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BREMSSTRAHLUNG 

Radiation due to the acceleration of a charge in the Coulomb field of 
another charge is called bremsstrahlung or free-free emission. A full under- 
standing of this process requires a quantum treatment, since photons of 
energies comparable to that of the emitting particle can be produced. 
However, a classical treatment is justified in some regimes, and the 
formulas so obtained have the correct functional dependence for most of 
the physical parameters. Therefore, we first give a classical treatment and 
then state the quantum results as corrections (Gaunt factors) to the 
classical formulas. 

First of all we shall treat nonrelativistic bremsstrahlung. Relativistic 
corrections are treated in 95.4. We note that bremsstrahlung due to the 
collision of like particles (electron-electron, proton-proton) is zero in the 
dipole approximation, because the dipole moment E e,r, is simply propor- 
tional to the center of mass 2mjri ,  a constant of the motion. We therefore 
must consider two different particles. In electron-ion bremsstrahlung the 
electrons are the primary radiators, since the relative accelerations are 
inversely proportional to the masses, and the charges are roughly equal. 
Since the ion is comparatively massive, it is permissible to treat the 
electron as moving in a fixed Coulomb field of the ion. 
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5.1 EMISSION FROM SINGLESPEED ELECTRONS 

Let us assume that the electron moves rapidly enough so that the deviation 
of its path from a straight line is negligible. This is the small-angle 
scattering regime. This approximation is not necessary, but it does simplify 
the analysis and leads to equations of the correct form. Consider an 
electron of charge - e  moving past an ion of charge Ze  with impact 
parameter b (see Fig. 5.1). The dipole moment is d =  - eR, and its second 
derivative is 

d= - e i ,  (5.1) 

where v is the velocity of the electron. Taking the Fourier transform of this 
equation, noting that the Fourier transform of d is -w2d(w), [cf. Eq. 
(3.25a)], we have the result: 

- w*d(w) = - - /" ie'"'dt. 
277 - m  

It is easy to derive expressions for d(w) in the asymptotic limits of large 
and small frequencies. First we note that the electron is in close interaction 
with the ion over a time interval, called the collision rime, which is of order 

b 
r = - .  

V 
(5.3) 

For wr>>1 the exponential in the integral oscillates rapidly, and the 
integral is small. For m<< 1 the exponential is essentially unity, so we may 
write 

Av, w<< 1 

wr>>l, 
(5.4) 

where Av is the change of velocity during the collision. Refemng to Eq. 

Figuw 5.1 An electron of charge e mooing pasf an ion of charge Ze. 
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(3.26b) and using Eq. (5.4), we have 

Let us now estimate Av. Since the path is almost linear, the change in 
velocity is predominantly normal to the path. Thus we merely integrate 
that component of the acceleration normal to the path: 

the integral being elementary. Thus for small angle scatterings, the emis- 
sion from a single collision is 

We now wish to determine the total spectrum for a medium with ion 
density n,, electron density ne and for a fixed electron speed v. Note that 
the flux of electrons (electrons per unit area per unit time) incident on one 
ion is simply neu. The element of area is 2 ~ b d b  about a single ion. The 
total emission per unit time per unit volume per unit frequency range is 
then 

where b,,, is some minimum value of impact parameter; its choice is 
discussed below. 

It would seem that the asymptotic limits (5.6) are insufficient to evaluate 
the integral in Eq. (5.7), which requires values of dW(b)/dw for a full 
range of impact parameters. However, it turns out that a very good 
approximation can be achieved using only its low frequency asymptotic 
form. To see this, substitute the b<<v/w result of Eq. (5.6) into Eq. (5.7). 
This gives 



where b,, is some value of b beyond which the b<<v/w asymptotic result 
is inapplicable and the contribution to the integral becomes negligible. The 
value of b,, is uncertain, but it is of order v / w .  Since b,, occurs inside 
the logarithm, its precise value is not very important, so we simply take 

V 

w b,,, ZE - , (5.9) 

and make a small error. It can now be seen that the use of the asymptotic 
forms (5.6) is justified, because equal intervals in the logarithm of b 
contribute equally to the emission, and over most of these intervals the 
emission is determined by its low frequency asymptotic limit. 

The value of bmin can be estimated in two ways. First we can take the 
value at which the straight-line approximation ceases to be valid. Since this 
occurs when Av-v, we take 

(5.10a) 

A second value for bmin is quantum in nature and concerns the possibility 
of treating the collision process in terms of classical orbits, as we have 
done. By the uncertainty principle A x A p Z h ;  and taking Ax-b and 
Ap-mu we have 

(5.10b) 

When & ~ ) , > > b ~ ~ , ,  a classical description of the scattering process is valid, 
and we use bmin=bgn.  This occurs when imv2<<Z2Ry,  where Ry-  
me4/(%') is the Rydberg energy for the hydrogen atom. When b3,,<<bEn, 

portant role, and the classical calculation cannot strictly be used. Nonethe- 
less, results of the correct order of magnitude are obtained by simply 
setting b,,, = bs,. 

For any regime the exact results are conveniently stated in terms of a 
correction factor or Gaunt factor gfdv,w) such that 

or, equivalently, i I mv2> Z 'Ry, the uncertainty principle plays an im- 

(5.11) 

Comparison of Eqs. (5.8) and (5.11) gives gr/ in terms of an effective 



logarithm 

(5.12) 

The Gaunt factor is a certain function of the energy of the electron and of 
the frequency of the emission. Extensive tables and graphs of it exist in the 
literature. See, for instance, the review article by Bressaard and van de 
Hulst, (1962) and the article by Karzas and Latter (1961). 

5.2 THERMAL BREMSSTRAHLUNG EMISSION 

The most interesting use of these formulas is their application to thermal 
bremstruhlung; that is, we average the above single-speed expression over 
a thermal distribution of speeds. The probability dP that a particle has 
velocity in the velocity range d3v is 

Since d3v =4mu2du for an isotropic distribution of velocities, the probabil- 
ity that a particle has a speed in the speed range do is 

dPa  u2exp( - m) mu2 du. 
(5.13) 

Now we want to integrate Eq. (5.1 1) over this function. What are the limits 
of integration? At first guess, one would choose O<u<ca.  But at 
frequency v, the incident velocity must be at least such that 

because otherwise a photon of energy hv could not be created. This cutoff 
in the lower limit of the integration over electron velocities is called a 
photon discreteness effect. Performing the integral 

Jrn dW(u70)  u2exp( - mu2/2kT)du 
dW( T , w )  - om,, dwdVdt 

d V d t d w  /oPu2exp( - mu2/2kT)du 
- , 
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where umin =(2hv/m)'/',  and using dw=2rdv, we obtain 

-=- d W  2*re6( - 2 s  )'I2 T -  1/2zZn n , e - h v / k T -  gJp (5*14a) e r  dVdtdv  3mc3 3km 

Evaluating eq. (5.14) in CGS units, we have for the emission (erg s-'  ~ r n - ~  
Hz- 9 

Here GAT, v) is a velocity averaged Gaunt factor. The factor T-'/' in Eq. 
(5.14) comes from the fact that d W / d V d l d w a u - '  [cf. Eq. (5.11) and 
( u )  a TI/*. The factor ePh"IkT comes from the lower-limit cutoff in the 
velocity integration due to photon discreteness and the Maxwellian shape 
for the velocity distribution. 

Approximate analytic formulas for g,/ in the various regimes in which 
large-angle scatterings and small-angle scatterings are dominant, in which 
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Figure 5.2 Approximate d y t i c  fonnurcCe focthe gaunt factor g&, T) for 
thermal bremrstmhlung. Here glr is denoted by G and the energv Writ Ry = 13.6 
eK (Taken from Novikm, I. D. ~JUI ll~ome, K. S. 1973 in Black Hdes, Les 
Houches, Eds. C. Dewin and B. Dewin, Gordon and Breach, New Yo&) 
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the uncertainty principle (U. P.) is important in the minimum impact 
parameter, and so on are indicated in Fig. 5.2. Figure 5.3 gives numerical 
graphs of &. The values of grr for u--hv/kT>>l are not important, since 
the spectrum cuts off for these values. Thus g / r  is of order unity for u-1 
and is in the range 1 to 5 for 10--4<u< 1. We see that good order of 
magutude estimates can be made by setting gf, to unity. 

We also see that bremsstrahlung has a rather “flat spectrum” in a log-log 
plot up to its cutoff at about hv-kT. (This is true only for optically thin 
sources. We have not yet considered absorption of photons by free elec- 
trons.) 

To obtain the formulas for nonthermal bremstrahlung, one needs to 
know the actual distributions of velocities, and the formula for emission 
from a single-speed electron must be averaged over that distribution. To 
do this one also must have the appropriate Gaunt factors. 

Let us now give formulas for the total power per unit volume emitted by 
thermal bremsstrahlung. This is obtained from the spectral results by 
integrating Eq. (5.14) over frequency. The result may be stated as 

(5.15a) 
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Figure 5.3 Numerical values of the gaunt factor g d v ,  T). Here the requemy 

10sZ’/ T. (Taken from Karzas, W .  and Latter, R. 1961, Asttwphys. J. SuppL, 6, 
167.) 

U 

wnable is u= 4.8 X IO”v/ T and the temperaturn variable is y f- - 1.58 X 
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or numerically, again in CGS units, the emission (erg s- '  cmP3) is 

dW 
dt dV 

e f f z  - = 1.4X 10 27T'/2nen,Z2gB. (5.15b) 

Here &(T)  is a frequency average of the velocity averaged Gaunt factor, 
which is in the range 1.1 to 1.5. Choosing a value of 1.2 will give an 
accuracy to within about 20%. 

5.3 THERMAL BREMSSTRAHLUNG (FREEFREE) 
ABSORPTION 

It is possible to relate the absorption of radiation by an electron moving in 
the field of an ion to the preceding bremsstrahlung emission process. The 
most interesting case is thermal free-free absorption. In that case we have 
Kirchhoff's law [cf. Eq. (1.37)] 

j i j  = a!%, ( T ) . (5.16) 

Here df is the free-free absorption coefficient, and j i  is related to the 
preceding emission formula by 

= 4 ajij. 
dW 

dt dVdv 
(5.17) 

With the form for the Planck function [Eq. (1.51)], we have then 

Evaluating Eq. (5.18a) in CGS units, we have for ay(cm-'): 

.if= 3.7 x 1 0 8 ~  - 1/2z2nenjv - 3( 1 - - h ~ / k ~  )&p (5.1 8b) 

For hu>>kT the exponential is negligible, and 4. is proportional to v - ~ .  For 
hv<< kT, we are in the Rayleigh-Jeans regime, and Eq. (5.18a) becomes 

(5.19a) 

or, numerically, 

a$= 0.0 18 T - 3 / 2 Z  'nenr u -'gY (5.19b) 
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1, 

The Rosseland mean of the free-free absorption cozfficient [Eq. (1.109)] is, 
in CGS units. 

o Electron 

. 

a{= 1.7x 10-25T-7/2Z2n e n-g I R7 (5.20) 

where & is an appropriately weighted frequency average of &,, and is of 
order unity. 

5.4 RELATIVISTIC BREMSSTRAHLUNG 

Our previous discussion of bremsstrahlung was for nonrelativistic particles. 
We now show how the relativistic case can be treated by an interesting and 
physically picturesque method called the method of uirtual quanta. A 
classical treatment provides useful insight, even though a full understand- 
ing would require quantum electrodynamics. 

We consider the collision between an electron and a heavy ion of charge 
Ze. Normally, the ions move rather slowly in comparison to the electrons 
(in the rest frame of the medium as a whole), but it is possible to view the 
process in a frame of reference in which the electron is initially at rest. In 
that case the ion appears to move rapidly toward the electron. With no loss 
of generality we can assume that the ion moves along the x axis with 
velocity L) while the electron is initially at rest on they axis, a distance b 
from the origin. From the discussion of $4.6 we recall that the electrostatic 
field of the ion is transformed into an essentially transverse pulse with 
IEl-IBl, which appears to the electron to be a pulse of electromagnetic 
radiation (see Fig. 5.4). This radiation then Compton scatters off the 
electron to produce emitted radiation. Transforming back to the rest frame 

Figure 5.4 Electric and magnetic fields of an ion m z k g  mpidry part an 
electron 



of the ion (or lab frame) we obtain the bremsstrahlung emission of the 
electron. Thus relativistic bremsstrahlung can be regarded as the Compton 
scattering of the virtual quanta of the ion’s electrostatic field as seen in the 
electron’s frame. 

In the (primed) electron rest frame, the spectrum of the pulse of virtual 
quanta has the form, [cf. Eq. (4.72b)l 

dW’ (erg cm-2 Hz-’) = - ( - b F ) 2 K : (  y),  (5.21) 
a2 ’ dw’ lr2bf2c 

where we have set u = c in the ultrarelativistic limit. Now, in this frame the 
virtual quanta are scattered by the electron according to the Thomson 
cross section for hw’smc2, and according to the Klein-Nishina cross 
section for Aw’ >mc2 [see Chapter 71. In the low-frequency limit, the 
scattered radiation is 

dW’ 
-=+y 
d W’ 
dw’ dA dw” 

(5.22) 

where uT is the Thomson cross section. Now, since energy and frequency 
transform identically under Lorentz transformations, we have for the 
energy emitted per frequency in the lab frame, dW/dw=dW’/dw‘. To 
write dW/dw as a function of b and w, rather than b‘ and a’, we note that 
transverse lengths are unchanged, b = b’, and that w = yo’( 1 + PcosO’), [cf. 
Eq. (4.12b), where 8’ is the scattering angle in the electron rest frame]. 
Because such scattering is forward-backward symmetric, we have the 
averaged relation w =  yw’. Thus the emission in the lab frame is 

-- dW - 8Z2e6 (5)’ K,  ( b w )  1 * (5.23) 

Equation (5.23) is the energy per unit frequency emitted by the collision 
of an ion and a relativistic electron at impact parameter b. For a plasma 
with electron and ion densities n, and ni, respectively, we can repeat the 
arguments leading to Eq. (5.7), where u is replaced by c and where 
bmin-h/mc according to the uncertainty principle. The integral in Eqs. 
(5.7) and (5.23) is identical to that in Eq. (4.74a), except for an additional 
factor of y in the argument. Thus we have the low-frequency limit, 
hw< ymc2, 

dw 3rb2c5m2 y c  Y C  

(5.24) 
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At higher frequencies Klein-Nishina corrections must be used. 
For a thermal distribution of electrons, a useful approximate expression 

for the frequency integrated power (erg s- '  ~ m - ~ )  in CGS units is [see 
Novikov and Thorne 19731 

-- dW - 1.4X 10-27T'/2Z2neni~B(1 +4.4X IO-'OT). 
dVdt 

(5.25) 

The second term in brackets is a relativistic correction to Eq. (5.15b). 

PROBLEMS 

5.1-Consider a sphere of ionized hydrogen plasma that is undergoing 
spherical gravitational collapse. The sphere is held at constant isothermal 
temperature To, uniform density and constant mass M ,  during the col- 
lapse, and has decreasing radius R( t ) .  The sphere cools by emission of 
bremsstrahlung radiation in its interior. At t = to the sphere is optically 
thin. 

a. What is the total luminosity of the sphere as a function of M,, R ( t )  

b. What is the luminosity of the sphere as a function of time after it 

c. Give an implicit relation, in terms of R(t), for the time t ,  when the 

d. Draw a qualitative curve of the luminosity as a function of time. 

and To while the sphere is optically thin? 

becomes optically thick? 

sphere becomes optically thick. 

5.2-Suppose X-rays are received from a source of known distance L 
with a flux F (erg cm-' s-I). The X-ray spectrum has the form of Fig. 5.5 
It is conjectured that these X-rays are due to bremsstrahlung from an 
optically thin, hot, plasma cloud, which is in hydrostatic equilibrium 
around a central mass M .  Assume that the cloud thickness A R  is roughly 
its radius R ,  A R - R .  Find R and the density of the cloud, p, in terms of 
the known observations and conjectured mass M .  If F=10-* erg cm-2 
s-' ,  L = 10 kpc, what are the constraints on M such that the source would 
indeed be effectively thin (for self-consistency)? Does electron scattering 
play any role? Here 1 kpc-one kiloparsec, a unit of distancem3.1 X Id' 
cm. 



166 Bremstmhiung 
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Figure 5.5 Detected spectnun from an X-ray source. 
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