastron. A weighted average of the orbital
angular velocity § around periastron is always slightly smaller
than 6,,,,=n,, and therefore Q,;<n,.

Turning back to the original time scales, derived in Eq. (33), we
now see their meaning: t, and t; are the time scales on which the
eccentricity and inclination decrease exponentially. They are
expressed in units of a “slow” time t, defined in Eq. (23), which
correspond with a unit T* of real time, where

8
T thatt +a) () . )
or using Eq. (12)
8
T*=(471:2kq)"‘(%°) %Po, (50)

where P, is the orbital period of the equilibrium state. The time
scale t =t is really a pseudo-synchronization time scale ¢, For
small values of a, or a relatively large rotational angular momen-
tum, ¢, is the time scale for synchronization, since circularization
is achieved relatively quickly. For greater values of a, or a
relatively large orbital angular momentum, ¢, indicates how
much time it takes to synchronize a binary system around
periastron in an eccentric orbit.

To summarize: the pseudo-synchronization time scale, or
periastron synchronization time scale, is

1

L= *;
the time scale for circularization is
t,=4T*; (52)
and the time scale for alignment is
2
t,.=——T* . 53
o3(e+1) ©3)
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These timescales are depicted in Fig. 4, as a function of . Note
that «>3 is required in order to guarantee the existence of an
equilibrium state of the binary. It is easy to physically understand
why t,>t, ~t, for large values of a: synchronization and align-
ment both involve the rotation of the primary in an essential way.
But circularization involves a property of the orbit only: even
after the rotation is optimally adjusted through pseudo-
synchronization, the orbit can stay rather eccentric for a long
time. Only if the primary has an appreciable moment of inertia
(¢ 5 10) rotational adaptation takes about as much time as orbital
circularization.

4. Tidal Evolution Far from Equilibrium

In the previous section the asymptotic tidal evolution of a binary
towards an equilibrium state is discussed. Time scales for the
exponential relaxation of several parameters were found in a local
analysis of the differential Egs. (9)«11), and (13) around equilib-
rium. Now we proceed to investigate the global structure of the
solutions to these equations. To simplify the discussion, we will
start with the restriction of coplanarity, i.e. i=0. Later we will
discuss small inclination, again treated linearly.

In this case we are left with the three differential Egs. (9)+(11),
of which only two are independent since the total angular
momentum L is conserved. Choosing as independent parameters
the orbital elements a and e, we have to express 2 as a function of
a,eand L:

L=IQ+h=MR?*r2Q+G'*(M+m)~ *Mma'/*(1 — eH)l2, (54
where h is the orbital angular momentum, given by Eq. (A2) and I
is the moment of inertia, given by Eq. (A26).

It is very convenient to introduce again the ratio a of the
orbital and the rotational angular momentum of the binary at
equilibrium:

il
a=——=(=],
l+gr;\R
where a, is the value of the semimajor axis in the equilibrium

state. Note that « is a constant, independent of a and e, related to
L and the other constants by

L=MR?r2Q,(1+a), (56)

where Q, is the value of Q at equilibrium. With Eq. (55) and
Kepler’s third law this can be written

L=GY2Mm3*(M +m)~ 1/4R1/2r;/2a' 341 +a).

(55)

(57)

For applications to a specific binary system, this equation defines
o implicitly in terms of observable parameters. Note that there are
only solutions for L= L,,, where

cr

L, =43734G 2 Mm34(M +m)~ V4R 22 (58)

For L> L, Eq. (55) admits two solutions o, , o _ with o, >o_;0_
corresponds with the unstable equilibrium state, and «, with the
stable equilibrium. For a general analysis, see Hut (1980). Here we
are only interested in a, which will simply be denoted by .

We want to substitute Q from Eq. (54) into the differential
Egs. (9) and (10) for a and e. Only the ratio ©/n occurs, and from
Egs. (54), (55), and (57), again with Kepler’s third law, the
following surprisingly simple relation can be obtained:

Q
- =1 +a)d>? —ad?(1—e?)/2.

(59)

Here d is a dimensionless quantity which expresses the semimajor
axis in equilibrium units:
(60)

d=ala,.

The equations describing the evolution of a and e now read,
using Eq. (10), (11), and (59), and the “slow” time ¢/, defined in
Eq. (23):

da 2y—15/2
=6 (1=¢)

-{g,(€®) +ag,(e?)a®

—(1+a)g,e) —e)l2g32y (61)
de _ ~—8 2\-13/2
o =-27a"%1—-¢€?

{94(82)+ acgs(ez)a

11 2 2\1/2~3/2

—1—8(1“‘0‘)96(6 Y(1—e?)2a%}, (62)

where

(€)= 1+31e? 4 23504 4 18506 | 25,8
gy(ed)=1+1Le? 687e4 5566 1508 45010
ga(€d)=1+212e? 15 83,6 358
gie)=1+12e* +15e4+64e
gs@)=1-1e*—Le*+3e5+1e
gs(e?)=1+13e’—ge* —ge®.

Except for a proliferation of numerical coefficients, these two
equations are remarkably simple. The only external parameter of
this coupled system of differential equations is &, which character-
izes the stable equilibrium state. The only dependence on M, m, R,
and r, comes in via the definitions of « and ¢, and the pattern of
the flow in (G, e)-space, determined by dd/de, is completely fixed by
a choice for a.

A few typical solutions to Egs. (61) and (62) are plotted in
(@, e)-diagrams (Figs. 5-8) for the cases a=4, 10, 25, and 100. In
each case the two equilibrium configurations are indicated; a
stable equilibrium at (. ,e)=(1,0) and an unstable one at (d_,0),
where d_ is the smallest of the two roots to the equation

a2 —(14+0)d?+1=0. (63)
This follows directly from Eq. (59), for the case of corotation. For
large a, @_ can be approximated by

a_=a"P1+20" P +0@™Y)). (64)

It is clear from the linear analysis in Sect. 3, that (1,0) is a
stable node, while (G_,0) is a saddlepoint. This result is general,
independent of the model of tidal interaction (Hut, 1980). Here it
follows from Eq. (33): for >3 all time scales are positive, making
(1,0) an attractor. For a<3, t; and t; are positive, but t.=t; is
negative and therefore (G_,0) is a saddlepoint. This can be seen
also in Figs. 5-8, where the broken line indicates the separatrix.
This flow line, ending at the unstable equilibrium, separates the
(@,e)-plane into two sets of initial conditions. Tidal evolution
starting in the upper left half of the plane ends at the stable
equilibrium, while evolution in the lower right leads to a collision
of the two stars (@—0).
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Fig.7 Fig.8

Fig. 5-8. Flow lines of the solutions to the tidal evolution equations (61) and (62) for different values of o. The coordinates are e, the
eccentricity, and g, the semimajor axis in units of its stable equilibrium value. Thus &, is unity and a_, the value of & at the unstable
equilibrium, is defined implicitly in Eq. (63). The broken line is the flow line ending at the unstable equilibrium, separating the solutions
ending in collision from the solutions ending at the stable equilibrium configuration

The qualitative form of the flow lines near equilibrium can be
understood from the linear analysis leading to Egs. (36)-39). For
a=4, it follows from Eq. (33) that t,=t;>t, (see also Fig. 4), and
the system tends to circularity much faster than to
synchronization.

This can be seen in Fig. 5, where e—0 quickly before @—1. For
a=10, t, is the largest timescale, and the binary system tends to
pseudo-synchronization before circularization is completed. Thus
the tidal evolution tracks in Figs. 6-8 approach each other at
finite eccentricity before reaching the end point at equilibrium.
For a<19 the pseudo-synchronization track approaches the
stable equilibrium from below (d<1). This follows from the
negativity of the last term in the right hand sides of Egs. (38) and
(39) for large ¢, and can be seen in Fig. 6. For a>19 stable
equilibrium is generally approached from above (@> 1), as is clear
from Eq. (38) and Figs. 7 and 8.

For higher o values, the pattern of the evolutionary tracks is
rather complicated. Unstable evolution always has decreasing &
and e, but flow lines ending at the stable equilibrium can turn
around several times if the initial eccentricity at high & is
sufficiently high (Figs. 7 and 8). This phenomenon can be ex-
plained as follows.

Let us start with a system where o =25 and the initial value of
the semimajor axis is twice the equilibrium value (G=2) and the
eccentricity is high, say e=0.9. This implies a rather close
periastron passage, where most of the tidal interaction takes place.
At high e, the orbital velocity is relatively rather high at per-
iastron, and consequently the primary will be spun up: angular
momentum is transferred from orbit to rotation, and both & and e
decrease. The orbit continues to shrink far under the stable
equilibrium value (G< 1), before the rotation of the primary has
caught up with the orbital motion at periastron. Hereafter the
orbit continues to circularize, which causes the orbital angular
velocity at periastron to continue to decrease even at a stationary
semimajor axis.

Consequently the rotation of the primary is now too fast, and
the primary starts to spin down: angular momentum is transfer-
red back again from spin to orbit. The orbit widens, and & grows.
At first e keeps diminishing, but if the difference in rotational and
orbital motion at periastron becomes too large the eccentricity
increases again. What happens is the inverse of the drag effect of
the earth atmosphere on a satellite: the fast spinning primary
accelerates the companion mainly around periastron. An example
of this stage of evolution is the earth — moon system, where the
rotation of the earth is slowed down and both the eccentricity and
the semimajor axis of the lunar orbit increase through tidal
interaction.

For a given semimajor axis the orbital angular momentum
decreases with increasing eccentricity. Thus at =1 and e>0 the
orbit still has too little angular momentum and the primary still
spins too rapidly. For the second time the binary system passes
the equilibrium value @=1, this time overshooting to an orbit
which is too wide again. The orbit stops growing around the time
when pseudo-synchronization is achieved, where rotation and
orbital motion are synchronized around periastron. Hereafter the
orbit slowly settles to equilibrium, with decreasing d and e. The
reason is that the time scale ¢, for circularization is much larger
than the time scale ¢,; for pseudo-synchronization for a>7 (see
Fig. 4), as derived in Sect. 3. This effect can clearly be seen in
Figs. 7 and 8, where neighbouring flow lines clutter around the
pseudo-synchronization track before ending at the stable equilib-
rium point.

To summarize: at low values of « tidal evolution is rather
simple, with eccentricity always decreasing. At higher « values,
a>7, the rotational moment of inertia is relatively small. The
binary system can go through stages of upspinning and down
spinning before settling to pseudo-synchronization. Thereafter the
eccentricity monotonically decreases to zero.

The global evolutionary behaviour discussed above can be
illustrated more quantitatively as follows. From Eq. (61) we can
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find all (G,e)-values for which @ is stationary by setting the
expression within brackets equal to zero. In this way we can find
all turning points for the evolution of the width of the orbit. In the
same way we can determine the stationary points of the eccen-
tricity from (62). As an example, the case =25 is depicted in
Fig. 9: there is one curve on which da/dt' =0, and one curve on
which de/dt' =0. They devide the (4, e)-plane in three regions: in
the outside region both & and e decrease; in the region in between
the two curves 4 increases but e still decreases; and in the
" innermost region both & and e increase.

In Fig. 9 are also indicated two parts of the curve on which the
rotational angular velocity @ is stationary, and thus pseudo-
synchronization is achieved. This curve is obtained from Eq. (11)
by putting the right hand side equal to zero, and using Eq. (59). In
between the two parts of the curve Q decreases while outside Q
increases. In the following analysis we will find that these two
parts meet outside the figure to make one curve similar to those
for a and e, at least for the value a=25. The dotted line indicates
where Q=0, to the left of which the rotation is retrograde (2 <O0).

Finally the stationary points of the inclination i can be found
from Eq. (13). As is indicated in Fig. 9, these points also form one
curve for a=25. In the outer region the inclination decreases,
while it increases in the inner region. Thus the assumption of zero
inclination, made in the beginning of this section is only strictly
consistent in the major part of the (@, e)-plane, outside the
stationary inclination curve.

It is interesting to analyse the occurrence of the global features
described above. Here only the results will be given ; some details
of the straightforward, but rather tedious analysis are given in
Appendix C. The stationary curves in the (4, e)-plane for g, e, Q
and i occur as follows:

d has a stationary curve for all «>3. There is a critical value
a=235.447 so that for lower a values the curve looks qualitatively
like the one in Fig. 9: there is an inner region, covering only a
restricted eccentricity range, where da/dt'>0; outside of this
region & decreases. For o bigger than the critical value the inner
region reaches all the way to e=1, but approaches e=1 only at
d—oo. Thus for a>35.447 the (@,e)-plane is divided in three
regions by two curves of stationary d.

e has no stationary curves for small «, in which case de/dt’ <0
everywhere (see Figs. 5 and 6). Only for «210.932 a stationary
curve exists, with an inner region in which e increases. This curve
grows with increasing a, but always stays inside the curve where &
is stationary. Thus e can only increase if a increases too. The
stationary e curve meets the line e=1 at 4— co at the same critical
value a~35.447 as the & curve does.

Q behaves qualitatively as d: for all >3 a stationary curve
exists. In the inner region the primary spins down (dQ/dt' <0),
while outside it spins up.. This single curve again splits into two
curves joining e=1 at infinity, but for a lower critical value
o=27.062. Thus we know that the two parts of the curve for
stationary €, drawn in Fig. 9, meet at e< 1, since o =25 is smaller
than this critical value.

i behaves at first qualitatively like e: no stationary curves exist
for low o values, for which the inclination decreases everywhere.
For «x21.532 a single curve of stationary inclination forms,
always inside the curve of stationary eccentricity. Thus the
inclination can grow only if at the same time also the eccentricity
and the semimajor axis grow. However, the inner region of
growing inclination never reaches e=1: the curve of stationary
inclination asymptotically reaches e~0.9025 for «a— co. Thus for
higher eccentricities the inclination always decreases.

Fig. 9. Regions of different types of tidal evolution for «=25. The
broken line is the same as in Fig. 7 and the dotted line separates
the upper region, where 2 <0, from the lower region where Q>0

This concludes the survey of the main global features of tidal
evolution according to the simple model of constant time lag in
equilibrium tides. The most surprising result is the existence of so
many critical « values where new global features appear, which
went completely unnoticed in the linear analysis of the previous
section. All five distinct possibilities are summarized in Table 1.

From the present discussion it is not yet clear how the binary
system behaves for e—1, since d—oo simultaneously. To in-
vestigate the high eccentricity limit, the tidal evolution equations
have to be transformed to another system of more suitable
coordinates, e.g., the periastron distance instead of the semimajor
axis. This will be treated in a separate publication, where it will be
shown that for a>35.447 disruption of the binary system into a
hyperbolic orbit is possible.

5. Discussion and Conclusions

Starting with the mathematically simple assumption of constant
time lag for the equilibrium tides, perturbing tidal forces were
derived. By averaging the effects of these perturbing forces over
one orbit equations governing tidal evolution were found. The
derivation, presented in Sect. 2 and in Appendices A and B, was
kept elementary while stressing the physical principles involved. At
the end of Appendix A it was checked explicitly that the equations
give rise to purely dissipative processes, where dissipation is
halted only at equilibrium configurations of coplanarity, circu-
larity and corotation. In the subsequent sections it was assumed
that one of the two stars, the companion, had a negligible moment
of inertia.

Around the stable equilibrium configurations the tidal evolu-
tion equations were linearized and solved in Sect. 3 for two sets of
variables. Time scales for the rate of change of the semimajor axis
and eccentricity of the orbit and the rotational velocity and
inclination of the primary star were derived and discussed. It turns
out that an important classification parameter is the ratio a of
orbital angular momentum to rotational angular momentum at
equilibrium, defined in Eq. (22). Before equilibrium is reached, o
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Table 1
o range Number of areas where
da da de de aQ aQ di di

3<a<10.932 1 1 1 0 1 1 1 0
10932 < <21.532 1 1 1 1 1 1 1 0
21.532 <a<27.062 1 1 1 1 1 1 1 1
27.062 <o <35.447 1 1 1 1 1 2 1 1

o>35.447 2 1 2 1 1 2 1 1
di de da aQ
dQ da de di
W>O=>(F <0=>3? <0=>t—17 <0

can be predicted simply from the total amount of angular
momentum of the binary system, which is conserved, through
Eq. (57).

For cases where the rotational angular momentum is appre-
ciable at equilibrium, i.e. 5 S <10, the different time scales are of
roughly the same order of magnitude (see Fig. 4). For values of «
close to instability, i.e. 3<a <5, the time scales for inclination and
eccentricity are much shorter than the other two. But if the
rotational angular momentum is relatively small at equilibrium,
i.e. a2 10, the time scale for decrease in eccentricity is far larger
than the other three, which are of comparable magnitude. As an
effect of this the binary system tends to a state of pseudo-
synchronization relatively quickly, which is defined as synchroni-
zation of orbital and rotational motion around periastron. The
inclination too vanishes on roughly the same short time scale.
Only the eccentricity diminishes on a much longer time scale.
During this time the changes in semimajor axis and rotational
velocity are driven by the slow change in eccentricity, as can be
seen clearly in the solutions (36)~(39) to the linearized Eq. (34).

For large deviations from corotation and circularity, many
interesting aspects of tidal evolution were found analytically in
Sect. 4, with details in Appendix C, as summarized in Table 1. It
turns out that again tidal evolution behaviour can be classified
according to the value of «. An impression of the general pattern
of changes in semimajor axis and eccentricity can be formed from
a few numerical solutions depicted in Figs. 5-8 for different values
of a. Both the local and global features which were derived
analytically can be recognized in these figures.

One of the most interesting aspects of the global behaviour for
o210 is the occurrence of turning points in the evolution of both
the eccentricity and the semimajor axis, as is clearly visible in
Fig. 7. In Sect. 4 this behaviour is discussed, and conditions for its
occurrence are mentioned («>10.932). Another result is the
uniform decrease of inclination for high eccentricity

(e>%{‘/ﬁ ~0.9025), independent of the values of a and the
semimajor axis. The same holds true for any eccentricity and
semimajor axis if ¢ <21.532.

We can conclude that there are a number of interesting
relations which can be obtained analytically from the equations
for tidal evolution in the weak friction model where the tides have
a constant time lag in a corotating coordinate frame. Although
the equations are rather cumbersome, including several finite
power series in e2, several relevant combinations of these series

still show a simple monotonic behaviour. This surprising result
enabled us to obtain many global conclusions, including a general
classification of tidal evolution with respect to «.

The model used throughout in the present analysis in admit-
tedly simple, but at the same time it is sufficiently general to be
applicable to a wide class of binary stars, at least in a qualitative
way. To obtain more realistic models for tidal evolution in close
detached binary systems, a detailed study of the relevant physical
processes of energy dissipation through tidal interaction is needed.
This will certainly give more complicated equations for the tidal
evolution of orbit and rotation, with a strong dependence on the
particular type of system under study. Nevertheless it is expected
that the conclusions derived in this paper will still hold at least
qualitatively for a wide range of binary systems. As long as stellar
oscillations, giving rise to dynamical tides, do not dominate the
tidal evolution the time scales, derived in Sect. 3, and the global
classification made in Sect. 4 provide a rather complete general
picture of tidal evolution.

Appendix A

From the perturbation of the gravitational force between the two
stars, caused by tidal distortion of the primary, equations will be
derived for the rate of change of a, e, and Q: the semimajor axis
and eccentricity of the orbit, and the rotational angular velocity of
the primary, respectively.

First the effect of the radial perturbation of the gravitational
force, given by (8) as

2 5 .
F,=—3Gﬁ2-<5) k<1+311)
r r r

will be investigated. Since this is a central force, no angular
momentum is exchanged. Therefore both Q and the orbital
angular momentum h remain constant, where h can be expressed
in terms of a and e as

M?*m?
M+m

(A1)

h*=G

a(l—e?). (A2)

The only effect is a dissipation of energy, decreasing the orbital
energy

Mm

E,=-G— (A3)

2a
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Thus from Emz both a and é can be derived, using (A2) and (A3)
together with h=0.
The loss of energy over one orbit is

dr

AE= = A4
= { Far= {7 G50 Ay
where 6§ is the mean anomaly.
Using
1—e?
- A5
“1 +ecosf (A3)
we find
2n e(l— 2)
AE=|Fa————
_[ Yt ecost)? sin6do. (A6)

The first term of F,, Eq. (Al), gives no contribution, while the
second one gives

AE= —9Gm*R%krae(1—e?) j :8 (1-#%)68—07 (A7)
Using
Mm .

“Mim r*6 A9
and (A2) and (A5) we find

_ esinf esinf M+mh

1+ecos0 “1tecosd Mm r
=G> (M +m)*2a” Y%(1—e?)~2¢sind. (A9)

After substitution of (AS) and (A9) in (A7), the integration over 6
can be carried out, and results in
AE= —91G¥*(M +m)'?>m? Rkt
a"132(1 — @) 15/202{] + L3¢% - L3e* + e} . (A10)

The energy change is negative definite, as it must be for pure
dissipation.

To derive the average rate of energy loss, we have to divide this
expression by the orbital period, which by Kepler’s third law is

P=2nG~ Y3 (M +m)”12g3? (AL1)
so that
E,,=—3G M +mm*R3%kta"°(1—e?)~ 152

{1+ e + et e} (A12)

This expression can be simplified by defining a typical tidal time
scale
1 (P R3

T=—|=3|p=—

472 ( )P‘ GMz’
where P, is the period of the orbit of a test particle grazing over
the surface of the primary. This is intuitively clear: expressed in
units of a typical orbit, the time scale for significant tidal effects on

the orbit is the inverse of the lag time 7.
From (A3) and (A12), using (A13) directly follows

R 8
a= —9;q(1+q)(;) a(l —e?)= 152

1 B I +i
2 Sk

(A13)

(A14)

where g is the mass ratio m/M of the two stars.

From (A2) and h=0 then follows
. 9
~-31atval5) -

1+E 2+Ee +i
2 |

(A15)

As a next step, we must investigate the effect of the component
F, of the tidal perturbation force transverse to the radius vector,
given by (8) as

2 R 5 A

F9=3G’:—2(7) ke(@—0). (A16)
This perturbation does exchange angular momentum via a torque
N=rF,, exerted on the secondary by the tides raised on the
primary. The rate of change of a and e can be determined again
from (A2) and (A3) after calculating Eorb and h. Conservation of

total angular momentum then gives € as well.
The change in orbital energy over one orbit is

2n 2n
SE= [ Nd9=3Gm*R%kz | r~7(Q—0)do (A17)
0 0
and with (A2), (AS), (A9), and (A13) this can be written as
k m?
SE=3——R8%(1—-¢?)""
M (1—e?)
2n
- [ {(1+ecos)°Q—(1—e?)"32(1 +ecosb)®n}do, (A18)
0

where n=GY?(M +m)*2a"3/? is the mean orbital angular ve-
locity. After the 0 integration, and dividing by the orbital period
P, we find the rate of change of the orbital energy

: k
Eyp=— 37 G(M +mm*M~'R8%a™°(1—e?)~ 152

105 35 35
. 14¢2 6 8
{(1+ 4e* + — 7 —e* + 128 )

Q 1 4
—;(1—e2)3/2(1+ 45 2+—5 et e )}

3 T (A19)

For the orbital angular momentum, the change over one orbit
is

2n d0
Sh= [ Ndt= j N-—. (A20)
orbit 0
Again using (A2), (A5), (A8), and (A9) we get
k
Sh= —3—'"—R8 ~6(1 —?)™6
2n Q
-f {(1+ecos€)6—(1—e2)3/2(1+ecos6)“;}d9 (A21)
0
which after integration and division by P, gives
h=_— 3%G”2(M—|—m)1/2m2M" 1R8, 15/2(1 _ ez)— 6
{(1+15 24 Bpey 2 e)
PRI RET:
— %(1 —e?)32 (1 +3e?+ %e“)}. (A22)
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Fig. 10. An illustration of the inclination evolution, as derived in
Appendix 2. The orbit lies in the (x,y)-plane, while the line of
intersection of the orbital and the equatorial plane coincides with
the y-axis

As before, (A3) can be used to convert (A19) to
A k R iy 2\—15/2
105 35 35
1414024 22001 22064 22 8
{(+ e+ 4e+4e+128e)

Q 1 4
—;(1—e2)3’2(1+75e2+ —§e4+ —5—-66)}. (A23)

8 16
To derive the rate of change of e, we can use (A2):
e=l1-e?e la"'a—G M 2m™ (M +m)e”'a" ‘hh.
Substituting (A22) and (A23) results in

(A24)

5 3k R s 2y—-13/2
e=—rat+aly) A-e) e

225 225, 75
{(15+Te +T8 +ae
Q 33 11
—Z—en (11 + 22y —e4)}. (A25)
n 2 8

The rate of change of Q follows from (A22):

o d .
—h= 2 (IQ)=MR*r;Q. (A26)

Here I is the moment of inertia of the primary and r, is its radius
of gyration (r?=2/5 for a homogeneous star, r; ~0.1-0.01 for a
realistic centrally condensed star).

Thus
k g% (R\®
1 (- 1— 2)\—6
Tr} (a) (1=e5)"n

1
.{<1+ _Sez+ is_e“‘.'_ ieG)

Q=3

2 8 16

- %(1 —e?)32 (1 +3e2+ %e‘)}. (A27)
To summarize, the equations governing the rate of change 4, é,
and Q have been determined directly from the perturbing force (8).
To obtain a, (A14) and (A23) are added in (9); and for ¢ (A15) and
(A24) together form (10). © is already given in (A27), which
provides (11).

Finally it is interesting to determine the energy dissipation
rate, with the total energy given by

1
E=E  +E, =— G%aﬂ +5MR?r;Q?. (A28)

137

The first term receives contributions from both the radial (A12)
and the transverse (A19) perturbations, together resulting in

. k
E W=~ 3Tm2M" 1R8a™5(1—e?)~ 152

_{(1+%62+2§5e4+1186586_'_%%68)”2

—On(1—e?)32(1+L2e? + 436 + €%}, (A29)

where Kepler’s third law has been used.
The second terms follows directly from (A27):

. k
Em=3?m2M" 1R8a75(1—e?)™"

AL +L2e? +42e* +2e)0n

—Q¥(1—€?)*?(1+3e* +3e%)}. (A30)

For Q> n, energy is transferred from spin to orbit, and for
Q <n from orbit to spin. The same is true for angular momentum,
as can be seen from (A22). However, the total energy always
decreases as long as ¢>0 or Q=n, as follows from (A29) and
(A30):

. k
E=— 3Tm2M" 1R8a™5(1—e?)"15/2p2{4—2Bx+Cx?}, (A31)
where

Q.
x=—(1 —e?)’2, (A32)
A=1+3Le? + 2354 18566 4 2208 (A33)
B=1+13e* +4%e* + 75, (A34)
C=1+3e>+3e*. (A35)

The energy-loss rate (A31) is minimized, at fixed eccentricity, by
x=B/C. The expression {4—2Bx+ Cx?} in (A31) then becomes
D/C, where C is given above, and

D=AC—B>=1¢* +%3¢* + 28¢°

685,8 | 255,10 4 25 ,12
+312€ 7.

+%ae t133€ (A36)

Thus only at zero eccentricity can there be zero tidal energy loss,
which occurs for x=1, i.e. for Q=n. Tidal dissipation continues
until both circularity and corotation are reached.

Appendix B

When the orbital plane does not coincide with the equatorial
plane of the primary, the inclination angle between the two planes
will change under tidal interaction. To derive the rate of change in
the weak friction model where the tides have a constant time lag z,
we will derive the torque exerted on the primary in a frame
comoving with the rotation of the primary. In this frame the tidal
misalignment is the simplest: the tides point to that position on
the celestial sphere where the secondary was situated a time t
before.

Let us start with a simpler non-rotating frame S (Fig. 10)
centered on the primary in which the orbit lies in the (x, y)-plane,
so that the orbital angular momentum h points in the z-direction :

h=h(0,0,1). (B1)

The x-axis is chosen so that the rotational angular momentum /2
lies in the (x,z) plane:

Q=Q(sini, 0, cosi). (B2)
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The position of the secondary is then given by

1—¢?

= am(cos d), sin ¢, 0) 5

(B3)

where y is the angle from the x-axis to the periastron (v is
negative in Fig, 10), and ¢ is the angle from the x-axis to the
secondary.

Now let us change to a frame S’ which is also non-rotating, but
where the z'-axis lies along 2. Denoting components in S’ with
square brackets, we have

h=h[ —sini,0,cosi], (B4)

2=0[0,0,1], (B5)
1-¢? > . T

[cosicos¢,sing,sinicos¢]. (B6)

=M T ecosip—v)

Finally a time dependent transformation brings us to a third
frame S”, corotating with the primary, via a rotation in the (x', y')-
plane with angular velocity Q. Using curly brackets for com-
ponents in S”, we have

h=h{—sinicosQt,sinisinQt, cosi}, B7)
2=0{0,0,1}, (B8)
1—e? . . .
= am {cosicos(6+ ) cosQt +sin (6 + ) sinQt,
— cosicos(f+ 1) sin Qt +sin (6 + ) cos Qt, sini cos( + )},
(B9)

where 0 is the mean anomaly, 6=¢ — .

The torque N on the tidal bulge of the primary is the
generalization of —rF,, where F, is the transverse force given in
(A17), for finite inclination : In the frame S” it has the simple form

2

N =3ktGm2R3r ™ 6¢ xj—; (B10)

where

F=rtr. ¢

Writing out the last factor, we have A

N =3ktGm?R5r~
x [{— cosicos(0+1)sin Q¢ +sin (0 + ) cos Qt,
— cosicos(8 +1) cosQt —sin(f+ ) sin Qt, 0} Q
+ {— cosisin(f + ) cos Qt +cos(0 + ) sin ¢,
cosisin(f+ ) sinQz + cos(0 + 1) cos 1,

—sinisin(0+1)}6]. (B11)

Now we can go back to the nonrotating frame S':

N= 3%m2M" 1R85 x [[sin (8 + 1), — cosicos(8+ ), 012
+[—cosisin(f+v), cos(0+ ), —sinisin(0+)]0] (B12)

and to the original frame S :

k
N=3_ m2M 1R®~ 6 x [(cosisin(0 + ), — cosicos(6+1),

—sinisin (0 + )R+ (—sin(f+v), cos(6 +1),0)8]. (B13)

Using (B3) this is
k -
N=3 ?sz" 1R3r~S[(—sinisin? (9 + ),

sinisin (8 + ) cos(6+), — cosHQ+(0,0,1)0]. (B14)

As a next step, we can average over the angle v, the angle
between periastron and the projection of £ on the orbital plane.
The reason is that both precession and apsidal motion cause a
rotation of i on a time scale much shorter than typical tidal time
scales; see e.g. Alexander (1973). Averaging over y gives the
average torque

1. . N R
N=3%m2M’ 1R8y—6 [(— Esini,O, —cosi) Q+(0,0, 1)0]. (B15)

This torque changes £2, which can be written with (B2) as

N=I.Q=I(sinf,0,cosf)f2+l$2(cosf,0,—sinf)%. (B16)

Equating (B15) and (B16) gives

Q=§£m2M 1R&~6(fhcosi—Q 1—1sin2{ (B17)
IT 2 ’

di 3k v 1mro( _psinis Lsian

yrie IQT M™'R°r GSlIll-l-ZSanl . (B18)

However, this result covers only the change in inclination resulting
from the change in £2. By conservation of total angular momen-
tum, h must change as well:

h=—19,

giving a second contribution to the change in the inclination.

To simplify the discussion, only terms to first order in i will be
retained. A generalization to higher orders in i is straightforward.
Since h=—If2 we can parametrize h as

h = h(sinj, 0, cosj) (B19)
with j=0 initially to reduce to (B1).
In analogy with (B16) we have
e N . N dj
h = (sinj, 0, cosj)h + h(cosj, 0, — sin ])E =|h—, o ,0,A]. (B20)

Angular momentum conservation, h= — N, gives with (B15)
dg 3k
dt 2T

To derive the rate of change of the inclination i, defined as the
angle between h and 192, to first order in i, we subtract (B18) and

(B19) after linearization:
210

2M'1R8r'6%sinf ) (B21)

dl d -
h

k 2 r-1p8.-6 L {
Z_= —3= —d0—(1-
(z j)=—3=m*M"'R°r 0

Comparing this with the linearized version of (B17)

k

.3 .
Q= =m*M IR O(0-0), (B23)

we can use (A28) to directly obtain the average over an orbit as
d . k q " 15 , 45 5
(o) a-eregiflie T T i)

dtl= 3Tr
3
(1 — "1 o2)3/2 2 T4
2(1 r])n(l e?) (1+3e +8e)},

(B24)
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where i=i—j is the inclination, and

IQ Q
ﬂ=7 gM+m( ) (1- 2)—1/2; (B25)

is the ratio of the rotational and the orbital angular momentum.

Appendix C

Here a derivation will be given of the global features of tidal
evolution as summarized in Sect. 4. We will concentrate on the
behaviour of the inclination i, which is the most complicated. The
changes in 4, e, and Q can be analysed in an analogous way.

Equation (13) gives the rate of change of the inclination,
restricted to the case of small inclination in which we are
interested :

i kg )
E—‘3?r(>“ e

g

{rer-ja-n2a-erre). ©

Here # is the ratio of the rotational and orbital angular momen-

tum (n=a""! at equilibrium):
2
=r§M(§) (l_ez)—l/zg, 2
m a n
and fy(e?) and f;(e?) are given by
fo@) =141+ 43" + e, (C3)
fs€®)=1+3e>+3e* (C4)

To analyse the behaviour of the inclination in the (&, e)-plane we

can use Eq. (59), which reads

Q

o =1 +a)a’?—aa(1—e?)'2. (C5)
Whether the inclination increases or decreases, depends solely

on the sign of the expression between brackets in (C1). If we keep

the eccentricity fixed, this expression becomes a function of only

one variable &, with two fixed parameters e and a.

Fl@se,0)= £e)~ 3(1-n) 2 (1~ 2)R1(e). (co

Substituting (C2) and (C5) in (C6), we find

Fi@se.a)= £~ £e)| - 2 - e
01— o1 - )| &)

For very small or very large a values F(d;e,a) is always
positive, which means that the inclination always decreases for
very large or very small g, independent of e and «:

F0;e,0)=f,(e?)>1; (C8)
~lim a7 2F(a;e,0)=a(l—e?)>*f,(e*)>0. (C9)

To analyse the behaviour for intermediate d, we take the
derivative

F'(a;e,0)=(1—-e€*)fs(e?)

1 9
|t ;a) — () (L—e?) 252 4+ 2u(1 - e,

(C10)

139
which has only one positive root
. 9 1+« 17 _ 2
a°=[1_6 , {1+§(l—e2) ”2} (C11)

Furthermore F” (4, ; e, ) >0, independent from the values of e and
o. Thus F(a;e,a) attains its only minimum for positive & at d,,.

Substituting (C11) in (C7), the minimum F(d,;e,a) can be
determined. It turns out that the two parameters e and a are
surprisingly well separated, which will make the following analysis
much simpler:

2 2 2 ( + )4
ogim F(a;e,a)=F(a,;e 0)= fye?)— fs(e)k(e*)—=—, (Cl12)
where
k(e?)= —1h%(e?)+2h3(e?) — h*(e?). (C13)
and
h(e?)=3{]/17+9(1 —e?)'?}. (C14)

Thus we can conclude that for fixed « and e the inclination will
increase for one connected range of a values, if and only if
F(a,; e,x) <0, or with (C12):

f: 2(32)
<

f (e 2)k(ez) «
If P(e) > Q(a), then the inclination decreases for all a values. In the
critical case where P(e)=Q(x), there is only one point where the
inclination is stationary; for all other & values it decreases.
However, these conclusions are valid only for 0 <e <0.9025 where
P(e)>0. For higher eccentricity P(e) changes sign, and
F(d,;e,a)>0 independent of a. Thus for all eccentricity above a
critical value e, ~0.9025 the inclination always decreases, inde-
pendent of @ and a.

The two functions P(e) en Q(x) are plotted in Fig. 11. It can be
seen that Q(x) and P(e) are both monotonously increasing, at least
for e<e,. At e,,P(e) jumps from + oo to — oo, since k(e?) in
Eg. (C13) goes through zero. With (C13) and (C14) then follows
e, =%4/17~0.9025. For a given value of «, the maximum eccen-
tricity e,,, for which the inclination can be stationary can be
determined from Fig. 11 by equating P(e,,, )=0Q(x). The mono-
tonous increase of P(e) then guarantees the existence of two
stationary points in the (g, e)-plane for all values e<e,,,,.

The critical « value below of which the inclination decreases
everywhere is obtained when e_, =0. From (C13) and (C15) we
thus obtain a quartic equation for o, :

1+ au)*

P(e)= 37— =00).

(C15)

A+a ) 1 8192
e e (C16)
o, kO 107+51)/17
which gives
o, ~21.5322.

Finally we will show that an increasing inclination implies an
increasing eccentricity as well. We have seen above that the area of
increasing inclination is simply connected in the {@, e}-plane. The
same can be derived for the area of increasing eccentricity. Thus it

. . . ... [de
is sufficient to prove that stationary eccentricity a =0| always

implies decreasing inclination (;l% <O). This then implies that the

area of increasing inclination is contained inside the area of
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Fig. 11. The auxiliary functions P(e) and Q(«), which are useful for
investigating the behaviour of the inclination as derived in
Appendix C

increasing eccentricity if they have at least one point in common.
It is obvious from Fig. 9 that this is the case for a=25. By
continuity this holds also for all other values of a> 3, if the curves

. ..d . di .
of stationary e and i never cross, i.e. if d—i =0 implies T <0 strictly
for all a.

d .
To prove this, starting with d—i =0, Eq. (10) gives

Q 18 fi(e? _

T L €1
where

fo(€?)=1+13? +13¢* + 36 (C18)
fie)=1+3e2+1e*. (C19)

Substituting (C17) in (C1), the equation for i reads
di 11 k ¢* (1_{)6(1_82)_9/2 f4(e2)i

dt 6 Tr\a f3(e?)
9 2
- Z S e a-n). 20)
4

Here we have the anticipated result: the expression between
brackets is positive for all #>0, since the function

11 )
RO=5 7 e

is larger than unity for any eccentricity. In fact, R(e) is a
monotonically increasing function, with

(C21)

$=RO)=R(@=R()=%5% ©

de

. di .
7 =0 implies 7 <0. As discussed

Thus we have proven that
above, this again implies

)

dt Zoz dt >0,

one of the relations listed in the second half of Table 1.
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