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ABSTRACT

We consider particles with low free or proper eccentricity that are orbiting near planets on

eccentric orbits. Through collisionless particle integration, we numerically find the location of

the boundary of the chaotic zone in the planet’s corotation region. We find that the distance in

semimajor axis between the planet and boundary depends on the planet mass to the 2/7 power

and is independent of the planet eccentricity, at least for planet eccentricities below 0.3. Our

integrations reveal a similarity between the dynamics of particles at zero eccentricity near a

planet in a circular orbit and with zero free eccentricity particles near an eccentric planet. The

2/7th law has been previously explained by estimating the semimajor at which the first-order

mean motion resonances are large enough to overlap. Orbital dynamics near an eccentric

planet could differ due to first-order corotation resonances that have strength proportional to

the planet’s eccentricity. However, we find that the corotation resonance width at low free eccen-

tricity is small; also the first-order resonance width at zero free eccentricity is the same as that

for a zero-eccentricity particle near a planet in a circular orbit. This accounts for insensitivity of

the chaotic zone width to planet eccentricity. Particles at zero free eccentricity near an eccentric

planet have similar dynamics to those at zero eccentricity near a planet in a circular orbit.

Key words: celestial mechanics – planetary systems : protoplanetary discs.

1 I N T RO D U C T I O N

Chaotic diffusion associated with the overlap of resonances has been

shown to be responsible for instabilities in the Solar system (e.g. see

Lecar, Franklin & Murison 1992; Holman & Wisdom 1993; Lecar

et al. 2001; Tsiganis et al. 2005). For the restricted three-body prob-

lem, Wisdom (1980) first showed that the width of the chaotic zone

near a planet could be explained by calculating the location at which

the first-order mean motion resonances are large enough to overlap.

The zone width has been measured numerically and predicted theo-

retically (Wisdom 1980; Duncan, Quinn & Tremaine 1989; Murray

& Holman 1997) for a planet in a circular orbit, though some work

has extended the stability analysis for bodies in orbits near circu-

lar and eccentric binary stars (Holman & Wiegert 1999; Mudryk

& Wu 2006). The stability of bodies at low eccentricity, residing in

multiple planet extrasolar systems has also been investigated numer-

ically (e.g. Rasio & Ford 1996; Barnes & Raymond 2004; Lepage

& Duncan 2004).

Recently, Quillen (2006b) suggested that the edge of Fomal-

haut’s eccentric ring could be due to truncation by a 0.1 eccentricity

Neptune mass planet. The nearby star, Fomalhaut, hosts a ring of

⋆E-mail: aquillen@pas.rochester.edu (ACQ); pfaber@mail.rochester.edu

(PF)

circumstellar material (Aumann 1985; Gillett 1985) residing be-

tween 120 and 160 au from the star (Holland et al. 1998; Dent et al.

2000; Holland et al. 2003). Spitzer Space Telescope infrared ob-

servations of Fomalhaut reveal a strong brightness asymmetry in

the ring (Stapelfeldt et al. 2004; Marsh et al. 2005). Recent Hubble

Space Telescope (HST) observations show that this ring has both a

steep and an eccentric inner edge (Kalas, Graham & Clampin 2005).

The sharp disc edge suggested that the dust particles are in orbits

with low free or proper eccentricity; thus, the ring has eccentricity

equal to the forced eccentricity caused by secular perturbations from

the proposed planet. Such a configuration is possible if inelastic col-

lisions in the disc damp the eccentricities of particles, resulting in

a particle distribution that moves along nearly closed streamlines

or closed and non-self-intersecting orbits. Fomalhaut’s ring has a

intermediate collision time-scale of 103 orbits, estimated from its

normal disc opacity τ ∼ 1.6 m at 24 m (Marsh et al. 2005).

While previous theoretical and numerical studies have consid-

ered orbit stability near the corotation region for planets on circular

orbits, little work has been done considering the stability of orbits

near a planet on an eccentric orbit. The dynamical problem of an

object orbiting a planet in a circular orbit has a conserved quan-

tity, the Jacobi integral, that is not conserved when the planet is on

an eccentric orbit. Surfaces of section have been used to illustrate

the types of orbits (tori or area filling) for the restricted three-body

system (Wisdom 1985; Winter & Murray 1997). However, when
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the planet is eccentric, there is no extra integral of motion making

it difficult to create surfaces of section. We are motivated here to

consider the role of the planet’s eccentricity in setting the boundary

of non-stochastic orbits in the corotation region. We focus here on

particle orbits that have nearly zero free eccentricity and so have ec-

centricity set by the forced eccentricity due to secular perturbations

from the planet.

2 N U M E R I C A L I N T E G R AT I O N S

Numerical integrations were carried out in the plane, using massless

and collisionless particles under the gravitational influence of only

the star and a massive planet with eccentricity, ep, using a conven-

tional Burlisch–Stoer numerical scheme. A particle near a planet on

an eccentric orbit feels secular perturbations from the planet if it is

located away from low-order mean motion resonances. The parti-

cle’s eccentricity and longitude of periastron precess about a point

set by the distance to the planet, the planet’s eccentricity longitude

of periastron. The secular motion can be described in terms of a free

(or proper) and forced eccentricity (e.g. Murray & Dermott 1999).

Only a particle with zero free eccentricity would have a fixed argu-

ment of periastron and eccentricity. In our integrations, the initial

particle eccentricities were set to the predicted forced eccentricity

due to secular perturbations from the planet and the longitudes of pe-

riastron were chosen to be identical to that of the planet. Initial mean

anomalies were randomly chosen. Particles were removed from the

integration when their eccentricity was larger than emax = 0.9. We

work in units of the planet’s semimajor axis, ap, and orbital period.

The mass of the planet is described in terms of its mass ratio, µ, the

ratio of the mass of the planet to that of the central star.

2.1 Measurement of the width of the chaotic zone

As a function of an initial semimajor axis, we measured the lifetimes

of particles before removal from the integration. The semimajor axis

bins for each lifetime measurement had width da = 0.01, and 100

particles were integrated for each bin. An abrupt increase in the

particle lifetime was seen in the simulations as a function of ini-

tial semimajor axis (see fig. 2 by Quillen 2006b). Inside the chaotic

zone, particles were scattered to high eccentricity and removed from

the simulation, but outside it, the lifetime of particles exceeded 104

orbits. For planet mass ratios between 10−3 and 10−5 and eccentric-

ities between 0.05 and 0.2, we measured the semimajor axis, az, at

which this transition in lifetime occurred. The distance da = (az −
ap)/ap between this semimajor axis and that of the planet, divided

by the planet’s semimajor axis, is plotted in Fig. 1.

In Fig. 1, we note that the chaotic zone boundaries depend on the

planet mass. The scaling is consistent with that predicted from the

2/7th law or

da = 1.5µ2/7 (1)

(Wisdom 1980), where the constant 1.5 is taken from numerical

measurements by Duncan et al. (1989). The offset between the line

predicted by equation (1) is not significant as we have measured

the width from an ensemble of particles and required them all to

remain at least for 104 orbits. This implies that we have measured a

location outside the last stable orbit in a surface section or a closed

orbit radius versus energy bifurcation plot. The points shown in

Fig. 1 include those integrated for a zero-eccentricity planet, so

the offset between that predicted by the 2/7th law is the same for

the higher planet eccentricities as for the zero planet eccentricity.

Using finer spacing in semimajor axis and by restricting the initial
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Figure 1. The distance between the planet semimajor axis and that of the

chaotic zone boundary is plotted as a function of planet mass ratio, µ. Points

are plotted at the semimajor axis at which particles’ lifetime exceeded 104

orbits. Each point type corresponds to a different planet eccentricity. The

points lie on top of one another because the chaotic zone width is independent

of the planet eccentricity for orbits with zero free eccentricity. Particles

were initially placed in orbits with zero free eccentricity and arguments of

periastron the same as that of the planet. The solid line corresponds to that

predicted by equation (1).

orbital elements rather than choosing them randomly, it is possible

to find stable orbits somewhat closer to the planet. The offset from

the predicted line is caused by the measurement procedure, rather

than the planet eccentricity. We note an increased scatter in the

chaotic zone boundary at lower masses in Fig. 1; however, we find

no clear trend in the scatter as a function of planet eccentricity. Since

the particle lifetimes in the chaotic zone are longer for the lower-

mass planets, more particle trajectories may need to be integrated

to achieve the same precision in the measurement of the chaotic

zone boundary at lower planet masses. The choice of initial random

mean anomalies could also contribute to the scatter at lower planet

masses.

Fig. 1 shows points corresponding to integrations with differ-

ent planet eccentricities. The points for integrations near eccentric

planets lie on top of those at low or zero planet eccentricity. In other

words, the width of the chaotic zone appears to be independent of

the planet eccentricity. We find that there exists a long-lived low free

eccentricity region near moderately eccentric planets (in the planar

problem). This region has d a < ep for the more highly eccentric

planets and so is nearer to the planet’s major axis than to the planet’s

periastron. In other words, these orbits pass closer to the star than

to the periastron of the planet, but since they are apsidally aligned

with the orbit of the planet they do not cross the planet’s orbit.

A disc with a low collision rate, could evolve to a distribution with

nearly closed orbits fixed about the forced eccentricity and apsidally

aligned with a planet. Our planar numerical integrations show that

this region is stable over long time-scales (greater than 104 orbits)

and so could host a long-lived planetesimal distribution.

2.2 Dispersion and lifetimes

We have also measured the eccentricity distribution after 104 plan-

etary orbits in the disc edge. These are shown in Fig. 2. Each point

shown in this figure corresponds to measurements based on inte-

gration of 100 particles. The corotation chaotic region arises from
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Figure 2. Eccentricity dispersion, ue , in the disc edge as a function of planet

mass. The line shown is ue = 6.2µ3/7 and consistent with that predicted with

equation (19) for particles near a planet in a circular orbit. Each point type

corresponds to integrations containing a planet with a different eccentricity.

The eccentricity dispersion is not strongly dependent on the planet eccen-

tricity.

resonance overlap. However, outside the chaotic zone mean motion

resonances exist that affect the particles, but since they do not over-

lap other mean motion resonances the particles do not vary their

orbital parameters stochastically or do vary stochastically but on

much longer time-scales. Fig. 2 shows that the velocity dispersion

in the stable boundary is likely to depend on planet mass and not on

eccentricity.

To characterize the lifetime of particles in the chaotic zone, we

consider particles within initial semimajor axis at two-third the dis-

tance in semimajor axis to the zone edge. The time-scale for removal

of 25, 50 and 75 per cent of the particles is plotted as a function of

planet mass for planet eccentricities, ep = 0.05 and 0.2, in Fig. 3.

Again particles are initially started in orbits with zero free eccentric-

ity. Comparing with Fig. 3, we see no significant difference in the

particle lifetimes at the two planet eccentricities. Particles placed

into the chaotic zone at zero free eccentricity, would have a similar

resident lifetime to those placed at zero eccentricity near a planet of

zero eccentricity.

For orbits with eccentricity equal to the forced eccentricity, we

find that there is a long-lived or stable region in close proximity to

eccentric planets. Inside this region, particles are pumped to high

eccentricity and scattered by the planet on a time-scale orders of

magnitude faster than that outside this region. We have found that

the width of this chaotic zone in semimajor axis is independent of the

planet eccentricity. The eccentricity dispersion in the disc edge and

the lifetime of particles within the zone are also nearly independent

of planet eccentricity. These results suggest that there is a similarity

in the dynamics of particles at zero free eccentricity and those at

zero eccentricity near a planet in a circular orbit. In the following

section, we explore a Hamiltonian formulation that shows that this

is in fact the case.

3 H A M I LTO N I A N F O R M U L AT I O N

In this section, we reconsider the theory of mean motion resonance

overlap. We consider the role of first-order secular perturbations

from the planet and the two angular perturbations that are associated

with each first-order mean motion resonance. We follow the notation
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Figure 3. Particle lifetime in planetary orbits as a function of planet mass

for particles with initial semimajor axis two-third of the way between the

planet’s semimajor axis and the chaotic zone boundary. The large and small

points are for planet eccentricities ep =0.05 and 0.2, respectively. The circles,

crosses and triangles correspond to times when 75, 50 and 25 per cent of the

particles remain in the simulation, respectively. The line shown has lifetime

equal to 0.23 µ−0.84. Particles have initial angle of pericentre identical to

that of the planet and zero free eccentricity. The lifetimes are not strongly

dependent on the planet eccentricity.

by Quillen (2006a). We employ the Poincaré coordinates

λ = M + ̟, γ = −̟

and their associated momenta

L =
√

G M∗a, Ŵ =
√

G M∗a(1 −
√

1 − e2),

where M∗ is the mass of the star, λ is the mean longitude, M is the

mean anomaly, ̟ is the longitude of pericentre, a is the semimajor

axis, and e is the eccentricity. These variables are those describing

the orbit of a particle or planetesimal in a plane. The Hamiltonian

for the Keplerian system in these coordinates restricted to a plane is

H (L, λ; Ŵ, γ ) = −
G M∗

2L2
− R,

where R is the disturbing function, proportional to the planet mass,

that depends on the coordinates of the particle and on the coordinates

of the planet. The planet’s semimajor axis and mass are denoted by ap

and mp, respectively. The planet’s other coordinates are subscripted

in the same way. The mean motion of the particle n = λ̇, where λ̇

is the derivative with respect to time of λ.

Hereafter, we adopt a unit convention with distances in units of

the planet’s semimajor axis, ap. Time is put in units of
√

a3
p/G M∗.

We define µ to be the mass ratio µ ≡ mp/M∗. At low eccentricity,

Ŵ/L ≈ e2/2, relating the momentum Ŵ to the particle eccentricity.

We often give the particle semimajor axis in terms of the variable

α ≡ ap/a if a > ap (external to the planet) and α ≡ a/ap for a < ap

(internal to the planet).

The unperturbed Hamiltonian or that lacking the disturbing func-

tion is

H0(L, λ; Ŵ, γ ) = −
1

2L2
.

We consider the j : j − k exterior mean motion resonance (planet is

an interior perturber). We perform a canonical transformation using

the mixed variable generating function

F2 = I [ jλ − ( j − k)λp],
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where λp = np t, leading to new variables1

I = L/ j, ψ = jλ − ( j − k)λp

and new Hamiltonian

H ′
0(I , ψ ; Ŵ, γ ) =

−1

2 j2 I 2
− ( j − k)I np.

We now expand around a particular value for I. Let


 ≡ I − I0. (2)

In terms of the particles’ mean motion, I0 = n−1/3/j. Since we have

adopted units np = 1, we find I0 = α−1/2/j, where α = ap/a. Our

Hamiltonian now reads

K0(
, ψ ; Ŵ, γ ) = constant + [ jn − ( j − k)np]
 −
3
2

2 j2 I 4
0

.

We can write the unperturbed Hamiltonian as

K0(
, ψ ; Ŵ, γ ) = a′
2 + b′
 + constant,

with coefficients

a′ = − 3

2
j2α2,

b′ = nj − ( j − k)np = α3/2 j − ( j − k)np,
(3)

similar to equation (2) by Quillen (2006a). Exactly on resonance

α =
(

j−k

j

)2/3
and b′ = 0. The primes here are given to differentiate

a′ from the semimajor axis a.

We now recover the disturbing function that is traditionally ex-

panded as a cosine series of angles in orders of planet and particle

eccentricities. We keep the terms inducing precession of the lon-

gitude of periapse and first-order (in eccentricity) or k = 1 terms

containing ψ and ̟ . The full Hamiltonian

K (
, ψ ; Ŵ, γ ) = a′
2 + b′
 + c′Ŵ

+d ′Ŵ1/2Ŵ1/2
p cos(̟ − ̟p)

+g0Ŵ
1/2 cos (ψ − ̟ )

+g1Ŵ
1/2
p cos (ψ − ̟p), (4)

where Ŵp ≡ (e2
p L)/2 and with the following coefficients:2

c′ = −
µ

4
α5/2b1

3/2,

d ′ =
µ

2
α5/2b2

3/2,

g0 = −µ
√

2α5/4 f31,

g1 = −µ
√

2α5/4 f27. (5)

The coefficients f31 and f27 are given in table B7 by Murray &

Dermott (1999). The functions b1
3/2 and b2

3/2 are Laplace coeffi-

cients and are functions of α. The approximate asymptotic limits

for large j and α → 1 are f31 →j and f27 → − j. We have used the

approximation e2 ∼ 2Ŵα1/2. The term proportional to cos (ψ − ̟ )

is often called the e-resonance since Ŵ1/2 ∝ e. The other term can

be called an e′-resonance or a corotation resonance since it does not

depend on the particle’s longitude of perihelion or ̟ .

We first consider secular perturbations only, ignoring the g0 and

g1 terms and considering the following:

K (Ŵ, γ ) = c′Ŵ + d′Ŵ1/2Ŵ1/2
p cos(̟ − ̟p). (6)

1 There is an error in the I variable definition by Quillen (2006a).
2 Equation (4) by Quillen (2006a) for c should have had a factor of α3/2.

We find a fixed point at

−γ = ̟ = ̟p,

Ŵ
1/2

f =
b2

3/2

b1
3/2

Ŵ1/2
p , (7)

where Ŵf ≈ e2
forced L/2. This fixed point is equivalent to a closed

orbit with eccentricity equal to the forced eccentricity

eforced =
b2

3/2

b1
3/2

ep

and zero free eccentricity. The coefficient c′ sets the secular preces-

sion rate.

We can perform canonical transformations to new variables

x =
√

2Ŵ cos ̟ −
√

2Ŵf cos ̟p,

y =
√

2Ŵ sin ̟ −
√

2Ŵf sin ̟p,

I =
x2 + y2

2
,

θ = tan−1

(

y

x

)

. (8)

These variables were also used by Murray & Holman (1997). Here,

the momentum variable I is related to the particle’s free or proper

eccentricity rather than the particle’s eccentricity.

Recovering the Hamiltonian (equation 4) in the new variables

K (
, ψ ; I , θ ) = a′
2 + b′
 + c′ I

+ constant

+ g0 I 1/2 cos (ψ − θ )

+ (g0Ŵ
1/2

f + g1Ŵ
1/2
p ) cos (ψ − ̟p). (9)

The expansion about the fixed point associated with the forced ec-

centricity does not change the form of the term normally associated

with the first-order mean motion resonance, that is proportional to

cos (ψ − θ ). Consequently, the resonance libration time and width

are unchanged. The predicted semimajor axis where resonance over-

lap occurs based on these resonance widths would be identical to

that for a planet in a circular orbit (see below).

However, the width of the corotation resonance differs from that

predicted using equation (4). The coefficient describing the strength

of this resonance [∝ cos (ψ − ̟ p) in equation 9], can be rewritten

as

µ
√

2α5/4( f31eforced + f27ep) cos (ψ − ̟p),

using the coefficients listed in equations (5). Since f27 and f31 have

opposite signs, the forced eccentricity term will tend to cancel the

other term. In the high j limit, the forced eccentricity equals the

planet’s eccentricity and f27 ≈ − f31 so these two terms cancel. The

µ2/7 law is only valid for the high j limit. Consequently, the coro-

tation resonance completely cancels near the planet for orbits with

zero free eccentricity. This implies that the dynamics of particles

at low eccentricity near a planet in a circular orbit is similar to the

dynamics of particles at low free eccentricity near a planet in an

eccentric orbit.

We note that our expansion above is valid only to first order in the

particle and planet eccentricity. At high particle and planet eccen-

tricity, additional resonance terms become important, and the low

eccentricity expansion is no longer valid. The above Hamiltonian

(equation 9) is not restricted to zero free eccentricity but to low val-

ues of the free eccentricity due to the low degree of the expansion.
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3.1 Rederiving the 2/7th law and the eccentricity dispersion in

the disc edge

In Section 2, we numerically measured the eccentricity dispersion

in the disc edge, finding that it too does not significantly depend

on planet eccentricity. Outside the chaos zone, planetesimals still

experience perturbations from the planet. These perturbations have

a characteristic size set by size of perturbations in the nearest mean

motion resonance that is not wide enough to overlap others and so

is not part of the chaotic zone. Since particles in the edge reside

outside the chaotic zone, the velocity dispersion does not increase

with time. In this section, we check that our formulation can cor-

rectly predict the location of resonance overlap. We then predict

eccentricity variations that would be predicted by considering the

role of the last resonance that is not part of the chaotic zone.

The width of the resonance can be thought of as the range of

semimajor axis over which the resonance has a large effect. To

estimate the first-order resonance width, we rescale the momentum

and put the Hamiltonian in a unitless form (e.g. as done by Murray

& Dermott 1999 in section 8.8 or by Quillen 2006a in section 3).

The factors used to rescale the Hamiltonian set the resonance width.

We perform a canonical transformation of the Hamiltonian given in

equation (9) lacking the corotation term or

K (
, ψ ; I , θ ) = a′
2 + b′
 + c′ I

+ g0 I 1/2 cos (ψ − θ )

with generating function

F2 = J1(θ − ψ) + J2ψ

leading to new variables

J2 − J1 = 
, φ = θ − ψ

J1 = I , ψ = ψ (10)

and new Hamiltonian

K ′(I , φ; J2, ψ) = a′
(

I 2 + J 2
2

)

+
(

c′ − 2a′ J2 − b′
)

I

+b′ J2 + g0 I 1/2 cos φ. (11)

Note that J2 is conserved and is small for initial conditions near res-

onance with small initial free eccentricity (or I). Dropping constant

terms and setting

B = c′ − 2a′ J2 − b′, (12)

the Hamiltonian in equation (12) becomes

K ′(I , φ) = a′ I 2 + B I + g0 I k/2 cos φ.

Here, the coefficient B determines the distance from resonance. By

rescaling momentum and time

Ī =
∣

∣

∣

g0

a′

∣

∣

∣

−2/3

I ,

τ = |g0|2/3 |a′|1/3
t,

(13)

we can write this as

K̄ ( Ī , φ) = Ī 2 + b̄ Ī − Ī 1/2 cos φ, (14)

where

b̄ = B|g0|−2/3
∣

∣a′
∣

∣

−1/3
(15)

sets the distance from exactly on resonance. The resonance is only

strong over a range 
b̄ ∼ 1 (e.g. see fig. 8.10 by Murray & Dermott

1999) corresponding to a range of particle mean motions. Assuming

slow secular precession and neglecting the term ∝ J2, the variation


B ∼ −
b′ (equation 13). Equation (3) allows us to relate 
b′

to the range of mean motions over which the resonance is strong


b′ ∼ j
n. Equation (16) then implies that the resonance is strong

over a range of mean motions of size


n ∼ j−1 |g0|2/3
∣

∣a′
∣

∣

1/3
.

For resonances near the planet, we can use the asymptotic limit (α

→ 1, j large) that gives g0 → µj. Subbing in for g0 and considering

the range of semimajor axis rather than mean motion, the resonance

width is


a ∼ µ2/3 j1/3,

where we have used 
n ∼ 3/2
a. Using a spacing between j : j −
1 resonances of 
a ∼ (2/3) j−2, we find that the resonances overlap

at the resonance with

j ∼ µ−2/7.

The semimajor axis corresponding to the j : j − 1 resonance at

the chaotic zone boundary is set by the above j. The j : j − 1 mean

motion resonance located at a semimajor axis of a = (1 − 1/j)−2/3 ∼
1 + 2/(3j) for large j. The distance between the planet and chaotic

zone boundary, δaz, in semimajor axis, that is, chaotic zone width,

is then

δaz ∼ µ2/7, (16)

recovering the 2/7th law (Wisdom 1980; Duncan et al. 1989; Murray

& Holman 1997; Mudryk & Wu 2006).

The eccentricity change or libration width in the resonance just

outside the boundary would have size

I ∼
∣

∣

∣

g0

a′

∣

∣

∣

2/3

, (17)

where we have used the libration width (given by the scaling factor

for Ī in equation 14) or

I ∼ µ2/3 j−2/3. (18)

Subbing in j ∼ µ−2/7 at the chaotic zone boundary gives I ∼ µ6/7

and an eccentricity dispersion of

ue ∼ µ3/7 (19)

just outside the chaos zone. This dispersion could set the slope of

the density distribution in the disc edge (e.g. Quillen 2006b). The

scaling predicted by equation (19) is shown compared to numeri-

cal measurements of the eccentricity dispersion in the disc edge in

Fig. 2. It provides a good fit to the measurements and is independent

of planet eccentricity as predicted by considering equation (9) for

orbits with low free eccentricity.

4 S U M M A RY A N D D I S C U S S I O N

In this paper, we have investigated the dynamics of low free eccen-

tricity collisionless massless particles in the plane near a planet on

a eccentric orbit. By determining the semimajor axis at which the

particle lifetime increases, we measure the width of the chaotic zone

near the planet. For eccentricity ep < 0.3, we find that the chaotic

zone width is independent of the planet’s eccentricity and matches

that predicted by the 2/7th law. The eccentricity dispersion in the

disc edge and the lifetime of particles within the chaotic zone are

also nearly independent of planet eccentricity. These results suggest

that there is a similarity in the dynamics of particles at zero free ec-

centricity and those at zero eccentricity near a planet in a circular

orbit.
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To account for our numerical results, we have explored the dy-

namics of a Hamiltonian system that takes into account first-order

secular perturbations and the two terms that comprise each first-

order mean motion resonance. With a coordinate transformation,

we have rewritten the Hamiltonian in terms of an action variable

that depends on the free eccentricity rather than the eccentricity. At

low free eccentricity, we find that the new Hamiltonian resembles

the Hamiltonian of a low-eccentricity particle near a planet in a cir-

cular orbit. This accounts for the lack of sensitivity of the particle

dynamics on planet eccentricity.

For orbits with eccentricity equal to the forced eccentricity, there

is a region in the plane with longer-lived orbits (compared to the

planet orbital period) in close proximity to eccentric planets. Three-

dimensional simulations that incorporate collisions are needed to

see if these orbits tend to be populated by long-lived particles, as

proposed for Fomalhaut’s eccentric ring (Quillen 2006b).
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